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A model of roof-top surface pressures produced
by conical vortices : Model development

D. Banks† and R. N. Meroney‡
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Abstract. The objective of this study is to understand the flow above the front edge of low
building roofs. The greatest suction on the building is known to occur at this location as a result 
formation of conical vortices in the separated flow zone. It is expected that the relationship betwe
suction and upstream flow conditions can be better understood through the analysis of the vorte
mechanism. Experimental measurements were used, along with predictions from numerical simulat
delta wing vortex flows, to develop a model of the pressure field within and beneath the conical v
The model accounts for the change in vortex suction with wind angle, and includes a parameter ind
the strength of the vortex. The model can be applied to both mean and time dependent surface p
and is validated in a companion paper.

Key words: wind; vortex; load; pressure; roof; low-rise; building; flow separation.

1. Introduction

1.1. Correlation with upstream flow

It has long been established that the worst mean and peak suctions on flat low-rise buildin
occur for cornering or oblique wind angles (Kind 1986). These extreme suctions (Cp values below −10
are not uncommon) are the result of conical vortices which form along the roof edges (Fig. 1
is essentially the same phenomenon that provides some 50% of the lift force to delta-wing aircraft;
hence, the conical vortices are also known as “delta-wing” vortices.

Interest in the behaviour of these roof-top vortices has been heightened in part by the fai
quasi-steady (Q-S) theory to accurately predict the pressure fluctuations beneath the v
(Letchford et al. 1993, Tieleman and Hajj 1995). This failure is of concern because the quasi-s
approach is the basis for many design codes. The Q-S theory combines information about up
flow conditions with measured mean pressure coefficients to predict peak pressures via the e
(Cook 1990) :

(1)Cp t( )
Uref t( )

Uref

---------------- 
  2

Cp ω t( )( )⋅=

† Now at CPP Inc.
‡ Professor
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where ω = the wind direction and Uref is the reference velocity. Links between the characteristics
upstream flow and the surface pressure have also been cited as an explanation for discre
between the rms and peak surface pressures measured under these vortices for full-scale 
those measured for model scale tests. In particular, the need to correctly simulate lateral v
fluctuations and small-scale turbulence intensity has been emphasized (Tieleman et al. 1998, Tieleman
et al. 1994).

Several studies have examined the variation of surface pressure with upstream flow con
Roof suctions and upstream velocities were simultaneously measured for a flat roof low-rise 
building (Kawai and Nishimura 1996). These authors concluded, based on the correlation of s
fluctuation over the entire roof, that the dual conical vortices sway in unison, and in concer
low frequency lateral turbulence. (Note that low frequency lateral velocity fluctuations could be s
as short-lived changes in wind direction.)

A connection has also been established between incident large scale/low frequency lateral turbulence
and suction beneath the separated flow using frequency domain analyses (Hajj et al. 1997) and
wavelet analysis on full-scale data from the Texas Tech University (TTU) (Jordan et al. 1997).
However, these studies have not supplied substantiation of a connection between upstream
scale lateral turbulence and surface pressure fluctuations. 

One issue in performing such analyses is the position upstream at which the velocity measurements are
recorded. Simultaneous upstream laser doppler anemometer (LDA) measurements of u-v-w velocity
fluctuations have been compared with model surface pressures (Letchford and Marwood 
These flow velocity measurements were taken quite close to the building, at distances upstream
from 2H to 0.1H, where H is building height. Conditional sampling was used to isolate the efects
of instantaneous wind direction on Cp values. Their conclusion was that extremes in pressures w
associated with large excursions in lateral velocity, specifically excursions toward a flow normal to
the wall. Most significantly, this was only true for velocities measured less than 0.5H upst
Even 2H is too far upstream for a good correlation between wind direction and surface press
would appear that the building induced distortion of the oncoming flow fluctuations rapidly red
any correlation between upstream flow and surface pressure. This is essentially why quasi
theory can not be validated for flow in the separation zones when U(t) is measured upstream
(Letchford and Marwood 1997). However, if the reference velocity Uref(t) is measured above the
roof corner, quasi-steady theory gives good results for taps under the vortex (Zhao et al. 2000).

Given that only low-frequency upstream gusts have been directly connected to simulta

Fig. 1 Dual conical vortices in cornering wind
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surface pressure fluctuations, and that the correlation between velocity (especially lateral ve
fluctuations and surface pressure increases with proximity of flow measurement to the roof edge, it
seems appropriate to focus on the mechanism by which the vortex transfers local velocity var
into surface pressure fluctuations. Once this is established, it is hoped that local flow conditions ne
the vortex can then be tied to the upstream flow parameters over a range of turbulence freque
provide a better understanding of how these parameters control surface pressure on low-rise buildings.

1.2. Connecting vortex flow structure to surface pressures

Velocities within the conical vortex have been measured using hot-wire probes, and the me
velocity fields documented (Kawai 1997). This work showed that the mean vortex core positio
defined by the centre of velocity field rotation, is located above the point of greatest mean rooftop
suction. Banks, using simultaneous flow visualization and pressure measurement, has con
this, (though asymmetry in the pressure profile beneath the vortex shifts the point of highest
suction slightly) (Banks et al. 2000). This work also demonstrated that at any instant in time,
peak suction remains directly beneath the moving vortex core.

