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Abstract. Artificial Neural Networks (ANN) have the capability to develop functional relationsh
between input-output patterns obtained from any source. Thus ANN can be conveniently used to d
a generalised relationship from limited and sometimes inconsistent data, and can therefore also be
to tackle the data obtained from wind tunnel tests on building models with large number of variab
this paper ANN model has been developed for predicting wind induced pressures in various zone
Gable Building from limited test data. The procedure is also extended to a case wherein interference
on a gable roof building by a similar building are studied. It is found that the Artificial Neural Netw
modelling is seen to predict successfully, the pressure coefficients for any roof slope that has no
covered by the experimental study. It is seen that ANN modelling can lead to a reduction of the
tunnel testing effort for interference studies to almost half.
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1. Introduction

Wind loads on roofs of low buildings are significantly affected by the geometry of the building
since it affects the flow pattern around the building. The usual practice for evaluating wind loads on
buildings consists of using codes and standards whose specifications are based on wind tun
performed in the ‘stand-alone’ configuration. However, buildings seldom exist in isolation b
usually surrounded by other buildings. Thus, wind loads on buildings in actual environment 
from those measured on an isolated building. This is one of the main reasons due to which
extensive testing is required for the determination of wind loads on low buildings, there being 
large number of parameters with a wide range of values. To economise on the effort there is 
to explore ways of predicting wind loads from a comparatively reduced test programme. The 
of the neural network approach to train a given data set, and on that basis, to predict missi
and also to achieve possible normalisation, makes it an attractive proposition for know
acquisition for problems where there is no acceptable theory or empirical generalisation at p
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Khanduri et al. (1995) presented the abilities of neural network for solving the wind interference
problem among tall buildings. Sandri and Mehta (1995) applied neural network for predicting 
induced damage to buildings on the basis of simulated building damage data base. Girma (1999
used the neural network approach for determination of pressure distribution in buildings and found
that errors were within 15% for predicted values. In the present study Artificial Neural Netwo
applied for predicting the design wind pressure coefficients for various zones on the low gable
building in a stand-alone situation as well as for interference with another similar building. 
used for training and testing of neural network is obtained from wind tunnel tests carried out 
models of buildings.

2. Neural network model structure

Artificial neural network (ANN) models have been developed by artificial intelligence researc
and are being studied in the hope of simulating ‘human like’ performance in various fields su
for some complex multivariate and non-linear problems with incomplete or confusing informa
The ANN models are composed of many non-linear computational elements (neurons) operating in
parallel and are arranged in a pattern having extreme similarity with their biological counter

Fig. 1 Backpropagation flow chart
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Neural Network representations are capable of developing functional relationship from discrete 
of input-output quantities obtained from computational approaches or experimental results
generalization property makes it possible to train a network on a representative set of input-outp
examples and get good results for a new set without training the network on all possible 
output examples.

The Backpropagation learning algorithm (Rumelhart and McCelland 1986) has been used t
the network in the present study. The overall process of Backpropagation learning algo
including the forward and backward pass is presented in Fig. 1. A software (using C program
language) was developed for this algorithm specifically for this study. The software allows sel
of number of neurons in the input layer, number of hidden layers, number of neurons in
hidden layer, and number of neurons in output layer. It also allows the selection of learnin
parameter and momentum factor. Software generates random numbered weights (as per s
range) depending upon the architecture of the network. This software has been tested o
varieties of problems.

