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Abstract.  Artificial Neural Networks (ANN) have the capability to develop functional relationships
between input-output patterns obtained from any source. Thus ANN can be conveniently used to develop
a generalised relationship from limited and sometimes inconsistent data, and can therefore also be appliet
to tackle the data obtained from wind tunnel tests on building models with large number of variables. In
this paper ANN model has been developed for predicting wind induced pressures in various zones of a
Gable Building from limited test data. The procedure is also extended to a case wherein interference effects
on a gable roof building by a similar building are studied. It is found that the Artificial Neural Network
modelling is seen to predict successfully, the pressure coefficients for any roof slope that has not been
covered by the experimental study. It is seen that ANN modelling can lead to a reduction of the wind
tunnel testing effort for interference studies to almost half.

Key words: wind pressure coefficients; artificial neural network; interference factors and training data

1. Introduction

Wind loads on roofs of low buildings are significantly affected by the geometry djuitding
since it affects the flow pattern around the building. The usaa&ltipe for evaluating wind loads on
buildings consists of using codes and standards whose specifications are based on wind tunnel tes
performed in the ‘stand-alone’ configuration. However, buildings seldom exist in isolation being
usually surrounded by other buildings. Thus, wind loads on buildings in actual environment differ
from those measured on an isolatedilding. This is one of the maireasons due to which
extensive testing is required for the deterrtioraof wind loads on low buildings, there being a
large number of parameters with a wide range of values. To economise on the effort there is a neec
to explore ways of predicting wind loads from a comparatively reduced test programme. The ability
of the neural network approach to train a given data set, and on that basis, to predict missing date
and also to achieve possible normalisation, makes it an attractive proposition for knowledge
acquisition for problems where there is no acceptable theory or empirical generalisation at present.
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Khanduriet al (1995) presented the abilities of neural network for solving the wirifenénce
problem among tall buildings. Sandri and Mehta (1995) applied neural network for predicting wind
induced damage to buildings on the basis of simulated buildangagde data base. Girma (1999)
used the neural network approach for determination of pressure distributioridingsuand found

that errors were within 15% for predicted values. In the present study Artificial Neural Network is
applied for predicting the design wind pressure coefficients for various zones dowtigable
building in a stand-alone situation as well as for interference with another similar building. Data
used for training and testing of neural network is obtained from wind tunnel tests carried out on the
models of buildings.

2. Neural network model structure

Artificial neural network (ANN) models have been developed by artificial intelligence researchers
and are being studied in the hope of simulating ‘human like’ performance in various fields such as
for some complex multivariate and non-linear problems with incomplete or confusing information.
The ANN models are composed of many non-linear computatioaaiesls (neurons) operating in
parallel and are arranged in a pattern having extreme similarity with their biological counter part.
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Fig. 1 Backpropagation flow chart
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Neural Network representations are capable of developing functional relationship from discrete values
of input-output quantities obtained from computational approaches or experimental results. This
generalization property makes it possible to train @mvork on a representative set of input-output
examples and get good results for a new set without training the network on all possible input-
output examples.

The Backpropagation learning algorithm (Rumelhart and McCelland 1986) has been used to train
the network in the present study. The overall process of Backpropagation learning algorithm
including the forward and backward pass is presented in Fig. 1. A software (using C programming
language) was developed for this algorithm specifically for this study. The software allows selection
of number of neurons in the input layer, number of hidden layers, number of neurons in each
hidden layer, and number of neurons in output layer. It also allows the selection of learning rate
parameter and momentum factor. Software generates random numbered weights (as per specifie
range) depending upon the architecture of the network. This software has been tested on wide
varieties of problems.

