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Abstract. This paper reports the numerical calculations of uniform turbulent shear flow around a s
cylinder. The predictions are obtained by solving the two-dimensional unsteady Navier-Stokes equat
a finite volume technique. The turbulent fluctuations are simulated by the standard k-ε model and one of
its variant which takes care of the realizability constraint in order to suppress the excessive genera
turbulence in a stagnation condition. It has been found that the Strouhal number and the mea
coefficient are almost unaffected by the shear parameter but the mean lift coefficient is increase
present predictions are compared with available experimental data.
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1. Introduction

Flow past a bluff body constitutes a classical problem where flow separates over the surface of th
body evolving periodic shear layer. This periodic shear layer generates vortices causing a fluc
surface pressure and vortex shedding and these issues are of great practical importance in 
of structural design (Saha et al. 1999, Murakami and Mochida 1995); flame stabilisation in
combustors (Bailly, Champion and Garreton 1995) etc. A number of experimental and numerical
studies are found in the literature which deal with the cases of uniform (plug) flow over a cir
and rectangular/square cylinder (Rodi 1997). However, very little information is available for shear
flow around a square cylinder. Kiya et al. (1980) and Kwon et al. (1992) presented experimenta
results for uniform shear flow around a circular cylinder at moderate Reynolds number (Re= U0H /
ν = 35−1600) when the shear parameter was varied from 0 to 0.25. The shear parameter, S is defined
as S= λH / U0 where λ = dU / dy is the velocity gradient, H is the cylinder height, U0 is the mean
streamwise velocity at the level of cylinder centreline (see Fig. 1) and ν is the kinematic viscosity of
the fluid. These studies demonstrated that the vortex shedding frequency, f is increased and the drag
coefficient is slightly decreased as S is increased. The subsequent numerical study by Hwang and
Sue (1997) showed that this kind of flow is dependent on the Reynolds number and pres
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results of up to Re= 1500. Ayukawa et al. (1985) considered a rectangular cylinder in a unifor
shear flow at a high Re= 20,000 at four different shear parameters of up to S= 0.064. The results
demonstrate that unlike flows in moderate Re, the Strouhal number, St (= fH / U0) and drag
coefficient are almost unaffected by shear parameter (in fact the results of Hwang and Sue (1997)
show an exponential decay of the rate of increase of drag coefficient with Re), but the lift coefficient
is found to increase. Later Ayukawa et al. (1993) presented a numerical study using the discr
vortex method for a square cylinder at Re= 4000 for a wide range of shear parameters (0<S<0.15).
This study revealed that the vortex shedding frequency, and drag coefficient are unaffected 
shear parameter, whereas the lift coefficient is changed in a rather peculiar manner. The 
coefficient became maximum at S= 0.05 and decreased to some negative values at higher valu
S. But this study did not provide detail explanation for this behaviour.

The present study considers the experimental test case of Ayukawa et al. (1985) to study the flow
phenomena at different shear parameters of up to S= 0.15. The experiment was conducted in a win
tunnel with a blockage ratio of 10% and the aspect ratio of the cylinder length/height was 10
inlet boundary was 17.5 H upstream of the cylinder where a shear generator was place
turbulence intensity after the shear generator was Tu= 2.5%. Only the time mean integral paramete
are reported in the paper of Ayukawa et al. (1985) for four different shear parameters of up to S=
0.064. The equivalent numerical set up (considered in the present work) of the above experiment is
shown schematically in Figs. 1 and 2 and explained in more detail in section 3. 

Fig. 1 Definition and sketch of uniform shear flow approaching a square cylinder

Fig. 2 Computational domain and coordinates
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2. Computational details

2.1. Governing equations

The equations solved are the two-dimensional, ensemble-averaged continuity and momentum
equations for constant property flow written in Cartesian tensor notation, as :

(1)

(2)

where the correlations −<uiuj> between the fluctuating velocities represent the turbulent Reyn
stresses and need to be modelled to close the equations. The two-equation k-ε model is still the
most popular in industrially relevant applications and is used in the present study. In the k-ε model
the unknown Reynolds stresses are obtained from the conventional Boussinesq linear stres
relationship viz. :

(3)

The eddy viscosity, νt is related to the kinetic energy, k and its dissipation rate, ε as :

(4)

The modelled transport equations for k and ε are :

(5)

(6)

where,
(7)

is the production of turbulence kinetic energy and τ = k / ε is the turbulent time scale. The empirica
coefficients appearing in the above equations are assigned their standard high Reynolds 
values, viz., Cµ = 0.09; Cε 1= 1.44; Cε 2 = 1.9; σk = 1.0; σε = 1.3.

