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Abstract. In the recent years flow around bridges are investigated using computer modeling. S
(1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures.
and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion
checked for long span bridges. If the wind speed experienced by a bridge is greater than the critic
speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) com
the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In
work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to 
approaches reported by Selvam et al. (1998). It is expected that the computational time required
compute the critical velocity using this approach may be much shorter than the traditional approac
computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measure
The no flutter and flutter conditions are illustrated using the bridge response in time.

Key words: computational fluid dynamics; bridge aerodynamics; computational wind engineering; 
eddy simulation; flutter analysis; wind loading.

1. Introduction

In the recent years flow around bridges are investigated using computer modeling. Selvam 
Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. 
and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion
to be checked for long span bridges. If the wind speed experienced by a bridge is greater t
critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and W
(1997) computed the critical velocity for flutter using discrete vortex method similar to w
tunnel procedures. In this work, the critical velocity for flutter will be calculated directly sim
to the approaches reported by Selvam et al. (1998). It is expected that the computational tim
required to compute the critical velocity using this approach may be much shorter tha
traditional approach.
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1.1. Fluid-structure interaction (FSI) modeling

In the fluid-structure interaction (FSI) modeling, the equation of motion of the structure an
fluid must be solved simultaneously. One difficulty in handling FSI problem is that the structura
equations are formulated in the Lagrangian co-ordinate system and the fluid equation
formulated in the Eulerian co-ordinate system. Hence to solve both equations, a moving g
needed at each time step for the fluid portion. Several different approaches are in use at th
They are arbitrary Lagrangian-Eulerian (ALE) formulation (Nomura and Hughes 1992, Selvam et al.
1998 and Tamura et al. 1995), co-rotational approach (Murakami and Mochida 1995) and dyna
meshes (De Sampaio et al. 1993). The co-rotational approach may be easier to implement by ad
extra terms in the Navier-Stokes(NS) equations for movements in one direction. For g
problems it will be difficult to apply. In the dynamic mesh approach, for each time step a new 
is formulated. This needs a very sophisticated grid generator. In the ALE approach, grid c
moved as a whole with constant velocity for each node as reported by Tamura et al. (1995) or with
different velocity for each node and in some region no movement at all as reported by Selvamet al.
(1998) and Nomura and Hughes (1992). Moving the grid as a whole is preferred for FSI pr
since the structure has rigid body movement. If the structure is very flexible and each node 
structure is moving, then the other grid moving procedure has to be used. Also for this pro
the geometric conservation law has to be satisfied as discussed by Thomas and Lombard (19
Ferziger and Peric (1999) if not numerical instability may occur. Moving the grid as a whole
be computationally easy to apply. In the bridge flow modeling the bridge deck is assumed
rigid and the first approach is used at this time. 

1.2. Critical flutter velocity computation for bridges

The critical flutter velocity for bridges is calculated using forced motion and free motion o
bridge cross section as discussed by Enevoldsen et al. (1999) and Hansen et al. (1999). In the
forced motion of the bridge, the aerodynamic derivatives of the bridge cross section are deter
The aerodynamic derivatives and their use in wind-tunnel experiments are reported in Dyrby
Hansen (1996) and Simiu and Scanlan (1978). This method evolved from wind-tunnel exper
The bridge cross section is forced to oscillate in pitching or heaving sinusoidal motion w
prescribed frequency and amplitude. The aerodynamic derivatives are calculated from the 
created during the forced motion through a least square minimisation. Larsen and Walther 
and Enevoldsen et al. (1999) used this procedure. 

