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CFD calculations of indicial lift responses for bluff bodies
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Abstract. Two-dimensional formulations for wind forces on elongated bodies, such as bridge decks, are
reviewed and links with expressions found in two-dimensional airfoil theory are pointed out. The present
research focus on indicial lift responses and admittance functions which are commonly used to improve
buffeting analysis of bluff bodies. A computational fluid dynamic (CFD) analysis is used to derive these
aerodynamic functions for various sections. The numerical procedure is presented and results are discusse
which demonstrate that the particular shapes of these functions are strongly dependent on the evolution o
the separated flows around the sections at the early stages.
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1. Introduction

In a series of papers, Scanlan and his coworkers (1993, 18€8ljed that “buffeting forces
acting on elongated bodies like long-span bridges have been described by theories and analytica
formats strongly influenced by analogous expressions found in two-dimensional airfoil theory”.
Hence, dimensionless indicial and admittance functions have been extensively employed to improve
analytic formulations of buffeting forces for bluff bodies: indicial functions have been used to
describe the time history of wind-induced forces associated with a gust of variable velocity and
admittance functions to express the frequency dependence of these forces.

In the case of thin airfoils, the mathatical formulation of such typical functions was based on
potential flow theory. Wagner (1925) derived the indicial response of an airfoil to a step change in
angle of attack and Kussner (1936) the loading response to an airfoil penetrating a sharp edged gus
Using the same mathematical base, Theodorsen (1935) derived the admittance function of an airfoil
undergoing complex vertical and torsional oscillatory motions and Sears (1941) developed
expression for a thin airfoil penetrating a vertically oscillating gust field.

Bluff bodies, which initiate detached flows, do not have the benefit of such a mathematical base.
In this context, airfoil-type functions are unable to depict wind actions and can be viewed only as
suggested approximations. However, analogous response functions can be determined for lift
associated with step changes in the incoming flow properties, such as a step change in the angle ¢
attack (Wagner-type indicial function) or step change in vertical velocity (Kuissner-type indicial function).

The aim of this study is to demonstrate that a computational fluid dynamic (CFD) analysis can be
used to derive these functions for elongated bluff bodies, such as bridge decks.
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2. Buffeting analysis
2.1. Time-dependent analysis
Current theories for prediction of wind induced vibrations due to air-turbulence are based upon a

quasi-static formulation, which relates the buffeting forces to the incoming wind velocity components.
In this format the lift is given by

1 U(S) .~ UzS)
Ly(s) = EpUZB[ZC,% TRy } (1)
in whichs=Ut/B is a dimensionless timé, arfef the steady lift coefficient and lift slope

with angle of attaclag, B the structure chord fengtp, airf density,U the cross flow velocityy, and
u, the along-wind and vertical gust velocity components respectively. Analogous formulations can
be obtained for drag and moment expressions.

Following, as a guide method, the thin airfoil theory, these formulations may be improved through
the introduction of indicial function®,, and @,,. The lift may be written as

S
Lo(s) = %pUBZC,a I u(0)®] (s-0)do
+%pUBC’,a [ u(0)®] (s-0)do @)
With the change of variables- o= 1, this equation becomes
L(s) = 3pUB2C, [ u(s- 1)@} (1)dr
2 ) x
+2pUBC|, [ u(s—1) @] (1)dT @3)
2 % 9o z
In the frequency domain this equation is
Ue(K) - , (k) -
=SSR 0k() + Gl cD|X(k)J
in which Lb(k) is the Fourier transform df,(s) and k=Bw/U the dimensionless oscillation
frequency. In these equations, the indicial functions define the character of the transient lift response

to a step change in the characteristics of the incoming flow. In 2D-airfoil transient lift theory, the
resulting expressions for these functions were found to have the useful approximate form :

Lo(k) = %pUZB [ZC'% (4)

P(s') = 1-ae” —ce™ (5)
wherea, b, ¢, d are constants angl  B{f/ (B/2)} is a dimensionless time. Considering the indicial
response of a thin airfoil to a step change in angle of attack, Wagner (1925) originally found

a=0.165 b=0.0455 ¢=0.335 d=0.300

Considering the loading response to an airfoil penetrating a sharp edged gust, Kissner (1936)
found
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a=c=0500 b=0.130 d=1.00

Both Kussner and Wagner used potential flow theory. For bluff bodies, which initiate detached
flows, no general theory exists for deriving indicial functions. In this context, they have been
identified through experiment. In a representative case, Scanlan, Beliveau and Budlong (1974) have
shown that the indicial function of a bridge deck has the same useful form (5) but that its particular
shape, Fig. 4, is strikingly different from the corresponding function for an airfoil.

