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Abstruct. The application of Large Eddy Simulation (LES) in a curvilinear coordinate system to the
flow around a square cylinder is presented. In order to obtain sufficient resolution near the side of the
cylinder, we use ar©O-type grid. Even with a curvilinear coordinate system, it is difficult to avoid the
numerical oscillation arising in high-Reynolds-number flows past a bluff body, without using an extremely
fine grid used. An upwind scheme has the effect of removing the numerical oscillations, but, it is
accompanied by numerical dissipation that is a kind of an additional sub-grid scale effect. Firstly, we
investigate the effect of numerical dissipation on the computational results in a case where turbulent
dissipation is removed in order to clarify the differences between the effect of numerical dissipation. Next,
the applicability and the limitations of the present method, which combine the dynamic SGS model with
acceptable numerical dissipation, are discussed.
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1. Introduction

Large Eddy Simulation (LES) can deal with the unsteady features of turbulent flows directly,
while only smaller scale fluctuations than the computational grid size are modeled. For many years,
LES has been mainly applied to relatively simple flows. However, the state of this research has not
reached an understanding about the applicability of LES to the complex flows such as the turbulent
flow past a bluff body.

In workshops organized by Rodi and Ferziger (1995, Tegernsee) (Rodi 1998), the flows around a
square cylinder aRe= 22,000 were given as a computational model for the test of LES from an
engineering point of view. However, according to the report (Rodi 1998, &aali 1997) of this
workshop, none of the calculation results by participants were completely satisfactory. Some of the
reasons for the lack of agreement with experimental data are as follows; 1) Theoresw@ar the
side of the cylinder was not enough to accurately capture the development and transition of the
separated shear layer. Participants in Tegernsee used Cartesian coordinate system, but it is not ea
to use a sufficiently fine grid in this system. 2) LES using upwind-methods tended to predict the
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narrow recirculation zones. Without the upwind scheme, numerical oscillation cannot be avoided
from the front corner of the square cylinder for reasonable grid resolutions. In this case, it becomes
difficult to estimate the unsteady characteristics of pressure acting on lthéecyHence, it is
necessary to examine the effect of the upwind schemes on a solution.

The objective of this paper is to investigate the applicability of LES using curvilinear coordinate
system to the flow around a square cylinder. In order to get sufficient resolution near the side of the
cylinder, we use a®-type grid in which one set of coordinate lines encircle the cylinder. Even in
the case of using a curvilinear coordinate system, it is difficult to avoid numerical oscillasiog ar
in high-Reynolds-number flows past a bluff body, without using an extremely fine grid. The upwind
scheme has an effect to remove the numerical oscillations, however, it is accompanied by numerica
dissipation that is a kind of additional sub-grid scale effect. Here, we study the accuracy of
computational wake structures and aerodynamic quantities predicted by the present method, using
fine grid that resolves the near-wall flow, through a comparison with those in Tegernsee. First, we
investigate the effect of numerical dissipation on the computational results in a case where turbulent
dissipation is removed in order to clarify the differences between the effect of numerical and
turbulent dissipation. Next, the applicability and the limitations of the present method, which combines
the dynamic SGS model with acceptable numerical dissipation, are discussed.

2. Problem formulation

The governing equations are given by the following Navier-Stokes and continuity equations :
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wherey; (i =1, 2, 3),p, t andRedenote the velocity , pressure, time and the Reynolds number.