In the free motion of the bridge cross section, the aeroelastic stability of the cross sec
observed directly. Here the cross section is elastically suspended in the flow and the stability of the
cross section is observed for various wind speeds. The flow and pressure is computed for th
position of the bridge and then using this pressure the bridge will be moved to a new positio
to the dynamic response of the structure. This process is continued in time. The plot of the 
position in time for various approach wind speeds gives the detail of the aeroelastic stability. The
critical flutter velocity may be calculated in few computer runs. The challenge is the accuracy 
numerical procedure. Frandsen and McRobie (1999), Enevoldsen et al. (1999), Nomura and Hughes
(1992), Mendes and Branco (1995) and Selvam et al. (1998) use this procedure. Frandsen a
McRobie (1999), and Envoldesn et al. (1999) did not give the details of the grid moveme
procedure. The others used it for different structures.
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2. Objective

The objective of this paper is to study the issues involved in the computation of flow ar
bridges and to compute the critical velocity for flutter in a direct way using a moving grid. In
previous work (1998 and 1999), the finite element grids were refined by using 10,337 nod
improve the drag coefficient Cd values for the Great Belt East Bridge (GBEB) sections. In this w
further improvements in grid refinements using grid generators are reported. The turbulence is
modeled using Large Eddy Simulation (LES) and the governing equations are solved by 
Element Method (FEM).

2.1. Nomenclature

In the following discussion Reynolds number Re , drag coefficient Cd , lift coefficient Cl and
moment coefficient Cm and Strouhal number St are defined as :

Re = VB /ν
Cd = Fx / (0.5ρV2BW)
Cl = Fy / (0.5ρV2BW)
Cm = M / (0.5ρV2B2W) and
St = H / (TV) (1)

Where B is the width, H is the height, and W is the length in the z direction of the bridge, V is the
reference velocity, ν is the kinematic viscosity, Fx , and Fy are the drag and lift forces, M is the
moment, T is the period of oscillation of the lift forces and ρ is the density. For 2D computation, W
is considered to be one.

3. Computer modelling using LES

The flow around the bridge is represented using the Navier-Stokes equations. Numerical issues
and turbulence modeling issues were discussed in detail in Selvam (1998 and 1999).

3.1. Governing equations for flow

In this work, the LES turbulence model is considered. The two and three-dimensional equations
for an incompressible fluid using the LES model in general tensor notation are as follows :

Continuity Equation: Ui,i = 0 (2)

Momentum Equation:

Ui,t + (Uj − Vj)Ui,j = −( p / ρ + 2k / 3), i + [(ν + νt)(Ui,j + Uj,i)], j (3)
where : νt = (Csh)2(Sij

2/ 2)0.5,
Sij = Ui,j + Uj,i ,
h = (h1h2h3)0.333 for 3D ,
h = (h1h2)0.5 for 2D,
and k = (νt / (Ckh))2 .
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Empirical Constants: Cs= 0.15 for 2D and 0.1 for 3D, and Ck = 0.094
Where Ui , and p are the mean velocity and pressure respectively, Vi is the grid velocity, k is the

turbulent kinetic energy, νt is the turbulent eddy viscosity, h1, h2, and h3 are control volume spacing
in the x, y, and z directions and ρ is the fluid density. Here the area or volume of the elemen
used for the computation of h. Here a comma represents differentiation, t represents time and
i = 1, 2 and 3 mean variables in the x , y and z directions. To implement higher order approximatio
of the convection term (Selvam 1998) the following expression is used in Eq. (3) instead of UjUi,j :

(Uj − Vj )Ui,j − θ [(Uj − Vj)(Uk − Vk)Ui,j],k / 2  (4)

Depending upon the values of θ different procedures can be implemented. For balance te
diffusivity(BTD) scheme θ = δt is used; where δt is the time step used in the integration. F
streamline upwind procedure suggested, θ is considered as :

θ = 1 / max (|U1| / dx, |U2| / dy, |U3| / dz) (5)

Here dx dy and dz are the control volume length and U1 , U2 , and U3 are the velocities in the x, y
and z directions. In this computation θ = δt is used. This has less numerical diffusion as compa
to benchmark problems in Selvam (1998). For moving grid the maximum of the BTD or 0.3 
Eq. (5) is considered for better stability of the solution.