3. Experimental programme

A gable roof building (13.5�7� 5 m) has been selected with the roof slope varying from 10o to
35o (with the increment of 5o). Models were made to a geometric scale of 1:100. 72 pressure
were used to cover the whole roof. The tubing system to measure the surface pressure cons
500-mm vinyl tubing with a 30 mm restrictor at 400 mm from pressure point, and a scaniv
pressure scanner. Pressure measurements were carried out by using Scanivalve ZOC12, a
pressure transducer. The pressure measurement system has a linear response (constant m
and linear phase) up to 100 Hz. The sampling frequency was kept at 400 Hz. 8192 sam
pressure from each port were recorded thus giving a record of approximately 20 seconds,
corresponds to approximately 8 minutes for full scale assuming the velocity ratio of values 
wind tunnel and the field as 1/4. The roof area is divided into different zones as per the 
Standard Code (IS875-1987, Part-3), (refer Fig. 2) with the purpose of making a direct comp
of codal values with those predicted experimentally. Zones 1, 2, 3 and 4 are defined as
pressure zones and zones 5, 6, 7 and 8 are defined as field zones. For local pressure zon
pressures emerging from all wind direction from all four quadrants have been considered citical.
Whereas for field zones 5-5 , 6-6 , 7-7  and 8-8  worst pressures emerging from all 
directions have been considered critical.

Experiments were also conducted to find out the effect of interference from a similar building on
the building model of roof slope 20o. The interfering building was moved in the longitudinal an
transverse directions in a regular grid pattern as shown in Fig. 3. The interfering building was
moved longitudinally 40 cm in steps of 5 cm whereas, it was moved upto 30 cm with the sam
size transversely. Angle of wind attack was changed from 0o to 90o with increments of 15o for every
position of interfering building. 

Atmospheric surface layer was developed in the wind tunnel over the building models by
controlling the longitudinal turbulence intensity and its small scale turbulence content by usin
combination of vortex generators, barrier wall and roughening blocks. The target values for
flow parameters were fixed on the basis of the findings of Cermak & Cochran (1992) and Tie
et al. (1997).

The velocity fluctuations in the wind tunnel were measured by single hot wire pr

′ ′ ′ ′
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Instantaneous velocity fluctuations were recorded at a sampling frequency of 4 KHz. The mean
velocity and longitudinal turbulence intensity at the eaves height of models were 8.9 m/
19% respectively with the velocity profile index being 0.136. The longitudinal integral scale a
same height was found to be 0.436 m. The small scale turbulence content was defined as (Tielema
et al. 1997).

S= (nSu (n) / Su2)(Su/U)2
� 106 evaluated at n = 10U / Lp

Fig. 2 Location of various zones on the roof of building model

Fig. 3 General layout of interference with a single similar building
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where n is frequency, Su(n) is the spectral density, Su is the standard deviation of the longitudina
velocity, U is the mean velocity and Lp is the characteristic model dimension. In the present st
model height is taken as the characteristic model dimension. Small-scale turbulence parameter o
incident flow is evaluated at the frequency n = 10U / Lp as per above mentioned equation. LP is taken
as model eaves height, i.e., 5.1 cm. This gives the value of frequency equal to 1745 Hz, at U = 8.9 m/s.
Average value of Su(n) is taken for frequency range 1743 to 1747 Hz for the calculation of sm
scale turbulence parameter. The value obtained for this parameter is 73*. Tieleman et al. (1999) have
reported values of same order for small scale turbulence content in their wind tunnel studies a
obtained good correlation between full scale and wind tunnel model results for mean and
pressure coefficients.

4. Data reduction

Design pressure coefficient for any zone of the roof of the building is deduced from the 
critical value of the peak pressure coefficient measured in the experiment, but is not taken equal to
the peak value itself. It is unlikely that the maximum wind speed will be experienced from the
critical wind direction for each point of the building, and thus it will be more logical to take a
reduced value for design. Different codes have used different approaches to deduce the
pressure coefficient from experimental studies. In the present study, a method based on pro
distribution of measured pressure peaks has been used.