3. Experimental programme

A gable roof building (13.5 7>< 5 m) has been selected with the roof slope varying frofitol0
35° (with the increment of %. Models were made to a geometric scale of 1:100. 72 pressure taps
were used to cover the whole roof. The tubing system to measure the surface pressure consisted ¢
500-mm wnyl tubing with a 30 mm restrictor at 400 mm from pressure point, and a scanivalve
pressure scanner. Pressure measurements were carried out by using Scanivalve ZOC12, a 32-pc
pressure transducer. The pressure measurement system has a linear response (constant magnitt
and linear phase) up to 100 Hz. The sampling frequency was kept at 400 Hz. 8192 samples of
pressure from each port were recorded thus giving a record of approximately 20 seconds, which
corresponds to approximately 8 minutes for full scale assuming the velocity ratio of values in the
wind tunnel and the field as 1/4. The roof area is divided into different zones as per the Indian
Standard Code (I1S875-1987, Part-3), (refer Fig. 2) with the purpose of making a direct comparison
of codal values with those predicted experimentally. Zones 1,2,3 and 4 are defined as local
pressure zones and zones 5, 6,7 and 8 are defined as field zones. For local pressure zones wol
pressures emerging from all wind direction from all four quadrants have been considkzald cr
Whereas for field zones 5-5 , 6-6 , 7-7 and '8-8 worst pressures emerging from all wind
directions have been considered critical.

Experiments were also conducted to find out the effect of interference from a $uilitiing on
the building model of roof slope 20The interfering building was moved in the longitudinal and
transverse directions in a regular grid pattern as shown in Fig. 3. The intetfeildong was
moved longitudinally 40 cm in steps of 5 cm whereas, it was moved upto 30 cm with the same step
size transversely. Angle of wind attack was changed fromo OC with increments of 1%5for every
position of inerfering building.

Atmospheric surface layer was developed in the wind tunnel overbuiiding models by
controlling the longitudinal turbulence intensity and its small scale turbulence content by using the
combination of vortex generators, barrier wall and roughening blocks. The target values for these
flow parameters were fixed on the basis of the findings of Cermak & Cochran (1992) and Tieleman
et al. (1997).

The velocity fluctuations in the wind tunnel were measured by single hot wire probe.
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Fig. 2 Location of various zones on the roof of building model
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Fig. 3 General layout of interference with a single similar building

Instantaneous velocity fluctuations wemecorded at a sagofing frequency of 4 KHz. The mean
velocity and longitudinal turbulence intensity at the eaves height of models were 8.9 m/s and
19% respectively with the velocity profile index being 0.136. The longitudinal integral scale at the
same height was found to be 0.436 m. The small scdlaléumce content was defined as (Tieleman

et al 1997).

S=(nS(n) / S¥)(SUU)?x 10° evaluated ah = 10U / L,
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wheren is frequency,S,(n) is the spectral densitpuis the standard deviation of the longitudinal
velocity, U is the mean velocity ant, is the characteristic model dimension. In the present study
model height is taken as the charaster model dimensionSmall-scale turbulence parameter of
incident flow is evaluated at the frequenty 10U/ L, as per above mentioned equatibp.is taken

as model eaves height, i.e., 5.1 cm. This gives the value of frequency equal to 1748 HS.aim/s.
Average value of5,(n) is taken for frequency range 1743 to 1747 Hz for the calculation of small
scale turbulence parameter. The value obtained for this parameter Tef@nanet al (1999) have
reported values of same order for small scale turbulence content in their wind tunnel studies and ha:
obtained good correlation between full scale and wind tunnel model results for mean and peak
pressure coefficients.

4. Data reduction

Design pressure coefficient for any zone of the roof of the building is deduced from the most
critical value of the peak pressure coefficient measured in the experlmerg, not taken equal to
the peak value itself. It is unlikely that the maximum wind speed will be experienced from the most
critical wind direction for each point of the building, and thus it tve more logical to take a
reduced value for design. Different codes have used different approaches to deduce the desigt
pressure coefficient from experimental studies. In the present study, a method based on probability
distribution ofmeasured pressure peaks has been used.