3.2. Governing equations for the bridge

Since the flow around the bridge is solved using the non-dimensional NS equations, the str
dynamic equations for the bridge are also solved in a non-dimensional form. The bridge is as
to have pitching and heaving motion. The structural properties of the GBEB suspended s
reported by Larsen and Walther (1997) are as follows :

Mass moment of inertia m= 22.7� 103 kg/m
Rotational mass moment of inertia I = 2.47� 106 kg.m2/m
Pitching frequency ωp = 1.709 rad/s
Heaving frequency ωh = 0.622 rad/s

The bridge rotates about the shear center and moves vertically from the center of gravity.
both are along the line of symmetry both are uncoupled. The equations of motion for the pitchp
and heave, h are as follows :

(p,t),t + ωp
2 p = Cm(0.5ρV2B2) / I (6)

(h,t), t + ωh
2 h = Cl (0.5ρV2B) / m

Non-dimensionalizing the length by B and time by B / V, where B is the width of the bridge and V
is the reference velocity and simplifying the equations one get

(p, t),t + (1 /u* )2 p = 0.5Cm / Rp (7)
(h,t),t + (ωh / [ωpu* ])2 h = 0.5Cl / Rh
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Here u*  is the reduced velocity and is equal to V / (ωp B), Rp= I / (ρB4) and Rh = m / ( ρB2). In this
work Rp = 2.178 and Rh = 19.236 for the air density ρ = 1.228 kg/m3 are used. The above equation
are solved explicitly using the central difference method.

3.3. Finite element scheme to solve NS equations

The NS equations are solved using an implicit method suggested in Selvam (1998). The fo
advancement scheme for Eqs. (2) and (3) is as follows :

Step 1 : Solve for Ui from Eq. (3). The diffusion and higher order convection terms 
considered implicitly to be in the current time and the first order convection terms
considered explicitly from the previous time step. The pressure is considered in the r
hand side of the equation. This set of equations leads to a symmetric matrix an
preconditioned conjugate gradient (PCG) procedure is used to solve. For simplicity here
on p / ρ is considered as p.

Step 2 : Get new velocities as Ui
* = Ui + δt(p,i) where Ui is not specified

Step 3 : Solve for pressure from (p,i),i = Ui,i
* / δt

Step 4 : Correct the velocity for incompressibility: Ui = Ui
* − δt (p,i) where Ui is not specified

Step 2 eliminates the checkerboard pressure field when using equal order interpolation for v
and pressure in the case of FEM. Implicit treatment of the convective and diffusive terms elim
the numerical stability restrictions. In this work the time step is kept for CFL (Courant-Frederick-
Lewis) number less than one. The above NS equations are approximated by FEM procedu
velocity and pressure are approximated using equal order interpolation. Eight noded brick elem
used for 3D and four noded quadrilateral is used for 2D. 

The equations are stored in a compact form as discussed in Selvam (1998). The equati
solved by preconditioned conjugate gradient (PCG) procedure. To solve the velocities an underrelaxation
factor of 0.7 is used. The iteration is done until the absolute sum of the residue of the eq
reduces to 1� 10-7 times the number of nodes for each time step. Usually the pressure and mom
equations take about 50 and 10 iterations for PCG solution respectively. 

3.4. Boundary and initial conditions

The cross section of the GBEB suspension span used for computation is shown in Fig. 

Fig. 1 Cross section of the Great Belt East Bridge
suspension span. All dimensions are in mm

Fig 2. Solution region and boundary conditions
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computational region and boundary conditions are shown in Fig. 2 for the fixed grid. The cy
surface has no slip condition. The upstream boundary has uniform velocity of one in the x direction
and zero in the y direction. At the outflow boundary the normal gradient of the velocities are z
and the sides have slip boundaries. Computation is done for Re of 105.

4. Results

4.1. Computation for rigid bridge

The FEM grid used for illustration here has 14,805 nodes and 14,570 elements. Around the
the grid has 215� 63 points as shown in Fig. 3. The minimum grid spacing close to the bridge 
is about 0.0015B. The time step may be around 0.0004 sec. The flow is run for 60 sec.