2.2. Spectral analysis

In wind engineering since the spectral approach, developed by Davenport (1962), remains the
most widely accepted method, the spectral form of (4) is used

1 2 4.2 S, '2 S“z
S, = 30'UB* |4C2 x4l St (6)

This expression represents a simplification of the complete equation, since the cross power
spectral densities of wind turbulence componéhjg andS,,,, have been assumed to be negligible
(this is a commonly used assumption). In this formulatigﬁ,(k) and )(Izz(k) are so-called
“aerodynamic admittance” related to the indicial functions

Xt = @i (e (k) xz = o (oK) (7)

These frequency-based transfer functions relate the spectrum of the incoming flow velocity
fluctuations to the spectrum of the force fluctuations experienced by the structure. It should be noted
that in Eq. (6), a separate admittance factor is assigneddo component and that the standard
guasi-static formulation (1) implies constant unit admittances. Alternate formulation for aerodynamic lift
force spectrum, with a single admittance factor, have been also used

S,
5, = Zp°U'B" [4ct =+ S“]x. ®)

For the vast majority of all structure§, is significantly less than the sﬂljpe (for the
symmetrical sections, with angle of attack arourid this coefficient is very small) Hence the
contribution associated with the longitudinal velocity can be assumed to be negligible. Therefore,
both Eq. (6) and Eg. (8) reduce to

1 Sy
Sl=5p VB, X (©)

This format quantitatively deflnea(, as a transfer function relating the spectrum of incident
vertical gusting velocity to that of associated lift. Noting further that the &rmy;, can be seen
as the termCj (k) used by Larose (1997). Therefore thettadice functiony;, can be seen as the
ratio of the unsteady lift slope to the steady case

X, = C’Cilk(l—()O)
(k=

Sears (1941) derived an exps®n for the admittance of a thin airfoil penetrating a sharp edge
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gust with sinusoidal vertical velocity. This expression, known as the Sears’ function, has been
approximated by Liepmann (1952) :

_ 1
XS_1+2le

The Sears function, usually designatedxgyand the Kissner function, usually designated#by
are related by a Fourier transform relationship

Xs = [ W(0)e™do = ik[ W(0)e"do (10)
0 0

Hence, by using Eq. (5), an expression of the complex Sears function can be obtained. Since the
use of admittance function in wind engineering is an extension of its original use in aeronautical
context, the Liepman approximation of Sears function was extensively used in buffeting analysis of
bluff bodies. But experimental studies have shown that this assumption was not appropriate, even
for streamlined bridge deck sections. In this case a CFD &anuisf indicial and/or admittance
functions could be a step toward predicting the cross-wind excitation induced by the incident wind.

3. CFD analysis
3.1. Outline of numerical procedure

A finite-element flow solver, CASTEM 2000, has been used to predict indicial lift responses of
various sections, such as a NACAO0012 airfoil, a rectangular se¢iioi€ € 0.12), a bridge deck
(Pont de Normandie), penetrating (or enveloped by) a sharp edged gust. Since the present researc
investigates only indicial responses of along-wind sections of structures sufficiently long in the
across-flow direction, a two-dimensional model has been retained for the CFD analysis. The method
used has been drawn from the one suggested by Brar, Raul and Scanlan (1996) to calculate flutte
derivatives :
1. The wind flow across the section is computed witlarfyle of attacku; = 0).
2. Next, the vertical velocity of the flow field upstream of the section is changed to awgalue
(the gust represents an instantaneous change in the vertical wind speed).
3. The unsteady-lift respon$&(s) is calculated by integrating the pressure along the boundary of
the section as the gust convects with the freestream.
4. The unsteady-lift function is normalized to its steady state value. Hence, the gust-penetration
function, which is usually referred to as the Kissner-type indicial function, is defined as

G

v %
C'UO

Y(s) =

When the gust propagation speed is the freestré&amvilocity Ug, the indicial function reduces
to this commonly used function. Similarly, when the gust propagation speed is infinite, as @& &rar
(1996), the angle of attack over the entire section is changed instantaneously, therefore the unsteady
lift function becomes that for indicial change of angle of attack, which is usually referred to as the
Wagner-type indicial function.
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As noted earlier, a theoretical link has been established between Kuissner indicial function and
Sears admittance function. Analogously it has been attempted to determine admittance functions
directly from the computed indicial functions by using the Fourier transform relationship (10).