Marwood and Wood (1997) made LDA measurements of velocities within the vortex 
simultaneously sampled the surface pressure beneath the mean core position in smooth and turb
flow. At each measurement location the velocities associated with the most negative 2.5% 
recorded Cp’s were extracted and averaged, creating a mean low Cp velocity field in a process
called conditional sampling. 

The results indicated that for ω = 45°, larger than average vortices produced the greatest su
suction. (In this paper, the wind angle relative to the roof edge along which the vortex in qu
has formed is ω = 90° for flow normal to that roof edge). These conditional sampling results
somewhat prejudiced by the use of a single pressure tap placed farther from the edge than th
core position for ω = 45°. As a result, the lowest suction would tend to occur when the vortex 
is directly above the tap, which requires a larger than average vortex. Nonetheless, the com
of mean vortex position with mean and peak roof-pressure contours shows that larger than a
vortices do provide greater suction for ω = 45°. 

However, this only holds true for mean wind angles below 55° (Banks et al. 2000). For wind
angles above 60°, the situation is reversed, and smaller-than-average vortices produce the peak
This is because the wind angle range known to produce the lowest mean Cp’s is 55° <ω < 60° (Lin
et al. 1995), and as both the studies of Banks and Marwood demonstrate, vortex size increas
wind angle. This indicates that the vortices producing the peaks tend to be similar in size to
found for ω = 55° to 60°, and that peak suctions for all wind angles could simply be due to mome
wind direction shifts toward that range. This is essentially what the quasi-steady theory assum

There is some reason to believe that vortex size is related to surface suction as more 
indicator of the current local wind direction. Low turbulence flow data from simultaneous 
visualization and surface pressure measurements taken at CSU indicates that even with the turbulen
intensity below 4%, the vortices change size, possibly due to the influence of very small 
turbulence (Melbourne 1993), which could be produced at the leading edge itself. These
turbulence flow images demonstrated that smaller vortices actually produce higher surface s
(Banks et al. 2000).

Marwood and Wood (1997) noted that “the mechanism linking vortex structure and su
pressure is little understood”. We believe that inferences made regarding this mechanism, s
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those regarding the effect of vortex size above, can be improved if they are made in the conte
simple flow model. This study attempts to develop a model of the instantaneous link betwee
in and around the recirculation area and the surface pressure beneath the vortex. 

2. Existing surface pressure profile models

2.1. Point vortices in potential flow

Several authors (Kawai and Nishimura 1996, Marwood 1996), have compared the predicti
2-D potential flow theory to the actual surface pressure profile along a line normal to the c
vortex axis. The results generally appear favourable in that the theoretical curve shape follows the
data reasonably well.

These theoretical roof surface pressure profiles are based upon the flow field induced in po
flow theory by the placement of two counter-rotating vortices a distance 2h apart. The flat
streamline between them is considered to be the roof surface (Fig. 2). The resulting surface flow
velocity is given by 

(2)

where Γ = circulation or strength of each vortex and ξ = 0 directly between the vortices. (Wilcox
(1997) provides a good derivation of this formula.)

In order to apply potential flow theory, the flow must be incompressible ( ) 
irrotational ( , which implies ; it also implies inviscid flow). If the flow is als
steady, the steady form of Bernoulli's equation can be used to predict the surface pressure along the
ξ axis :

(3)

U ξ( ) z 0=
Γh

ξ2 h2+
----------------=

∇ u⋅ 0=
∇ u× 0= u ∇ φ⋅=

P P∞
1
2
---ρU2 ξ( )–=

Fig. 2 Counter rotating vortices in 2-D potential flow, showing streamlines and velocity vectors. The
streamline is taken to be the roof surface in this model.
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where  is the static pressure when the flow stops, in the limit as  and . 

Let , so that at ξ = 0  . 

The pressure distribution is now normalized by ∆Pmin to get 

(4)

The vortex core height above the surface (h), has been measured from the flow visualizatio
images, and used in Eq. (4). This procedure provides a reasonably good curve fit to aerospa
for swept delta wings with included angles less than 40° and tested at angles of attack abo
(Greenwell and Wood 1992). For a building's square corner, with an included angle of 90° a
effective angle of attack we estimate at around 10° (depending on building height), the agreem
not as good. When actual values of h for roof-top vortex cores are used, it badly under-predicts 
half width of the surface pressure profile (Banks et al. 2000). 

To overcome this problem, a virtual core height is inferred from the pressure profile's half w
The half-height point on the ∆P / ∆Pmin curve is selected, so that ξ = ξ1/2 when ∆P / ∆Pmin = 0.5. By
substituting ∆P / ∆Pmin = 0.5 and ξ = ξ1/2 into Eq. (4), we get h = 1.55ξ1/2. This virtual core height is
often twice the actual core height.