The plots of probability density function ofieasured pressure fluctuations of different taps over
the roof show that the taps close to the edge and ridge of the building roof have significant
deviation from Gaussian distribution as shown by &ual (1990). Different approaches are in
vogue to transform the observed data to follow the Gaussain distribution. In the present study, Box-
Cox transformation (Box and Cox 1964) has been used to normalise the independent peaks of
pressure history oéach pressure tap, the independent peaks having been obtained using criterion
suggested by Peterka (1983). Further the pressure coefficients were estimated at different probability
levels as described above, and finally the design pressure coefficigrgsat 99% probability of
non exceedance were selected. The observed valuépgoh the presence of interferinguilding
have been compared with those for stand-alone case for all zones of building roof and expressed ir
terms of Interference Factor (IF), defined as

Response in Interference Configuration

IF = _ , _
Response in Stand-alone Configuration

5. Use of ANN and results
5.1. ANN application for predicting wind Loads on buildings

Data obtained from the wind tunnel testing of different models has been used for the training
of the neural network. The neural network has been trained using the roof slope and location
of different zones on the Bding as the input and design wind pressure coefficients on the
same as output parameter. The trained network is then expected to predict the design wind

"If evaluated at the frequency of 1745 Hz, this value works out to be 216 as reported in éwat(a999)
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pressure coefficients for different zones on the buildings for roof slopes not covered in the
training set.

5.1.1. Selection of neural network architecture and training data

The neural networlarchitecture for the present study was selected by trial and error to minimize
the error and to obtain speedy convergence. The network used for the training of data consists of
two hidden layers with a input and a output layer. Input layer has two neurons representing the
input parameter which are (i) zone number and (ii) roof slope. Output layer has one neuron which
represent output parameter as design wind pressafc@mts for the cocerned zone. Each hidden
layer consists of twenty neurons. Nonlinear sigmoid function has been used as activation function.

For training of the network, roof slopes 0f°12%, 20° and 30 have been used. Design pressure
coefficients Cpg of respective zones for these roof slopes have been considered as output
parameter. All the input and output data have been normalised by the maximum value (which is
termed as normalising factor) for each parameter, so that the values remain between 0 to +1. The
output of the network is obtained in the form ofrmalised output, which is then converted to
actual values by multiplying each value byrresponding normalising factor as used for preparing
the training data set. The initial weights of the network have been set as random number betweer
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Fig. 4 Comaprison o€pqfor local pressure zones obtained by experiment and predicted by ANN
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the range -0.3 to 0.3. The learning rate parameteafd momentum factowr] are kept 0.15 and
0.85 respectively.

5.1.2. Comparison of ANN predictions with experimental values

The network has been trained with above-mentioned data set and the average mean square error of t
network was reduced to 0.0003. The network performance has been tested by checking the output of th
network for the same input data set used for the training of the network. The ouput values of the
network for this data set have been found to be in close agreement with the target valuearoéthe s
These results ensure the successful training of the network. The valges far all roof zones for
the roof slope Z5and 38 have been predicted by ANN. The predicted values of design pressure
coefficients are compared with the experimental values. These comparisons have been presented in Fig.
for local pressure zones and in Fig. 5 for other zones. It can be seen from these figures that the predicte
values ofCpq for all zones for 19 15°, 20° and 30 roof slopes are found to match perfectly with
experimental values, as these values were present in training data set. The predicted Gyges of
for all zones of roof slope 25and 38 are also observed to be in close agreement with the
experimental values. The maximum error found for the ANN predicted valuepgfor roof slope
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Fig. 5 Comparison o€pq for other than local pressure zones obtained by experiment and predicted by ANN
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of 25’ and 38 is around 7%, which occurs for zone 4 of the roof with r2®f slope.
5.2. ANN modelling for interference studies

The Interference Factors (IF) for worst design pressure coefficients irrespective of wind direction
for each zone of the roof on the building for single building interference have been taken as output
parameter of the neural network. Locations of interfering building have been considered as input
parameter. Training of the neural network is carried out by the data set, which consists of some
selected locations of interferinguilding and the values of IF fa&€pq for each zone of the roof at
those locations. The trained network is then expected to predict the Gpddor each zone of the
roof for locations of interfering building not covered in the training data set. Training of the neural
network has been carried out separately for each zone of the roof.