3.2. Governing equations

In the atmospheric boundary layer the wind is an incompressible, unsteady, turbulent flow
governed by the Navier-Stokes equations. For solving practical problems in the area of wind
engineering, successful calculations have been obtained by solving numerically the Reynolds Average
Navier-Stokes(RANS) equations and by taking into account thmuleurce effects by a closure
model, Rodi (1995). Of the models used, the most popular are the two-equation firsk-erder
models. However the standakee model, developed by Launder and Spalding (1974), is known to
product poor results when applied to unsteady separated flows over bluff bodies, Murakami (1997).
A variety of modified versions have been proposed to improve the performance of the model among
which is the renormalization group(RN®)e model. The use of this model to predict unsteady
wind-loading has been validated by the authors in a previous work, Turbelin (2000). Hence,
throughout this study, the RN&-¢ turbulence model has been used to computed indicial lift
responses of bluff bodies. It should be noted that this model, proposed by Orszag and Yakhot (1993
for high-Reynolds number flows, incorporates modified constants and a new production term in the
equation for the dissipation. For the present case, the variables have been rendered nondimension,
with regards to the section choBdand the freestream flow velocityp. The governing equations to
solve are the ensemble-average Navier-Stokes and the continuity equations

W, N onL, o, Y,
o "YUk T axRe’ H 0x} o% (1)

2,
0X;
in which U; and p are the mean dimensionless velocity and presfee,U,B/v the Reynolds

number andv;= C)k?/ € the eddy viscosity. The transport equations for the dimensionless turbulent
kinetic energyk and dissipatiorz are

K,y _ ol Vo], p
a Yo 0X[ERe akmax] Pu—e (13)

=0 (12)

de, 9 _ OOl | Vinoe £
ot U’dx 0X[ERe GD?X} C:Elk C:EZk (14)

WherePx is the turbulent generatiorrn

o = v 2UY; |

* ox; Llox; 0x D

The constants are

C,=0.0845 C, =142 C.,=1.68 0i=0,=0.7179
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nH-1C0
c, =cC, - — n:F‘S

in which ny=4.377 and3=0.012.

The flows Reynolds numbers involved in wind engineering are usually quite Rege)(10") or
higher. In this study the Reynolds number across the sections (based on structure chord and averac
inlet velocity) is taken to be 8.9@experimental results at sute are found in the literature for the
NACAO0012 airfoil). It should be noted that at such laRgthe flow is fully turbulent.

3.3. Numerical details

The spatial discretization of the model equations has been obtained by a finite element method
(Galerkin weighted residual method) usiQg-P, (bilinear velocity, constant pressure) quadrilateral
elements stabilized with a macro-element condition, Kechkar and Silvester (1992). The time
discretization has been obtained by a semi-implicit first order scheme (implicit for pressure and
explicit for velocities and all other unknowns). The time step has been automatically adjusted
according to the stability conditions. To suppress propagating oscillations due to the coreeusve t
in Galerkin finite element discretization, the streamline-upwind/Petrov-Galerkin(SUPG) concept with
an additional discontinuity-capturing(DC) term has been used, Hughes, Mallet and Mizukami (1986).

4. Calculations
4.1. Computational domain

In all cases treated, the computational domain used ®&dsn§) upstream from the leading edge
of the section, 12 long downstream of the section anB wide on each side of the section. The
calculations have been carried out on a X332 grid refined in the vicinity of wall. The grids are
plotted in Figs. 1 to 3.