In many implementations of Eq. (4), Cp is substituted for ∆P, so that ξ = ξ1/2 at Cp / Cpmin = 0.5,
where Cpmin is the minimum Cp (i.e., the maximum suction) for a given x = constant line. This is
not strictly correct, since 

, where Cp is defined as

(5)

The reason why Cp can be used in the place of ∆P in Eq. (4) is discussed in the next section.
The value of Cpmin , rather than being calculated from vortex circulation, is, like the virtual hei

extracted from the data. Hence, both input parameters (h and Cpmin) are estimated from the data
and the model becomes essentially a curve fit to surface pressure data.

2.2. Rankine vortex based pressure profile

Cook’s designer’s guide provides a similar curve fit, based on the pressure profile through th
of a Rankine vortex (Cook 1990). A Rankine vortex features a fully viscous vortex core rotati
a solid body, surrounded by an irrotational, inviscid vortex (Fig. 3). The pressure coefficients fo
flow are given by 

P∞ ξ ∞→ U 0→

∆P P P∞–
1
2
---– ρ Γ h⋅

ξ2 h2
+

---------------- 
  2

=≡ ∆P ∆Pmin
1
2
---ρ Γ h⁄( )2

–= =

∆P
∆Pmin

------------- h2

ξ2 h2+
---------------- 

 
2 1

ξ h⁄( )2 1+
-------------------------- 

  2

= =

∆P
∆Pmin

-------------
P Pref–

1
2
---ρUref

2–

Pmin Pref–
1
2
---ρUref

2–
------------------------------------------------

 
 
 
 
 

Cp 1–
Cpmin 1–
----------------------- 

 = =

Cp
P Pref–

q
-------------------≡
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Matching the pressure coefficients at R gives

 so that .

Since Uouter(r ) = k/r, UR = k/R and Uinner(r ) = kr/R2, where k is a constant, the Cp(r ) formulae are

, and 

This profile is then assumed to exist at the roof surface, so that Cpmin becomes Cpo and r becomes
ξ. As , , so that  and Cp / Cpmin approaches 1 /Cpmin. The same is
true for the potential flow/point vortex model, since ∆P / ∆Pmin� 0 as , which from Eq. (5)
implies that Cp�1. However, the data measured in this study and elsewhere suggest that Cp = 0 or
Cp = −0.2 is a more appropriate asymptote. The measured Cp values do not approach +1 when th
flow appears to “stagnate” within the separation zone, as at the point of re-attachment. This
perhaps in part because the flow is really 3-dimensional, so that there is not a true stagnation, since
Uaxial ≈ Uref at the point of reattachment (Marwood 1996). It could also be the result of the ov
flow acceleration and curvature above the building, which reduces pressures over the whole 
well as on the back wall. 

Whatever the reason, the use of Cp ( ) = 0 as the asymptote simplifies the Rankine-bas

Cpinner Cpo
U2 r( )
Uref

2
--------------+=

dP
dr
------- ρU2

r
----------=

Cpouter 1
U2 r( )
Uref

2
--------------–=

Cpinner R( ) Cpouter R( ) Cpo

UR
2

Uref
2

---------+ 1
UR

2

Uref
2

---------–= = = Cpo 1 2
UR

2

Uref
2

---------–=

Cpouter 1
k

r Uref⋅
---------------- 

  2

Cpo 1 2
k

R Uref⋅
----------------- 

  2

–=,–=

Cpinner 1 2
k

R Uref⋅
------------------- 

  2 k r⋅
R2 Uref⋅
------------------- 

  2

+–=

ξ ∞→ U ξ( ) 0→ Cpouter 1→
ξ ∞→

ξ ∞→

Fig. 3 Rankine vortex showing velocity profile through core
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equations. If the value of Cp along the roof surface is considered to be reduced for all ξ by 1.0,
then Cpouter = 0 when  = 0, since

 and  so that

  and  

The model given in Appendix M of Cook’s designer’s guide approximates this relationship wit
equation

 where A = ξ / R  and ξ1/2 can be used for R (6)

In Fig. 4, the curves from Eqs. (4) and (6) are compared to mean data taken at CSU on 
model of the TTU Wind Engineering Research Field Laboratory (WERFL) building (Levitan 
Mehta 1992) and on a larger 45 cm� 45 cm cubic model. The agreement is good in the reg
between the pressure peak and the roof centre, while the measured pressures remain sign
greater between the pressure peak and the leading edge.