The plots of probability density function of measured pressure fluctuations of different taps o
the roof show that the taps close to the edge and ridge of the building roof have sign
deviation from Gaussian distribution as shown by Xu et al. (1990). Different approaches are i
vogue to transform the observed data to follow the Gaussain distribution. In the present study
Cox transformation (Box and Cox 1964) has been used to normalise the independent pe
pressure history of each pressure tap, the independent peaks having been obtained using cr
suggested by Peterka (1983). Further the pressure coefficients were estimated at different pro
levels as described above, and finally the design pressure coefficients (Cpq) at 99% probability of
non exceedance were selected. The observed values of Cpq in the presence of interfering building
have been compared with those for stand-alone case for all zones of building roof and expre
terms of Interference Factor (IF), defined as

5. Use of ANN and results

5.1. ANN application for predicting wind Loads on buildings

Data obtained from the wind tunnel testing of different models has been used for the tra
of the neural network. The neural network has been trained using the roof slope and lo
of different zones on the building as the input and design wind pressure coefficients on 
same as output parameter. The trained network is then expected to predict the design

IF -------------------------------------------------------------------------------------------------=
Response in Interference Configuration 
Response in Stand-alone Configuration

* If evaluated at the frequency of 1745 Hz, this value works out to be 216 as reported in Kwatra et al. (1999) 
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training set.

5.1.1. Selection of neural network architecture and training data 

The neural network architecture for the present study was selected by trial and error to mini
the error and to obtain speedy convergence. The network used for the training of data con
two hidden layers with a input and a output layer. Input layer has two neurons representi
input parameter which are (i) zone number and (ii) roof slope. Output layer has one neuron
represent output parameter as design wind pressure coefficients for the concerned zone. Each hidden
layer consists of twenty neurons. Nonlinear sigmoid function has been used as activation func

For training of the network, roof slopes of 10o, 15o, 20o and 30o have been used. Design pressu
coefficients (Cpq) of respective zones for these roof slopes have been considered as 
parameter. All the input and output data have been normalised by the maximum value (wh
termed as normalising factor) for each parameter, so that the values remain between 0 to +
output of the network is obtained in the form of normalised output, which is then converted t
actual values by multiplying each value by corresponding normalising factor as used for prepari
the training data set. The initial weights of the network have been set as random number b

Fig. 4 Comaprison of Cpq for local pressure zones obtained by experiment and predicted by ANN
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the range -0.3 to 0.3. The learning rate parameter (η) and momentum factor (α) are kept 0.15 and
0.85 respectively.

5.1.2. Comparison of ANN predictions with experimental values

The network has been trained with above-mentioned data set and the average mean square er
network was reduced to 0.0003. The network performance has been tested by checking the outpu
network for the same input data set used for the training of the network. The ouput values 
network for this data set have been found to be in close agreement with the target values of thame.
These results ensure the successful training of the network. The values of Cpq for all roof zones for
the roof slope 25o and 35o have been predicted by ANN. The predicted values of design pres
coefficients are compared with the experimental values. These comparisons have been presented
for local pressure zones and in Fig. 5 for other zones. It can be seen from these figures that the p
values of Cpq for all zones for 10o, 15o, 20o and 30o roof slopes are found to match perfectly wit
experimental values, as these values were present in training data set. The predicted valuesCpq
for all zones of roof slope 25o and 35o are also observed to be in close agreement with 
experimental values. The maximum error found for the ANN predicted values of Cpq for roof slope

Fig. 5 Comparison of Cpq for other than local pressure zones obtained by experiment and predicted by A
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of 25o and 35o is around 7%, which occurs for zone 4 of the roof with 25o roof slope.

5.2. ANN modelling for interference studies

The Interference Factors (IF) for worst design pressure coefficients irrespective of wind dir
for each zone of the roof on the building for single building interference have been taken as 
parameter of the neural network. Locations of interfering building have been considered as
parameter. Training of the neural network is carried out by the data set, which consists of
selected locations of interfering building and the values of IF for Cpq for each zone of the roof a
those locations. The trained network is then expected to predict the IF for Cpq for each zone of the
roof for locations of interfering building not covered in the training data set. Training of the n
network has been carried out separately for each zone of the roof.

5.2.1. Selection of neural network architecture

Neural network used for training for each zone of the roof consists of two hidden layers with
input and an output layer. Input layer has two neurons representing the input parameters wh
X and Y coordinates of position of interfering building. These positions on interfering have 
discussed earlier in the section 3. Output layer has one neuron, which represents the Inter
Factor (IF) for Cpq for the concerned zone for the corresponding position of interfering building. 