To advance the solutions of velocities and pressure in time, a fractional step method is employed.
The time integral of the momentum equation is hybrid; that is to say the Crank-Nicolson scheme is
applied to the viscous terms and an explicit third-order Runge-Kutta method is used for convective
terms. In this simulation, the original governing equations are transformed to #nearv
coordinate system. The present scheme can be written as;
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wherek = 1, 2, 3 denotes the sub-step number for Runge-Kutta methodi’aamtiu® are velocities
at time stepn and n+ 1. The coefficientsx™ and J denote the metrics and Jacobian of the
transformation, respectively.(u), N(u;) represent finite diérence approximations to the viscous
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and convective terms :
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The parameters in Eq. (3) are given by
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To obtain solutions that satisfy the conservation laws, a finite volume method is applied in a
collocated grid system. Spatial derivatives of variables are treated as a second-order central difference
Convective terms are approximated using the higher order interpolation-method (Kajisima 1993). To
avoid the numerical instdlty near the front corners of a saye cylinder, the numerical dissipation
is added to the convective terms. Namely, the convective terms are approximated as follows.
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We use the dynamic SGS model (Lilly 1992). The unknown parar@etercomputed by using
the method of Jordan & Ragab (1998) as follows.
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Fig. 1-2 Computational grid near the cylinder
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A filter width ratio of y=2 is chosen. The tensdté andM are determined through application
of a box filter. In order to avoid numerical instél#s, negative values df are truncated to zero.

As shown in Fig. 1-1, the computational region is a circle with radius Df D= cylinder
dimension). Fig. 1-2 shows the computational mesh (200x188) tne cylinder. The resolution
close to the cylinder is made much finer @/(Re'? than that of Tegernsee, where the smallest
grid size is 0.0D. We use 30 grid points oveb2ength in the span-wise direction.

Standard inflow conditionsy=1, v=w =0, are imposed at the upstream boundary and a
convective condition is used at downstream. A no-slip condition is used at the cylinder surface. The
sampling time for statistics is 200 dimensionless time, which is about 25 periods of vortex shedding.
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3. Computational results

We discuss the accuracy of the computational wake structures and aerodynamics quantities
predicted by the present method, using a fine grid that resolves the near-wall flow, through a
comparison with those in Tegernsee.

3.1. The effect of numerical dissipation on computational results

We investigate the effect of numerical dissipation on contipu& results. Four factors of
numerical dissipationa(= 0.2, 0.5, 1, 3) are used without any SGS models. The Reynolds number
is 22,000, equal to that of the experiment by Lyn (1989).

Table 1 summarises various aerodynamic tjties such as the dimensionless sheddieaquency
(Strouhal numbeb6t=fD/U), time-averaged drag coefficie@t, , the RMS values of the fluctuations
of drag and lift coefficient&p,,; andCi .

The values in all cases are approximately in agreement with the experimental data (Okajima 1983,
Lyn 1989), though the simulation @f=1 has a slightly different values &t and C,,, from the
others. Concerning the drag coefficient, the calculations in Tegernsee usingjig candition in a
coarse grid tend to produce the higher values, while the present calculations using a finer grid with
curvilinear coordinates show better agreement with the experiments (McLean and Gartshore 1992,
Lee 1988). Concerning the effects of the numerical dissipation factor on the computational results,
the calculations including large numerical dissipation tend to produce higher valiigs,@hdCp, -

Table 1 Aerodynamic coefficients(Non-SGS-Model)

a St CDave CDrms Cers
0.2 0.127 1.91 0.22 1.21
0.5 0.128 1.90 0.28 1.19
1 0.122 2.16 0.30 1.50
3 0.125 2.17 0.33 1.23
Exp.[6]~[9] 0.125~0.132 1.9~2.1 0.16~0.23 0.7~1.4
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Fig. 2 The mean velocity on the center plane of the cylinder
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Fig. 3 The averaged pressure distribution on the cylinder
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Fig. 4 The fluctuating pressure coefficient on the cylinder

The results for the mean velocity on the center plane of the cylinder are shown in Fig. 2. The
experimental velocity (Lyn 1989) recovers very slowly in the downstream region and nearly levels
off at about 0.6 of the upstream free stream level. Most results in Tegernsee show stronger recover
of the velocity than the experiments. On the other hand, the present simulations show close values
the experimental ones, except in the caseaef3. Looking at the near cylinder-region, the
calculations of the small dissipation factor tend to produce similar values for downstream
recirculation length and maximum negative stream-wise velocity.

In Fig. 3, we present the averaged pressure distribution around the cylinder, including the experimental
results (Lee 1988, Ohtsuki 1978, Miza#a al 1988). The computational results are in reasonably
good agreement with the experimental data, though not with Tegernsee. Looking at the downstream
face in detail, the simulation @f = 3 has little recovery o€ave.