2.3. Weaknesses of the surface pressure profile models 

These models offer little insight into the manner in which the vortex controls suction on the
surface. While the Rankine based model infers a surface profile similar to that through the 
core, it does not attempt to describe the flow field. The potential flow model does describe th
field, but it is actually misleading. The tangential velocity is predicted to increase infinitely (withr)
as the vortex core is approached, and surface pressures are assumed to simply follow the B

ξ ∞→

Cpouter
k

ξ Uref⋅
------------------ 

  2

Cpmin 2–
k

R Uref⋅
------------------- 

  2

=,= Cpinner 2
k

R Uref⋅
------------------- 

  2

– 1
1
2
--- ξ2

R2
-----– 

 ⋅=

Cpinner

Cpmin

---------------- 
  1

1
2
--- ξ

R
--- 

 
2

–=
Cpouter

Cpmin

---------------- 
  1

2
--- R

ξ
--- 

 
2

=

Cp
Cpmin

-------------- 1

1 A2+( )
--------------------=

Fig. 4 Normalized Cp distributions under the vortex, normal to the roof edge
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equation. For a mean Cp of −2.5, this requires a mean total velocity at the roof surface beneath
vortex of 1.9 times the mean upstream flow velocity at roof height (Uref). Measurements taken for
this study and elsewhere (Marwood 1996) indicate that the total velocity just above the surf
this case is usually quite close to Uref (though much more turbulent, with more energy at high
frequencies).

For example, tap number 50501 on the TTU WERFL site roof is located at a normalized di
from the corner of x/H = 0.36, and at an angle with respect to the wall edge of φ = 14°. Pressures
measured at this tap are known to be quite low when it is beneath a conical vortex, with a meCp
of −2.5 for ω = 60°. Peak Cp’s for tap 50501 for a test lasting 15 minutes are often around −11
(Cochran and Cermak 1992). This would require wind speeds of US(t) = 3.5 times Uref. Note that
this implies winds speeds of over Mach 0.5 during a hurricane. This also implies a local g
1.85 times the mean local velocity, or 4.25 σU above the mean for a turbulence intensity of σU/U = 20%.

The model which is developed in the following section demonstrates how Cp’s of −11 can be
achieved with wind speeds of only 2.4 times Uref , and gusts of only 1.6 times the mean loc
velocity (or 3σU above the mean for σU /U = 20%). Unlike the models of Sections 2.1 and 2.2, th
model produces a prediction of peak pressure beneath the vortex core based on the loc
conditions. This predicted peak suction could then be used as input into either of the symmetrica
fits of the aforementioned models. However, given that the flowfield assumptions made by these 
are inaccurate and that the shape of the surface pressure profile is generally asymmetric, the estim
surface pressures near the peak can perhaps be better accomplished with a polynomial curve fit.

3. The vortex model

This section presents a model that emphasizes the interaction of the flow velocity above the vor
the streamline curvature within the vortex in producing the low surface pressures. The model will b
to examine changes in Cp as a function of wind angle, distance from the apex, and local flow speed.

The nomenclature and overall flow pattern for the model are shown in Fig. 5. Instea
envisioning a flow field driven by a vortex, as in the potential flow model, we imagine the vorte
be like a wheel, being spun by the free stream at the point M. At the centre of the flow field model
is a vortex similar to the Rankine vortex. The velocity profile associated with a Rankine vo
shown in Figs. 3 and 6, is unrealistic, since the velocity will not change so abruptly as the circu
flow gradually changes from constant vorticity to zero vorticity. Instead, there will be a transition
zone above the vortex in the shear layer, also shown in Fig. 6. In between the transition regi
the core, experimental measurements (Marwood 1996) and numerical solutions (full Navier S
above a delta wing (Rizzi and Muller 1989)) show that the velocities within the real vortex core can
be approximated by a power law profile. The viscous inner region is probably reduced to a
small area near the core (r / h < ~0.2). Above the transition region, the rotating flow merges with 
free stream, so that U approaches Uref instead of 0.

The pressure changes which occur towards the core (the point O) and the surface (the point S) are
associated with centrifugal accelerations, -mU2/ r ; hence, the local governing equation is

(7)

where n is the unit normal to the curvature, Rc is the radius of curvature, and U is the fluid speed in
the direction of vortex rotation. 

dP
dn
------- ρU2

Rc

----------=
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e, since

ith

ds a
3.1. Radius of curvature

Near the core, Rc = r  and dr = dn, so Eq. (7) is identical to that for circular flow. As the flow
beneath the vortex approaches the roof, however, the radius of curvature must become infinit
it will be parallel to the flat roof at the surface. Letting a = (ζ / h) we model Rc/ h = a / (1 + a)
between the core and the roof (−1 <a < 0). This satisfies these limits, since Rc � −�  as  a� −1
and Rc / h� a as a� 0. The flow will also straighten out above the vortex, eventually merging w
the flow curvature associated with the overall flow around the building. A curve-fit to the Rc values
calculated for flow above a 2-D surface mounted prism by the CFD code FLUENT yiel
relationship of the type Rc

upward/ h = a + BaC, where B = 1 and C = 2. Flow visualization also gives
Rc

upward/ h = 2a at ζ = h.