5.2.2. Selection of learning rate parameter and momentum coefficient

The values of learning rate parameter and momentum coefficient has been changed during th
training of the network. Training of the neural network has been started with a value of 0.0
learning rate parameter (η) and 0.65 for momentum coefficient (α ). After some cycles of training,
when the convergence of the network become slow, the values of these parameters hav
increased with a step of 0.05. The values of η and α have changed from 0.05 to 0.35 and 0.65 
0.95 respectively. Training of the network is carried out till the average mean square error 
network is reduced to 0.0005.

5.2.3. Selection of training data set

Selection of the training data set for the training of the neural network is the most important s
preparing the training data different conditions have to be considered which include the size 
network, learning rate parameter and momentum coefficient. Increasing the number of training p
increases the potential level of accuracy that can be achieved by the network. A large number of 
patterns, however can sometimes overwhelm training algorithm. Consequently, there is no guaran
adding more training patterns leads to improved solutions. A study has been carried out for selec
training samples. This has been performed for zone 1 and zone 4 of the building roof. In the expe
study for single building, the interfering building has been placed on 63 different locations. In th
step, 23 positions of interfering building have been selected. In the second step 6 additional pos
interfering building have been included in the training set, which makes the training data set
samples. Finally 4 more positions have been added to the training data set which makes the 
data set of 33 samples. These positions of interfering building have been shown in Fig. 6. Trainin
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of the neural network has been carried out by using these training data sets and the average mean
square error for all the cases is reduced to 0.0005. 

5.2.4. Comparison of measured and predicted data

The values of IF for Cpq for zone 1 and zone 4 have been predicted for all positions of interfe
building. Correlation between predicted values and experimental values of IF for Cpq for zone 1
and zone 4 for different training data set have been plotted and presented in Figs. 7 and 8. It
seen from these correlation plots that as the number of samples in the training set is increased t

Fig. 6 Positions of interfering building selected for different training data set (For single building interfere

Fig. 7 Correlation plots between experimental and ANN predicted values for Zone 1 with different tra
data samples
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Fig. 8 Correlation plots between experimental and ANN predicted values for Zone 4 with different training
data samples

Fig. 9 Comparison of contours of interference factor for Cpq predicted by ANN (with different training data
samples) and by experimental values for Zone 1
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difference between the predicted values and experimental values reduces. Contours of predicted 
IF for Cpq for zone 1 and zone 4 for different training data samples have been plotted and compar
corresponding experimental values in Figs. 9 and 10. Contour plots of predicted values of IF foCpq
show that as the number of samples in the training set is increased from 23 to 29 the c
patterns approach closer to that of the experimentally obtained values. Further as the sample
training set is increased to 33 the contours of the predicted values of IF for Cpq for zone 1 and
zone 4 are found to be in close agreement with the contours of the same obtained experimen

Results of this study leads to conclusion that 33 samples are sufficient for training of the 
network. The predicted values of IF for Cpq for the positions of interfering building not covered i
the training data set lie within the variation of 5%. Thus, these 33 positions of interfering bu
have been selected for training of the neural network for other zones of the building roof as w

For each zone of the building roof, training of neural network is performed separately with the
selected training data set as discussed earlier. Predictions of the values of IF for Cpq for each zone

Fig. 10 Comparison of contours of interference factor for Cpq predicted by ANN (with different training data
samples) and by experimental values for Zone 4
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are made through trained network for all positions of interfering building. Correlation between the
ANN predicted values and experimental values of IF for Cpq for different zones of the roof have
been studied. Predicted values of Cpq for most of the cases are found to be very close with 
corresponding experimental values. For local pressure zones the predicted values of IFs for Cpq for
some positions of interfering building are found to be deviating from the experimental valu
Whereas for other than local pressure zones, ANN predicted values and experimental values
for Cpq are observed to be in matching closely for all positions of interfering building. Contours of
predicted values of IF for Cpq for different zones of the roof have been presented in Fig. 11. 
contours of IFs for Cpq predicted by ANN follow a similar pattern as that of experimental valu
Moreover the contours of predicted values of Cpq show a generalised trend of variations, as AN
predictions attempt to map all the cases of input-output. It can be concluded by the results o