5.2.1. Selection of neural network architecture

Neural network used for training f@ach zone of the roof consists of two hidden layers with an
input and an output layer. Input layer has two neurons representing the input parameters which are
X andY coordinates of position of interfering building. These positions on interfering have been
discussed earlier in the section 3. Output layer has one neuron, which represents the Interferenc
Factor (IF) forCpqfor the concerned zone for the corresponding position of interfbuibding.

5.2.2. Selection of learning rate parameter and momentum coefficient

The values of learning rate parameter and momentusffi@ent has been changed during the
training of the network. Training of the neural network has been started with a value of 0.05 for
learning rate parameten) and 0.65 for momentum coefficierdr). After some cycles of training,
when the convergence of the network become slow, the values of these parameters have bee
increased with a step of 0.05. The values)aind a have changed from 0.05 to 0.35 and 0.65 to
0.95 respectively. Training of the network is carried out till the average mean square error of the
network is reduced to 0.0005.

5.2.3. Selection of training data set

Selection of the training data set for the training of the neural network is the most important step. In
preparing the training data different conditions have to be considered which include the size of the
network, learning rate parameter and momentum coefficient. Increasing the number of training patterns
increases the potential level of accuracy that can be achieved by the network. A large number of training
patterns, however can sometimes overwhelm training algorithm. Consequently, there is no guarantee the
adding more training patterns leads to improved solutions. A study has been carried out for selecting the
training samples. This has been performed for zone 1 and zone 4 of the building roof. In the experimenta
study for single building, the interfering building has been placed on 63 different locations. In the first
step, 23 positions of interfering building have been selected. In the second step 6 additional positions o
interfering building have been included in the training set, which makes the training data set of 29
samples. Finally 4 more positions have been added to the training data set which makes the training
data set of 33 samples. These positions of fetieig building have been shown in Fig. 6. Training



Application of artificial neural

network for determination of wind induced pressures on gable roo

Test

Buildiffg

®  Positions selected for 23 data samples
®  Additional six Positions for 29 data samples
4 Additional four Positions for 33 data samples

Fig. 6 Positions of interfering building selected for different training data set (For single building interference)

of the neural network has been carried out by using these training data sets aredafe @mean
square error for all the cases is reduced to 0.0005.

5.2.4. Comparison of measured and predicted data

The values of IF foCpq for zone 1 and zone 4 have been predicted for all positions of interfering
building. Correlation between predicted values and experimental values of Epdpfor zone 1
and zone 4 for different training data set have been plotted and presented in Figs. 7 and 8. It can b
seen from these correlation plots that as the number of samples in the training set is increased to 33 tt
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difference between the predicted values and experimental values reduces. Contours of predicted values
IF for Cpqgfor zone 1 and zone 4 for different training data samples have been plotted and compared with
corresponding experimental values in Figs. 9 and 10. Contour plots of predicted values oC{ for
show that as the number of samples in the training set is increased from 23 to 29 the contour
patterns approach closer to that of the experimentally obtained values. Further as the samples in th
training set is increased to 33 the contours of the predicted values of Gpddior zone 1 and
zone 4 are found to be in close agreement with the contours of the same obtained experimentally.
Results of this study leads to conclusion that 33 samples are sufficient for training of the neural
network. The predicted values of IF fGpq for the positions of interfering building not covered in
the training data set lie within the variation of 5%. Thus, these 33 positions of interfering building
have been selected for training of the neural network for other zones of the building roof as well.
For each zone of the building roof, training of neural networkeidopmed separately with the
selected training data set as discussed earlier. Predictions of the values o€ for each zone
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Fig. 10 Comparison of contours of interference factordpg predicted by ANN (with different training data
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are made through trained network for all positions afrieting building. Correlation between the

ANN predicted values and experimental values of IFGQpy for different zones of the roof have

been studied. Predicted values @bq for most of the cases are found to be very close with the
corresponding experimental values. For local pressure zones the predicted values o€fesfdor

some positions of ietfering building are found to be deviating from the experimental values.
Whereas for other than local pressure zones, ANN predicted values and experimental values of IFs
for Cpq are observed to be in matching closely for all positionmteffering building. Contours of
predicted values of IF fo€pq for different zones of the roof have been presented in Fig. 11. The
contours of IFs foICpq predicted by ANN follow a similar pattern as that of experimental values.
Moreover the contours of predicted valuesGufq show a generalised trend of variations, as ANN
predictions attempt to map all the cases of input-output. It can be concluded by the results of these