Fig. 5 Two-dimensional depiction of vortex flow model

Fig. 6 Velocity profile directly above vortex core through the points O and M
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3.2. Velocity profile

The velocity profile shown in Fig. 6 for 0.2 <a < 1 is exponential :

  where  γ = 1/2 . (8)

This equation is based upon a curve fit to the velocity profile presented in Rizzi’s num
solution of the complete Navier-Stokes equations for a 65° sweep delta-wing at a 10° an
attack at x / cR= 0.7 and M

�
= 0.85 (Rizzi and Muller 1989). The fit is shown in Fig. 7a. A simil

curve fit is performed with Marwood’s rooftop LDV data in Fig. 7b, where Umax is not known, so
the data is normalized by U(h / 2). A power law curve fit was chosen in part because the velo
profile in the core is expected to have a structure similar to that of a turbulent boundary laye
a viscous inner core, a log-layer, and a defect layer, and such profiles are often represente
power-law relationship. Note that if  is substituted into Eq. (7), the pressure is se
vary linearly with a, P = ρC 1

2a . This linear variation agrees well with data reported in seve
numerical simulations, adapted for Fig. 8 (The pressure values decrease less rapidly beneath 
because the radius of curvature increases more quickly towards the roof surface, as noted above)

Near enough to the core, viscosity is expected to dominate, so the flow must rotate as 
body, as in the Rankine vortex, with U � r .

In the potential flow region, both the Bernoulli equation and Eq. (7) must be obeyed. Usin
assumed radius of curvature Rc (ζ ), the velocity profile can be calculated :

 

Substitute this into Eq. (7) to get

U
Ua +1=

--------------- aγ=

U C1 a=

P P∞
1
2
---ρU2 ...

dP
dn
------- 1

2
---–= ρdU2

dn
---------–=

Fig. 7 Mean velocity profiles from surface up through vortex core, with exponential curve fit, for : (a) o -
sweep delta wing at 10o angle of attack (Rizzi 1989) (b) several planes along a low-rise build
model (Marwood 1996)
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Isolate the variables and integrate each side to get

where a3 is the normalized radial distance from the core centre to the start of the potential
region (assumed to be 2h). Solving the integral gives

   or   

In the transition region, a curve has been chosen with a maximum at amax = (a2 + a3) / 2, where a2

borders the vortex region. This curve’s slope attempts to match those of the neighbouring region
a2 and a3. The full set of velocity profile equations is given in Table 1.

3.3. The vortex as pressure drop amplifier

The pressure drop to the surface is calculated through the integration of Eq. (7) from the pM
towards the vortex centre, along the ζ axis :

1
2
---ρdU2

dn'
---------–

ρU2

Rc h⁄( )
----------------- where n′ n h⁄= =

1

U2
------

a3

a

∫ dU2 2–
Rc h⁄( )

-----------------dn′
a3

a

∫=

ln U2( ) ln U3
2( )–

2–
Rc h⁄( )

-----------------dn′
a3

a

∫=
U
U3

------ e

2–
Rc h⁄( )

-----------------dn′
a3

a

∫ 
 
 

=

Fig. 8 The nearly linear relationship between pressure drop and distance from the vortex core. Note d
pressure drop rates above and below the core. Data was taken along the line S-M through p
contours from numerical simulations of delta wing vortices. Wing #1 : Sweep = 75o, angle of attack =
50o, distance along chord = 60% (from Ekaterinaris and Schiff 1994). Wing #2 : Sweep = 76o, angle of
attack = 20.5o, distance along chord = 81% (from Kandil and Chuang 1990)
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Normalizing by the reference flow head gives

Normalizing the cross-vortex velocity profile by UM instead of Uref gives 

where the integral is reversed to give a positive value. CpM can be calculated from the velocity at M
using the Bernouilli equation, PM − Pref = 1/2ρ (U 2

ref − UM
2 ) since M is in the potential flow region :

Substituting into the equation for CpS yields

(9)

where both U / UM and Rc / h are functions of a.
Let ∆Cp = 1−Cp , which could be thought of at the difference in Cp relative to stagnation, where

Cp = 1. At the point M , this is equivalent to the pressure coefficient change due to the incre
flow velocity, since ∆CpM = (UM / Uref)

2. Letting 

dP
M

S

∫ ρU2

Rc h⁄( )
-----------------da

M

S

∫=

CpS CpM– 2 U2 a( )
Uref

2 Rc a( ) h⁄( )⋅
---------------------------------------

M

S

∫ da=

CpS CpM

UM
2

Uref
2

--------- 2 U2 a( )
UM

2 Rc a( ) h⁄( )⋅
--------------------------------------

S

M

∫ da–=

CpM

PM Pref–
1
2
---ρUref

2
--------------------- 1

UM
2

Uref
2

---------–= =

CpS 1
UM

2

Uref
2

--------- 1 2
U

UM

------- 
  2

S

M

∫
Rc

h
----- 

 
1–

da⋅+–=

Table 1 Equations used to draw the composite velocity profile in Fig. 6, where the parameters were es
to be a1 = 0.2, a2 = 1, a3 = 2, amax = 1.5 and Umax= 1.05UM . Ua2= Utransition(a2), Ua3= Utransition(a3), and
Ua1 = Uvortex(a1).