4.2. Initial and boundary conditions

The flow with @ angle of attack has been first computed with freestream Dirichlet conditions
imposed at the inflow boundary. These conditions have been defined by prescribing distribution of
velocity, turbulence kinetic energy and dissipation rate. For this study the velocity profile was
uniform and the condition fdk and € represented a turbulence intensity, designed, mf 2%. In
dimensionless form, we let

ki3n/2

U,=1 k,=15° g,= /B

in which I, =0.0038 is the estimated length scale of the energy-containing eddies. Stress free
conditions were automatically imposed on the other boundaries (inherently by the finite element
formulation) and wall functions have been employed to estimate the \eall stiesses on the solid
surfaces.
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Fig. 2 Finite element mesh in the vicinity of the rectangular section

Fig. 3 Finite element mesh in the vicinity of the bridge

Next, the vertical velocity of the flow field upstream of the airfoil was changed to a chosen value
Uz / Uo= 0.0875. This gust of uniform upward velocity corresponds to a change in the direction of
the relative air velocity and produces @abgle of attack. The indicial lift response was obtained by
integrating the pressure along the boundary of the section as the gust convects with the freestream.

For other details of this method the reader is referred to Turbelin (2000). It has been tested for a
12-percent-thick symmetric airfoil and carried out for a rectangular bluff section and for a
streamlined bridge deck section (Pont de Normandie).
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5. Computed results
5.1. Airfoil case

The method has been first validated by computing the growth of the lift on a NACAQ0012 airfoil
penetrating a stationary sharp-edge gust. The purpose of this computation was to assess the abilit
of the model to predict indicial and admittance functions. The normalized indicial lift response, as a
function of time, is plotted in Fig. 5. It consists of a transient followed by a steady state : after a
critical period of time, the lift reachats quasi-steady value. An examination of the aerodynamic
flowfield, Fig. 9, shows that the flow remains attached. Consequently the function obtained is in
good agreement with the Kissner solution, given in Eq. (5). Fourier transforminpobe @urve,
admittance function is plotted agair3/ U, Fig. 5. In this case, this function is reduced towards
that of a fully attached flow, that is Sears fiiorw witch is also plotted for comparison.

5.2. Rectangular section

In the same manner, the indicial lift response of a rectangular section with the same thickness-
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Fig. 4 Normalized indicial lift response of a representative bluff body, Scanlan (1995)

1.20 . 1,2‘0
0e
1.0 00O e SO i
/ :
i .48
£ I
4 A2
A4 "2\
; ©
¢ dﬂ 4
0 48 &
i
{ o,
io =
| o
J44 °s
o ~ NACADO12 : s 10 NACA0012
. H O3 o
le ooo‘o‘gézﬂﬂs6
B o LR
DIMENSTONLEES TIME KUSoNER | T00w000a0000000 SEARS
-.20 . . . R i do. . . DIMENSIONLESS OSCJLLATION FREQUENCY
0. 5. 10. 15. 20. 25. 30. 35. 40. 45. 50. L0050 1.00 1,50 2.00 2.50 3.00 3.50 4.00 4,50 5.00

Fig. 5 Normalized indicial lift response and Admittance function, airfoil case



CFD calculations of indicial lift responses for bluff bodies 253

18.00

17,100
15.20( Z
" 13.30 4
boh
i
Aoh [M “\ I 11.400 4
! ! oyl i
by \4,,1.,{!1“
1t ] SRR 950 4
(AT l |

H HM U i/ 7.60- | J

Gy Ut b

i Pyt 5.70 /
3.80L N

FILTERED /

| 1.90L
h CALCULATED / !
DIMENSIONLESS TIME L DIMENSIONLESS OSCILLATION FREQUENCY
. .00 e S e
3.77 9.63  15.49  21.35  27.21  33.07 .00 .40 .80 1.20 1,60 2.00 2.40 2.80 3.20 3.60 4.00
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Fig. 7 Normalized indicial lift response and Admittance function, bridge deck section

chord ratio H/B=0.12) has been obtained. The objective of this computation was to study the
particular shapes of the indicial and admittance functions for bluff bodies. It is important to note
that the mechanism involved in this case is very different from that for a fully attached flow of an
airfoil. In this case, the body-initiated excitation, i.e., the excitation caused by the presence of the
body itself, is a major contributor to the buffeting forces. Therefore, the unsteady lift function,
plotted in Fig. 6, is quite different from the previous indicial response of an airfoil. The lift displays