As shown in Fig. 4, the fluctuating pressure coefficient is qualitatively well predicted, but there
are significant quantitative differences among the results, compared with the experimental data
(Ohtsuki 1978, Mizotaet al 1988). The calculations @f = 0.2 and 0.5, having the same tendency,
can predict the fluctuation curve near the leeward corners of the cylinder, while the cases of

and 3 cannot.
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Consequently, the calculation using a curvilinear coordinate system to get finer resolution, gives
good results compared with those in Tegernsee. However, the calculations using large numerical
dissipation factors tend to show lack of agreement with the experiments.

3.2. A applicability and limitations of the Dynamic SGS Model

Next, we introduce the dynamic SGS model (DSGSM) to a method which has an acceptable
numerical dissipationa(= 0.2, 0.5), and discuss the applicability and the limitations of this method
to the flow around a square cylinder.

Table 2 Aerodynamic coefficients (Dynamic SGS model)

a St CDave CDrms Cers

0.2 0.127 2.04 0.18 1.43

0.5 0.125 1.93 0.23 1.37
Exp. [6]~[9] 0.125~0.132 1.9~2.1 0.16~0.23 0.7~1.4
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Fig. 5 The mean velocity on the center plane of the cylinder



376 Yoshiyuki Ono and Tetsuro Tamura

The aerodynamic @&dficientsare presented in Table 2. The calculations by DSGSM predict higher
values ofCp,,, andC,, than the previous non-SGS model (Table 1), but they are within the limits
of the experimental data.

Fig. 5 shows the results for the mean velocity on the center plane of the cylinderafiéhenat
large differences between the velocities in the far wake predicted by DSGSM and those without
model. Looking at the near-cylinder region, it can be seen that the calculatiar= 05 with
DSGSM exhibits longer recirculation length and lower maximum negative stream-wise velocity
value than those without the SGS Model. As a result, the calculatiarr@.5 with DSGSM show
results closer to the experimental data (Lyn 1989). On the other hand, the results0&f with
DSGSM is in disagreement with the experimental data, though the calculation without the SGS
model shows better agreement.

Fig. 6, Fig. 7 show the avaged pressure distribution and the RMS value of the fluctuating
pressure coefficient around the cylinder. The resultg ®10.5 with DSGSM are in good agreement
with experimental ones (Lee 1988, Ohtsuki 1978, Mizettaal 1988) as well as those without
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Fig. 6 The averaged pressure distribution on the cylinder
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Fig. 8 The distribution of the total fluctuation componerts,u’> and <v'v’ > along the centre-line

model, while the simulation off = 0.2 with DSGSM has a lower value Gf... on the side surface
of the cylinder than other cases. One reason for the loss of accuracy might be that the effect of the SG
model is disturbed by the numerical oscillations occurring from the front corner of the square cylinder.
Fig. 8 shows the distribution of the total fluctuation componentsy'< > afd < >, the along
the centre-line in comparison with the experimental results (Lyn 1989). Concemning < >, except
the case ofr=0.2 with and without DSGSM, the results of the calculations agree with each other and
with the experimental ones. However, concerningv< >, none of the simulations is satisfactory,
though the results of DSGSM tend to be closer to the experimental data than those without model.
In these points, the present calculations do not show much improvement from those of Tegernsee.

4. Conclusions

In order to get a fine resolution enough to accurately capture the development atidrirahghe
separated shear layer, a dynamic sub-grid scale model, using a curvilinear coordinate system, wa
applied to the flow around a square cylinder. We itigated the effect of maerical dissipation on
the computational results in a case where the turbulent dissipation was removed in order to clarify
the differences between the effect of numerical and turbulent dissipation. As a result, the calculation
gave results closer to the experimental data than those of Tegernsee. Especially, the result o
DSGSM with very small numerical dissipation, which eamove the numerical oscillation, is the
closest. However, prediction of the fluctuation components was not improved.
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