Rc / h Range Description Velocity equation

−� a = −1 Roof surface U = 0

a / (1 + a) −a2 < a < −a1 Between roof and vortex core U(a) = −Uvortex(a) = −Ua2�

a |a| < a1 Viscous vortex core U(a) = Ucore(a) = Ua1
� a / a1

a + a3 / 2 a1 < a < a2 Vortex, above the core U(a) = Uvortex(a) = Ua2�

a + a3 / 2 a2 < a < a3 Transition region U(a)=Utransition(a)=

a + a3 / 2 a3 < a Potential flow region
U(a) = Upotflow(a) = Ua3

a a– 2⁄

a a2⁄
Umax 2 a amax⁄( )⋅ ⋅

1 a amax⁄( )2
+

-------------------------------------------

e

2–
Rc h⁄( )

------------------dn'
a3

a

∫
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gives ∆CpS = (1 + g)� ∆CpM . This implies that the vortex can be simply viewed as an amplifier
the velocity related pressure drop at M.

The g (a) profile calculated along the ζ - axis using the Rc / h(a) and U / UM (a ) functions from
Table 1 is plotted in Fig. 9, along with the g(a) for circular flow around a Rankine vortex. Th
figure shows that the total amplification has been reduced (relative to the Rankine pressure d
the decrease in curvature (especially in the transition region). An asymmetric “leak” of 
amplification from the core to the surface is also evident, since g(−1) > g(1). The leak transfers
about half of the vortex core pressure drop (i.e., the drop from a = 1 to a = 0) to the surface. The
pressure loss across the vortex (from a = 1 to a = −1) can be seen to be roughly equivalent to th
across the transition region. 

3.4. Effect of wind angle on Cp

The flow model depicted in Fig. 5 is for a 2-d plane normal to the leading edge, so that o
component of the total velocity at M, UM� sin(α) is acting to rotate the vortex. The angle α is the
wind angle at the point M with respect to the vortex core; it is illustrated in Fig. 10. Experimen
measurements taken at CSU using techniques described in the companion paper (Banks and Meroney
2000) show that the wind changes direction as it passes over the leading edge of the roof, sh
become roughly 10° to 20° more normal to the roof ’s edge. Since the vortex core is displace
the leading edge by an angle φC which is also usually between 10° and 20°, the net effect is thaα
follows ω fairly closely, as shown in Fig. 11.

Using the full 3-d velocity to calculate the pressure drop at point M, Eq. (9) becomes

(10)

g 2
U

UM

------- 
  2 Rc

h
----- 

 
1–

⋅
S

M

∫ da=

CpS 1
UM

2

Uref
2

--------- 1 sin2 α( ) gS⋅+[ ]–=

Fig. 9 Vortex amplification factors, showing the effect of reduced curvature
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where gS is the value of g (a) at the point S and α is a function of ω , as noted above. Eq. (10) ca
be used to calculate the Cp(a) profile along the ζ - axis by using g (a) from Fig. 9. A final
comparison with aerospace delta-wing numerical simulation results is shown in Fig. 12, and
agreement is seen between the profile shapes.

Fig. 10 Nomenclature for model of vortex mechanism. Note that the flow direction changes by an a
∆ω ≈ φC as it passed over the roof edge, so that ω ≈ α

Fig. 11 Wind direction above vortex core, relative to vortex core axis from experiments described by 
and Meroney (2000)
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3.5. Incorporating time dependence

3.5.1. A quasi-steady approximation

Visualization of the vortex indicates that for any wind angle, the vortex rapidly and errati
changes its position and size. However, the shape of the vortex is generally self-similar (circular), so
provided that the vortex is not “washed out” (absent), it is reasonable to assume that gS will not
depend upon the wind direction. If this is the case, the model’s surface pressure predictions 
compared to a measured CpS time series by using Eq. (10) to calculate Cp (ω (t )) for Eq. (1) :

(11)

where Uspin must be measured at a point near the roof edge, as noted in the introduction. The
M and C have both proven suitable for this purpose. 

3.5.2. The intermittency factor

Visualization tests at CSU have shown that as the mean wind angle is increased from ω = 20°
(when the vortex first becomes evident) to ω = 90° (the case of unstable bubble separation), 
vortex becomes increasingly unstable. The instability is evidenced by the vortex erratically disapp
and reappearing. To account for this, an “intermittent vortex factor”, I (t ), can be introduced to the
amplification factor :

g ( t ) = gS� I ( t ) 

where gS ≈ 1.5 from Fig. 9 and the mean value of I ( t ) is expected to be close to 1 for ω < 55°, and
to decrease to almost 0 at ω = 90°. It was initially expected that I (t) would function as a delta

CpS t( )
Uspin t( )