a significant overshoot, and very distinct oscillations associated with a vortex shedding develop. The
expression for the indicial function cannot be evaluated exactly because of these oscillations. Thus
the computed function has been filtered by using the discrete wavelet transform properties. The aim
of this process is to eliminate theng-scales associated with the periodic vortex shedding. The
result shows that the strong overshoot is not associated with these oscillations. An examination of
the aerodynamic flowfield, Fig. 8, indicates that this overshoot is linked to the flow separating from
the leading edge. As the gust is convected with the freestream, the separated shear layer created
the upstream corner reattaches to the upper side of the section and forms a sdndoialBors

time advances, the bubble increases in length. Figs. 8A to 8E show its time development (it can alsc
be observed from the distribution of surface-pressure coefficient). As the separation bubble grows,
the lift coefficient increases and overshoots its quasi-steady value. After a critical period of time, the
separated flow from the leading edge interacts with the recirculation wake flow region, at the upper
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TIME

Fig. 8 Time development of the aerodynamic flowfield around the rectangular section

trailing edge corner, to form a vortex. At this time, the lift hasaaly past its maximum level and a

new vortex develops in the recirculation zone, at the lowdingaedge corner. As this new vortex
grows, the upper vortex is pushed away and is shed into the downstream wake as the lift coefficient
decreases. Then a regular vortex street develops in the downstream wake and the lift approaches i
guasi-static value.

The Fourier transform of the filtered indicial function is plotted in Fig. 6. It significantly increases
with increasing reduced frequency and exceeds unit value in the reduced frequency range of interest
which corresponds to high reduced velocities (for which buffeting forces become important). It
should be pointed out that this function reflects the effects of the bubble formed under the
reattaching shear layer shed from the leading edge of the section. Therefore it does not conform
with the definition of an admittance functions given in Eqgs. (6) and (8). However it can be seen as
an indicator of the behavior of the actual admittance function. If it increases with reduced frequency,
it means that a large proportion of the lift force results fronré¢agaching shear layer. Thus the lift
could be expected not to be as dependent on the overall flow pattern as the lift resulting from a
fully attached flow. Tkrefore the aerodynamic adtance could be expected not to drop with
reduced frequency and to exceed unit value. This behavior has been observed withedsecements



CFD calculations of indicial lift responses for bluff bodies 255

NORMANDIE BRIDGE NACA0012

Fig. 9 Aerodynamic flowfields

for a variety of rectangular sections in smooth flow by Jancauskas and Melbourne (1986). Further
calculations show the extension of this behavior as the thickness-chord ratio increases, i.e., as the
lift generated by the reattaching shear layer increases. This will be the subject of a future paper by
the authors. Based on this, these effects are assumed to be minimal as the thickness-chord rati
decreases or for relatively streamlined sections for which only a small proportion of the lift force
results from the reattaching shear layer. In this case the aerodynamic functions could be expected t
be essentially that of a fully attached flow.

5.3. Bridge deck section

This trend can be observed, at least qualitatively, for the streamlined bridge deck section of the
“Pont de Normandie”, a cable-stayed bridge which has a depth-to-widthHidt®, of 0.13. In this
case, a small overshoot occurs, Fig. 7, and the value of the admittance is close to unity at the lowe
reduced frequencies and decays with a form not unlike the Sears function as the reduced frequenc
increases, Fig. 7. However it can be seen that the Sears function underestimates this function. Ove
this streamlined section only a small proportion of transverse force is generated under the reattaching
shear layer, Fig. 9, but the result confirms that the use of Sears function is not appropriate.

6. Conclusions

In this paper, some examples of CFD calculations of gust-penetration functions have been described
These calculations could be a step toward predicting the cross-wind excitation induced by the
incident wind and provide an alternative to experimental data for deriving aerodynamic functions
useful in buffeting analysis. The functions presented here may be considered to be generalizec
unsteady lift functions, however further investigations are needed to determine the influence of the
incoming flow properties (Reynolds number, turbulence level).

The results of this study show that the particular shapes of the indicial and admittance functions
(strong overshoot...) are strongly dependent on tlwuteon of the seprated flow around the
section at the early stages. Since most of the works focused on long-term flow development, further
details study should be necessary for understanding the influence of these early-stages flow
development.

This study also confirms that for bluff sections, and even for streamlined deck sections, the use of
classical airfoil functions is not appropriate. Thus, a CFD approach provides a simple yet effective
way to know if the body-initiate effects contribute to the buffeting forces and have to be taken into
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account.
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