3 093 |
<

Zone 7

Fig. 11 Contours of interference factor f@pq predicted by ANN for different zones due to change in
position single interfering building
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Table 1 Comparison of interference factors predicted by ANN and by linear interpolation

Locations Zone 1 Zone 4
of Inetrfering . ANN Linear : ANN Linear
building ~ EXxperimental 5o yicteq Interpolation Experimental 5o icted Interpolation

4 1.072 1.000 1.05 1.003 0.981 0.99
8 0.923 1.050 1.02 1.022 0.914 0.97
9 1.168 1.076 1.04 1.009 1.028 1.01
11 1.165 1.21 1.16 0.990 0.959 0.99
13 1.16 1.23 1.22 1.145 1.029 1.04
14 1.099 1.13 1.17 1.124 1.050 1.04
17 1.076 1.114 1.13 0.975 0.996 0.99
19 1.159 1.22 1.10 0.982 0.971 0.99
22 1.019 1.044 1.06 0.900 0.933 0.96
23 1.079 1.08 1.08 0.995 0.953 1.00
25 1.09 1.09 1.10 1.016 1.010 1.01
27 1.198 1.20 1.17 0.996 0.989 1.01
28 1.11 1.158 1.14 0.996 1.000 1.01
31 1.03 1.08 1.08 1.042 1.000 1.04
33 1.107 1.06 1.10 1.110 1.064 1.06
36 1.03 1.03 1.04 0.992 1.060 1.06
37 1.078 1.04 1.06 1.060 1.180 1.07
39 1.09 1.05 1.06 1.102 1.090 1.07
41 1.068 1.025 1.06 1.070 1.096 1.10
42 1.057 1.00 1.03 1.060 1.040 1.07
45 0.963 1.01 1.03 1.120 1.070 1.08
47 1.088 1.03 1.02 1.070 1.140 1.12
50 1.05 1.03 0.98 1.060 1.067 1.07
51 0.988 0.97 0.98 1.060 1.099 1.09
52 1.09 0.96 0.98 1.120 1.120 1.10
53 1.04 0.98 0.98 1.040 1.019 1.09
54 0.977 1.00 0.99 1.085 1.077 1.11
55 1.095 1.00 1.00 1.195 1.158 1.15
56 1.026 0.95 0.96 1.136 1.134 1.13
60 0.95 0.92 0.94 1.047 1.066 1.10

1 (4 S 6 7

Test Building
8) © lio |an |12 }(13) |(14) Locations with () used
for prediction

15 16 an 18 [anhbo |21

(22) (23) {24 [25) [26 |(27) |28)

29 30_|GB1}32 |33) 34 |35

(36) (37) |38 139 |40 [(41) |42)

43 44 |(45) |46 j(47) Jos 4o

(50) (51) [(52) [(53) [(54) [(55) K56)

57 58 lso l60) [61 le2 63




14 Naveen Kwatra, P.N. Godbole and Prem Krishna

comparisons that almost 50% reduction in the experimental work can be achieved by using the
neural network modelling for interference studies on bwdings. As a further excise, the ANN
predicted values have also been compared with the values obtained from linear interpolation as
presented in Table 1. It is observed that the linear interpolation also gives close prediction.

6. Conclusions

The main conclusions drawn from this study are summarised below :

1. Artificial Neural Network Modelling is seen to predicicsassfully, the pressure coefficient for
any roof slope not covered by the experimental study, based on data from other roof slopes.
The maximum error seen in this study is 7%.

2. ANN modelling trained on the disete interference results, can predict design pressure
coefficients for different zones of the roof for a more generalised interference situation. The
results have been found to be within 5% of the measured values.

3. ANN modelling reduces the wind tunnel testing for interference studies to almost half.
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