Uspin

------------------ 
 

2

1
UM

2

Uref
2

--------- 1 sin2 α t( )( ) gS⋅+[ ]– 
 =

Fig. 12 A comparision of the Cp(a) profiles predicted by Eq. (10) and those for wing #2, a steady-s
solution to the Euler equations for a 76o sweep delta wing at an angle of attack of 20.5o (from Kandil
and Chuang 1990)
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function; if the vortex were present, Iδ = 1, otherwise, Iδ = 0. Since the vortex continues to appe
sporadically even at ω = 90o1, Iδ could be unity for any wind angle. Data to be presented in 
companion paper will show that there is more of a continuum of g ( t) values, with a mean and
distribution that depends upon the wind angle. The resulting prediction for the surface pressure time
series beneath the vortex core is

(12a)

The mean value becomes

(12b)

4. Discussion

The “speed-up ratio” as flow passes over the downwind separation bubble at the ridge of a
escarpment is of the order 1.6 (Cook 1985). The speed-up ratio in this case is defined as the
flow speed above the separation bubble (UC) to that along the same streamline in the undisturb
upstream flow (UB) (see Fig. 13). If UB is measured somewhere between 0.3H and 0.5H, and
exponential open country velocity distribution (α = .14) is assumed, then UC / Uref is roughly 

Measurements taken for this experiment and described in the companion paper confir
estimate, giving UM / Uref = 1.42 for x / H = 0.38. It is also shown in the companion paper that wh
g > 1.5 for a strongly re-attaching vortex, weaker re-attachment can lower g considerably. This is
not too surprising, since g should be 0 if there is no reattachment and no vortex. Using g = 0.9 and
α = 60° in Eq. (12a) gives

CpS = (1−(1.42)2[1+sin2(60o) � 0.9)]) = −2.5

CpS t( )
Uspin t( )

Uspin

------------------ 
 

2

1
UM

2

Uref
2

--------- 1 sin2 α t( )( ) g t( )⋅+[ ]– 
 =

CpS 1
UM

2

Uref
2

--------- 1 sin2 α( ) g ω( )⋅+[ ]– 
 =

UC

Uref

---------
UC

UB

-------
UB

Uref

---------⋅ 1.6
zB

zref

------- 
 

.1.4

1.4=⋅= =

1 Experimental results at CSU indicate that the flow in this apparently two dimensional case is actuall
three dimensional, with circulating flows, or small, unstable vortices, being shed from the leading edge erra
These flow structures cause the greatest surface suctions within the bubble, confirming results repo
Saathoff and Melbourne (1989). They generally travel away from the leading edge, but can also move 
in either direction. 

Fig. 13 Flow over a steep escarpment
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which, as noted in section 2.3, is the mean Cp for tap 50501 at ω = 60°. If we assume that peak
suctions of Cp= −11 coincide with a strong vortex (g ( t ) = 1.7) and a momentary shift in wind
direction to α ( t ) = 80°, the Eq. (12b) gives

Gusts of this size become increasingly likely as σU / U increases, so the likelihood of large negativ
peak pressures ought to increase as well. This has been observed: peak Cp’s below −10 at tap 50501
are seldom seen when σU / U < 20%, but are relatively common for σU / U > 20% (Tieleman et al.
1996).

As noted in section 2.3, a 20% turbulence intensity at roof height implies that Uref ( t ) > 1.6Uref for
gusts of U ( t ) > U + 3σU , a condition which occurs over 10 times per 15 minute run (when sam
at 10 Hz). We speculate that Cp’s below −11 are not this common because these large gusts m
coincide with a shift in wind direction toward flow normal to the wall, and α ( t ) is greater than 75°
less that 7% of the time for ω = 60°. They must also coincide with the presence of a strong vo
and solid re-attachment, a condition which is increasingly rare as ω� 90°. As a result, peaks of this
size are only seen every few runs, rather than several times per run.

Finally, section 2.3 also indicated that US(t ) would have to exceed 3.5 times the reference fl
velocity to achieve a Cp of −11 if the point vortex model and its direct application of Bernoull
equation were to apply, a condition which seems intuitively unlikely, and has not been obs
experimentally. In contrast, The model embodied in Eq. (12a) requires a maximum velocity o
2.4Uref for such an event: Since Umax ≈ 1.05 UM (Fig. 6), the ratio can be calculated as 

5. Conclusions

Existing conical vortex flow and surface pressure models are shown to provide bell-shaped
fits to the surface pressure profiles. To provide greater insight into the connection between upstre
flow and surface pressures beneath the conical vortices, a model of the mechanism by wh
roof-top conical vortices create large suctions on the roof surface has been developed. 

The model describes how the curving vortex flow causes extremely low pressures at the vortex
core. The flattening of the flow beneath the vortex due to the presence of the roof surface 
some of this low pressure to act on the roof surface. The faster the vortex spins, the lower th
pressure and the lower the surface pressure. In this sense, the vortex can be seen as an am
the local pressure drop due to wind gusts.