One of the inherent shortcomings of the standard k-ε model is the generation of very high
turbulence intensity in a stagnating condition which originates from the fact that generation term
featuring in the k and ε equation is calculated via the mean velocity gradients only. A modifica
which addresses this stagnation flow anomaly is due to Durbin (1996) who suggested to impose th
‘realizability’ constraint 2k�<uiui > � 0 in the calculation of G via a bound on the time scale, τ . 
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Durbin proposed the following bound on the time scale :

(8)

where, |S|2 = Sij Sji and Sij is the rate of strain tensor given by :

(9)

The other coefficient, α is a model parameter which should have a value α�1.0 when the eddy
viscosity is defined as νt = Cµ kτ (Hereafter this variant will be referred to as the D model). This
model has been successfully applied to the prediction of steady jet impingement on a plane 
as shown by Behnia et al. (1996) and unsteady flow past a square cylinder in a uniform flow f
by Islam (1997). Both of these studies found that α = 0.5 is an optimum value. In the curren
calculation, this value of α = 0.5 has been used for all the calculations.

2.2. The flow solver

A computer code (Little and Manners 1993), developed for 2D non-orthogonal body fitted
ordinate system employing co-located cells and primitive solution variables, is used in the p
study. A finite volume method was used to discretise the differential equations. Second order 
differencing was used for all terms except the convection terms which used the central/u
Hybrid scheme. The discretised equations were solved using the SIMPLE pressure correction
method. For time discretisation, a fully implicit first order Euler scheme was used. This pro
high stability but requires small time-steps to obtain accurate solutions. The resulting differe
equations were solved iteratively by a tri-diagonal-matrix algorithm.

3. Computational domain and boundary conditions

Calculations were conducted for a square cylinder immersed in a uniform shear flow (Fig. 1) at
Re= 20,000 while the shear parameter was varied up to S= 0.15. The shear parameter was chang
by changing the velocity gradient λ at the inlet. The inlet boundary of the flow domain was set
15 H upstream of the cylinder (see Fig. 2) where the profile of the inlet streamwise velocitiU
was specified for a particular shear parameter. A uniform turbulent kinetic energy, k0 was prescribed
at the inlet which was equal to 10-4Tu

2U0
2. Here Tu is the measured percentage of free stre

turbulence intensity (2.5%) after the shear generator. The ε value was set at the inlet from th
equilibrium condition for homogeneous shear flow (ε0 = k0λ / 4.82) as mentioned by Speziale (1991

The top and bottom boundaries of the computational domain were placed at a distance of 5 H
from the cylinder centre and were treated as no-slip boundaries. The exit boundary was placed 15
downstream of the cylinder where a zero gradient condition was imposed for all the variables. 
cylinder surfaces were treated by standard wall functions. A total of 107�88 grid nodes (in the
axial and transverse directions) were used, with the grid lines concentrated near the four c
walls. Distance of the first point from the wall was 0.0125 H. A non-dimensional time s
∆τ(= U0∆t / H) of 0.005 was used, requiring about 1500 time steps for a complete vortex she
cycle. These grid arrangements and time-step were selected on the basis of an elaborate grid
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and time-step testing of the uniform flow over a square cylinder as documented in Islam  (1997). It
may be worthwhile to note that no attempt was made in using low-Re models due to the fact tha
this particular flow is likely to be little dominated by wall boundary layers (Hasan and McG
2001) and that these models are still unpopular among the industrial users.

4. Results and discussion

The time histories of the lift coefficient CL at different shear parameters predicted by the k-ε
model and the Durbin model (or D model) are presented in Figs. 3 and 4 respectively. The
coefficients are normalised by the dynamic pressure 0.5ρUo

2 H. The Strouhal number (shown next t
each CL curve) is evaluated by analysing the time histories of the lift coefficient using an 
package. It can be seen that steady state solutions have been reached for both the models
lift coefficient shows a sinusoidal variation. Although the Strouhal numbers show very 
sensitivity to the shear parameter, the amplitudes of the lift coefficient are found to 

Fig. 3 Time histories of the lift coefficient at different
shear parameter k-ε model predicton

Fig. 4 Time histories of the lift coefficient at different
shear parameter Durbin’s model predicton
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significantly due to model variation. Figs. 5a-b show the variations of amplitudes and rms valu
the lift coefficient for different shear parameters. For both the models, the rms values
amplitudes are found to increase with shear parameter. A closer look further reveals that 
model predicts almost symmetric amplitudes and thus results in almost zero lift coefficient. O
other hand, for the k-ε model the positive amplitude of CL increases more than that of the negati
amplitude and thus results in an overall increase in the mean lift coefficient with shear as will 
shown in Fig. 7 during data comparison. 

Fig. 6 shows the variation of the thickness of the shear layer on the top and bottom surfaces
cylinder for different shear parameters. This thickness was calculated as the normal distance from
the cylinder surface where the U velocity is zero. The top surface shear layer becomes thinner 
shear and at S= 0.15 it reattaches on the surface near the downstream corner. The bottom s
shear layer shows opposite trend and becomes thicker with shear. The shear layer thickness
predicted by the D model is bigger than the k-ε model for S= 0. The high viscosity produced by the
k-ε model makes the shear layer thinner than the D model. It may be interesting to note that the ra
of variation of the shear layer thickness is comparatively more pronounced for the k-ε model than
the D model. Since the magnitude of the turbulent viscosity for the k-ε model is 2-3 times higher

Fig. 5 Effect of shear on (a) the amplitudes and (b) the rms value of lift coefficient

Fig. 6 Shear layer thickness on the top and bottom surfaces of cylinder at different shear paramet



A numerical study of the turbulent fluctuating flow around a square cylinder for different inlet shear21

igher;
d the

ficients
than that of the D model (see Figs. 8b and 9), the relative change of the magnitude is also h
resulting in the comparatively larger (sparse) variation in the mixing characteristics aroun
cylinder for this case.