The computed Cd of 0.062 and Strouhal number St of 0.14 is in good comparison with the wind

Fig. 4 Vorticity contour diagram using (a) LES model (b) no LES model

Fig. 3 Finite element grid for GBEB suspension span
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tunnel measurements as reported by Larsen and Walther (1997) for the static case at an ang
of zero degree. The flow features developed were also in reasonable comparison with Lars
Walther. Previously Selvam and Bosch (1999) could not develop the vortices on the top and 
decks due to limitation of grid refinements. The flow features on the top and bottom are sho
Fig. 4. The flow is computed either considering turbulence model LES (Fig. 4a) or no LES 
4b). The second one has much more vortices at the bottom.

4.2. Computation for flexible or moving bridge

The same grid is used for computing the aeroelastic stability. The computed flow using the
grid in the previous section is used as the start up solution for computation. This saves co
time when runs are made for many cases. Initially a perturbation of 1.8 degrees is provided and t
response of the bridge in time is studied to see if the reduced velocity u* is above or below the
critical flutter velocity. Based on that, u* values ranging from 0.4 to 1.4 are considered f
computation. If the reduced velocity u* is below the critical velocity for flutter, the oscillations die
down gradually in time as shown in Fig 5. If u*  is above the critical velocity for flutter, the
oscillations grows up till the bridge fails (Fig 6). The response of the structure in time are plotted
for u* = 0.4 and 1.4 for illustration. The critical velocity for the onset of flutter is determined f
the plot of the pitch angle versus time. The aerodynamic damping is positive as long as th
angle decreases in time and vice-versa. The plot of the pitch angle versus time is analyzed t
the extent of growth or decay. The rate of growth and decay is found by averaging the cha
amplitude values of the last two periods of the pitch angle vs. time plot. These rates are plot
each u*  value and the point where the plot crosses the zero decay/growth line is found. This
represents the critical value of u* for the onset of flutter.

It is clearly shown in Fig. 5 that when the velocity (u* = 0.4 and V = 21.2 m/s) is less than the
critical flutter velocity (70−75 m/s as reported by Enevoldesen et al. 1999 from wind tunnel study),
the perturbation gradually dies down i.e., no flutter condition is observed. When the ve
(u* = 1.4 and V = 74.2 m/s) is higher than or closer to the critical velocity, flutter occurs as show

Fig. 5 Bridge response for reduced velocity u* of 0.4 (no flutter condition)
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Fig. 6. In our case, it is estimated that critical flutter velocity occurs at u* = 1.3 or for a reference
velocity of 69 m/s. A time step of 0.001 is used in these computations. Further work is underw
study for longer time duration and to try much accurate solution procedures for the fluid-stru
interaction problem.

The grid position at the end of 30 sec. for u* = 1.4 is shown in Fig. 7. The grid is rotated by abo
14 degrees from its original position. The velocity vector diagram is also plotted for this case in Fig.
8. One can see the prominent vortices on the top front of the bridge.

Fig. 6 Bridge response for reduced velocity u* of 1.4 (flutter condition)

Fig. 7 Bridge and grid position at the end of 30 sec.
for u* = 1.4

Fig. 8 Close up of the velocity vector diagram fo
u* = 1.4
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5. Conclusions

The flow around the Great Belt East Bridge (GBEB) suspension span is computed using
element procedure. The turbulence is modelled using large eddy simulation model. The f
computed for Re of 105. In this work a reasonably wellrefined grid with 14,805 nodes 
considered. The computed Cd and St are in comparison with wind tunnel measurement. 

Numerical procedures related with moving grids are discussed. One of the ALE procedu
selected for the computation of moving grids. In this work the critical flutter velocity is comp
using free oscillation technique. The computed critical velocity of 69 m/s is in reasonable comp
with wind tunnel measurement and numerical modelling by Larsen and Walther (1997). The
program is verified with proper illustration of no-flutter and flutter condition for u* = 0.4 and 1.4
respectively. Over all the FEM procedure is viable for practical application.

Further work is underway to study for longer time duration and to try much accurate so
procedures for the fluid-structure interaction problem. The computation of critical flutter velo
using forced and free oscillation procedures will be investigated. 
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