The model connects surface pressures to the upstream flow in three ways. First, the spee
vortex spin is determined by the flow velocity component normal to the roof edge, so tha
presence of lateral velocity fluctuations will affect the surface pressure through α ( t ). Second,
regardless of wind angle, the pressure above the vortex will be controlled by the speed o
passing over the roof corner (Uspin( t )); the nature of these gusts will clearly be a function of t
upstream flow. Finally, the model includes a parameter (g) which describes the quality or strengt
of the vortex. The value of g could be related to the nature of the re-attachment, which is in 

Uspin t( )
Uspin

------------------ 
 

2 11–

1 1.42( )2 1 sin2 80o( ) 1.7⋅+[ ]–
--------------------------------------------------------------------------- 1.6.= =

Umax t( )
Uref

------------------
Umax

UM

-----------
UM

Uref

---------
Uref t( )

Uref

----------------⋅ ⋅ 1.05 1.42× 1.6× 2.4.= =≈
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affected by the presence of small-scale turbulence (on the order of the width of the shear layer, < H
Experiments designed to validate this model have been performed, and the results are rep

a companion study.
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Notation

a Normalized z-direction distance from the core
C1 Arbitrary constant
Cp Pressure coefficient = (P - Pref) / qref )
Cpinner Cp in viscous region of a Rankine vortex
Cpmin Minimum pressure coefficient along a given x = constant line (same as CpS)
Cpo Pressure Coefficient at the vortex core
Cpouter Cp in inviscid region of a Rankine vortex
CpM Cp at the point M (directly above the vortex core)
CpS Cp at the point S (on the roof surface, directly beneath the vortex core)
CR Wing chord length (from apex to trailing edge along centerline)
g Integral of centripetal acceleration from inviscid region, through core, to roof
gS Value of g at the point S
h Height or distance of the vortex core above the roof surface
H Building height
k Arbitrary constant 
M
�

Much number
n Unit normal to streamline
P Static pressure
P
�

Static pressure at the stagnation point (when U = 0)
q Flow head = 1/2ρU2

r Radial distance from the vortex core
R Radial distance of border between viscous and inviscid flow in Rankine vortex
Rc Radius of curvature
t Time

Flow velocity vector
U Flow speed
Uref Flow speed measured upstream at roof height
Umax Maximum mean velocity above the vortex core
U(point) U at the location (point) ex: UC , UM

x Distance from the apex or leading corner, along the leading edge
y Distance from the leading edge, along a line normal to the leading edge
Z Distance above the roof surface

u
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α Wind angle above the vortex, relative to the vortex core axis
∆Pmin P-P

�
 directly beneath the vortex, on the roof surface 

φ Angle with respect to roof edge; φc = φ  location of vortex core
Γ Circulation
ρ Air density
σu Standard deviation of flow speed
ω Wind angle; 90° is normal to the leading edge
ξ Distance from the vortex core, in the y direction
ξ1/2 Half width of the y-direction pressure profile 
ζ Distance from the vortex core, in the z direction

� Subscripts generally denote the position in space at which a quantity is measured, i.e., Cpo is the
pressure coefficient at the point O, which is the centre of the vortex core.

� Overbars indicate time averaged quantities.

AK


	A model of roof-top surface pressures produced by conical vortices�:�Model development
	D. Banks† and R. N. Meroney‡
	Fluid Mechanics and Wind Engineering Program, Civil Engineering Department, Colorado State Univer...
	Fig.�1�Dual conical vortices in cornering wind
	Fig.�2�Counter rotating vortices in 2-D potential flow, showing streamlines and velocity vectors....
	Fig.�3�Rankine vortex showing velocity profile through core
	Fig.�4�Normalized Cp distributions under the vortex, normal to the roof edge
	Fig.�5�Two-dimensional depiction of vortex flow model
	Fig.�6�Velocity profile directly above vortex core through the points O and M
	Fig.�7�Mean velocity profiles from surface up through vortex core, with exponential curve fit, fo...
	Fig.�8�The nearly linear relationship between pressure drop and distance from the vortex core. No...

	Rc�/�h
	Range
	Description
	Velocity equation
	-�°ƒ
	a�=�-1
	Roof surface
	U�=�0
	a�/�(1�+�a)
	-a2�<�a�<�-a1
	Between roof and vortex core
	U(a)�=�-Uvortex�(a)�=�-Ua2°§
	a
	|a|�<�a1
	Viscous vortex core
	U(a)�=�Ucore(a)�=�Ua1°§a�/�a1
	a�+�a3�/�2
	a1�<�a�<�a2
	Vortex, above the core
	U(a)�=�Uvortex�(a)�=�Ua2°§
	a�+�a3�/�2
	a2�<�a�<�a3
	Transition region
	U(a)=Utransition(a)=
	a�+�a3�/�2
	a3�<�a
	Potential flow region
	U(a)�=�Upotflow�(a)�=�Ua3
	Fig.�9�Vortex amplification factors, showing the effect of reduced curvature
	Fig.�10�Nomenclature for model of vortex mechanism. Note that the flow direction changes by an am...
	Fig.�11�Wind direction above vortex core, relative to vortex core axis from experiments described...
	Fig.�12�A�comparision of the Cp(a) profiles predicted by Eq. (10) and those for wing #2, a steady...
	Fig.�13�Flow over a steep escarpment