Figs. 7a-c compare the predicted results of Strouhal number and mean drag and lift coef

Fig. 7 Effect of shear on (a) Strouhal number (b) Drag coefficient and (c) Lift coefficient

Fig. 8 Contours of normalised viscosity (νt / ν) at zero phase angle for S= 0.05. Predictions by k-ε  model
(a) Tu = 0.1% (b) Tu = 2.5%
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for various shear parameters with the measured data of Ayukawa et al. (1985). Similar to experimental
observations, the predicted Strouhal number and the mean drag coefficient show little sensit
the shear parameter. Although both of the standard k-ε model and the D-model are found to under
predict the mean drag coefficient, the latter shows significantly better agreement with experime

As indicated before, the mean lift coefficient predicted by the k-ε model increases with shear (Fig. 7c
On the other hand, the D model results in almost zero lift and the reason for this deficiency will be
explained later. The present prediction by the k-ε model shows a gradual increase of mean 
coefficient with shear rate. In contrast, the prediction of Ayukawa et al. (1993) shows that it
increases up to S= 0.05 and then it oscillates (even showing some negative values). To explai
Ayukawa et al. (1993) mentioned that it was impossible to get enough data to average due 
limitation of the computer capacity.

In order to investigate the effect of inlet turbulence intensity, calculations were done with different
turbulence intensities from 0.1% to 3% for S= 0.05 with the standard k-ε model. The calculated
integral parameters for these turbulence intensities are given in Table 1. A marked influence 
in the calculated integral parameters at low turbulence intensity. At the lowest turbulence intensity,
the Strouhal number and the mean drag coefficient are increased by 5% and 9% respective
the values at Tu = 2.5% whereas the mean lift coefficient is reduced to 0.019 from 0.057, a th

Fig. 9 Contours of normalised viscosity (νt / ν) at zero degree phase angle for S= 0.05. Predictions by
D model (Tu = 2.5%)

Table 1 Effect of inlet turbulence intensity on integral parameters for S= 0.05; k-ε model predictions

Tu (%) St CD CL CL,amp

0.1 0.138 1.81 0.019 +0.751
-0.720

0.5 0.137 1.78 0.029 +0.635
-0.582

2.0 0.133 1.67 0.056 +0.304
-0.189

2.5 0.132 1.66 0.057 +0.283
-0.167

3.0 0.130 1.66 0.057 +0.205
-0.097
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fold decrease. This marked reduction of the mean lift coefficient is probably due to the gene
of low turbulence intensity around the cylinder which is shown in Fig. 8 at phase angle 00 (i.e., it
refers to the time when the amplitude of lift coefficient becomes positive maximum). From th
observation, it can be inferred that a positive mean lift coefficient may be experienced by a 
cylinder in a shear flow if there exists sufficient viscosity around the cylinder.

The viscosity field (at phase angle 00) predicted by the D model for S= 0.05 is shown in Fig. 9.
The peak viscosity is about 300 and it occurs near the downstream region of the cylinde
viscosity around the top and bottom surfaces is also very low. Fig. 10 shows the viscosity pro
two axial positions just-before and just-after the leading surface of the cylinder predicted by D
model with Tu = 2.5% and the k-ε model with Tu = 0.1% and 2.5%. The very low levels of viscosit
predicted by the D model may be the reason for very low mean lift coefficient in the shear flow
it is indicated by the k-ε model prediction with Tu = 0.1%. It is possible that the time scal
restriction imposed by this variant of the k-ε model has reduced the turbulence to a ‘too low’ lev
However, the actual dynamics involved in the process i.e., how the lift coefficient (via the pre
force) is correlated to the turbulence field is a matter for further detailed study and is beyon
scope of the current exercise.

5. Conclusions

Shear flow around a square cylinder is predicted by the standard k-ε model and a variant of this
attributable to Durbin (1996). Both the models predict that the Strouhal number and mean 
coefficient remain unaffected by the shear and is consistent with the measured data. The m
coefficient increases with shear, which is predicted by the standard k-ε model but not by the D
model. The ‘excessive’ suppression of k values upstream of the cylinder by the D model may be the
reason for this failure. The thickness of the shear layer at the top and bottom surfaces 
cylinder are affected by the shear rate. The top surface shear layer becomes thinner and the
surface shear layer becomes thicker with shear. At S= 0.15 the shear layer reattaches on t
downstream edge of the top surface of the cylinder.

Fig. 10 Time mean viscosity profiles at two axial positions for S= 0.05
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