Fig. 11 Contours of interference factor for Cpq predicted by ANN for different zones due to change 
position single interfering building
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Table 1 Comparison of interference factors predicted by ANN and by linear interpolation 

Locations
of Inetrfering

building

Zone 1 Zone 4

Experimental
ANN

Predicted
Linear

Interpolation
Experimental

ANN
Predicted

Linear
Interpolation

4 1.072 1.000 1.05 1.003 0.981 0.99
8 0.923 1.050 1.02 1.022 0.914 0.97
9 1.168 1.076 1.04 1.009 1.028 1.01

11 1.165 1.21 1.16 0.990 0.959 0.99
13 1.16 1.23 1.22 1.145 1.029 1.04
14 1.099 1.13 1.17 1.124 1.050 1.04
17 1.076 1.114 1.13 0.975 0.996 0.99
19 1.159 1.22 1.10 0.982 0.971 0.99
22 1.019 1.044 1.06 0.900 0.933 0.96
23 1.079 1.08 1.08 0.995 0.953 1.00
25 1.09 1.09 1.10 1.016 1.010 1.01
27 1.198 1.20 1.17 0.996 0.989 1.01
28 1.11 1.158 1.14 0.996 1.000 1.01
31 1.03 1.08 1.08 1.042 1.000 1.04
33 1.107 1.06 1.10 1.110 1.064 1.06
36 1.03 1.03 1.04 0.992 1.060 1.06
37 1.078 1.04 1.06 1.060 1.180 1.07
39 1.09 1.05 1.06 1.102 1.090 1.07
41 1.068 1.025 1.06 1.070 1.096 1.10
42 1.057 1.00 1.03 1.060 1.040 1.07
45 0.963 1.01 1.03 1.120 1.070 1.08
47 1.088 1.03 1.02 1.070 1.140 1.12
50 1.05 1.03 0.98 1.060 1.067 1.07
51 0.988 0.97 0.98 1.060 1.099 1.09
52 1.09 0.96 0.98 1.120 1.120 1.10
53 1.04 0.98 0.98 1.040 1.019 1.09
54 0.977 1.00 0.99 1.085 1.077 1.11
55 1.095 1.00 1.00 1.195 1.158 1.15
56 1.026 0.95 0.96 1.136 1.134 1.13
60 0.95 0.92 0.94 1.047 1.066 1.10
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comparisons that almost 50% reduction in the experimental work can be achieved by usi
neural network modelling for interference studies on low buildings. As a further exercise, the ANN
predicted values have also been compared with the values obtained from linear interpola
presented in Table 1. It is observed that the linear interpolation also gives close prediction. 

6. Conclusions

The main conclusions drawn from this study are summarised below :
1. Artificial Neural Network Modelling is seen to predict successfully, the pressure coefficient fo

any roof slope not covered by the experimental study, based on data from other roof s
The maximum error seen in this study is 7%.

2. ANN modelling trained on the discrete interference results, can predict design press
coefficients for different zones of the roof for a more generalised interference situation
results have been found to be within 5% of the measured values.

3. ANN modelling reduces the wind tunnel testing for interference studies to almost half.
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	1.060
	1.099
	1.09
	52
	1.09
	0.96
	0.98
	1.120
	1.120
	1.10
	53
	1.04
	0.98
	0.98
	1.040
	1.019
	1.09
	54
	0.977
	1.00
	0.99
	1.085
	1.077
	1.11
	55
	1.095
	1.00
	1.00
	1.195
	1.158
	1.15
	56
	1.026
	0.95
	0.96
	1.136
	1.134
	1.13
	60
	0.95
	0.92
	0.94
	1.047
	1.066
	1.10





