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Abstract. The classical two-degree-of-freedom (2-d-o-f) “sectional model” is currently used to study the
dynamics of suspension bridges. Taking into account the first pair of vertical and torsional modes of the
bridge, it describes wellobal oscillations caused by wind actions on the deck and yields very useful
information on the overall behaviour and the aerodynamic and aeroelastic response, but does not conside
relative oscillation between main cables and deck. The possibility of taking into account these relative
oscillations, that can become significant for very long span bridges, is the main purpose of the 4-d-o-f
model, proposed by the Authors in previous papers and fully developed here. Longitudinal deformability
of the hangers (assumed linear elastic in tension and unable to react in compression) and external loadin
on the cables are taken into account: thus not gialgal oscillations, but alseelative oscillations between

cables and deck can be described. When the hangers go slack, large nonlinear oscillations are possible;
the hangers remain taut, the oscillations are small and essentially linear. This paper describes the mode
proposed for small and large oscillations, and investigates in detail the limit condition for linear response
under harmonic actions on the cables (e.g., like those that could be generated by vortex shedding). Thes
results are sufficient to state that, with geometric and mechanical parameters in a range corresponding t
realistic cases of large span suspension bridges, large relative oscillations between main cables and dec
cannot be excluded, and therefore should not be neglected in the design. Forthcoming papers will investigate
more general cases of loading and dynamic response of the model.
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1. Introduction

The design of long span suspension bridges under wind action is usually performed by means of
mechanical models and then carefully assessed through wind tunnel tests on rigid section or scale
models of the whole bridge. Both very complex or very simplified numerical and experimental
models are used in current practice. Examples of the first are sophisticated finite element models,
which can take into account appropriate wind tinmgtenies and also structural details; however, the
interpretation of their results can be difficult, because of the very large number of degrees of
freedom involved and of the many input data required to define properly the wind action along the
span. On the contrary, the results given by simplified models can be interpreted more easily and are
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therefore convenient at least at a preliminary design stage; however, they may miss aspects that ca
become very significant in particular situations. For example, the classical 2-d-o-f “sectional model”,
widely used also in experimental investigations, allows to consider only two natural modes related
to global oscillations of the bridge, while neglecting the direct loading on the cables, the longitudinal
deformability of the hangers and their lack of compression resistance. This model, therefore, can
yield very useful information on the overall behaviour and the aerodynamic and aeroelastic response,
but cannot describe anglative oscillations between main cables and deck that, as recently shown
(Augusti et al. 1997, Augusti and Sepe 1999) can be significant and potentially dangerous for very
long span bridges and wind velocities within realistic limits.

To the authors’ knowledge, the first authors who tackled the effects of the unilateral behaviour of
hangers (elastic in tension but without any strength in compression) and of the direct loading on the
cables were McKenna and his co-workers (McKenna and Walter 1987, &lipwedr1989, Lazer
and McKenna 1990). In particular, they attribute to the unilateral behaviour of hangers some peculiar
and unusual aspects of the response of the Tacoma Narrows bridge well before collapse conditions
like large amplitude vertical oscillations under relatively low wind speed (Gletval. 1989). The
unilateral behaviour of hangers, according to Lazer and McKenna (1990) is also responsible for the
travelling waves observed on the Golden Gate bridge (USA) during an unusually violent storm
(February 1938) and the seismic oscillations of tmaesbridge during the California earthquake of
1989 (X According to witnesses ... the bridge did indeed go immediately into the nonlinear regime,
with the stays connecting the roadbed to the cables alternately loosening and tightening “like
spaghetti”>, Lazer and McKenna 1990).

In their 1987 paper, McKenna and Walter studied the response of a one-dimensional beam
(representing the deck) suspended by unilateral elastic hangers to the main cables, considered &
fixed constraint; the possibility of both small @isr) and large amplitude vertical oscillations was
shown under the action of the deck weight and of a periodic forcing with appropriate intensity and
frequency. Gloveret al. (1989), considering only vertical oscillations without nodes, reduced the
previous beam model to a one-degree-of-freedom mbdelever sufficient to explain the already
recalled large amplitude oscillations of the Tacoma Narrows bridge. Later, this model was extended
into two 2-d-o-f models (azer and McKenna 1990) that take into account respectivelthg
vertical displacements of the cables (assumed equal to each other) and of the deik,tlaed (
vertical displacement and torsional rotation of the deck, allowed by the differential deformation of
the hangers, without displacement of the main cables. In both models the hangers are modelled a
linear elastic in tension and unableréact in compression.

These papers have been reconsidered by Doole and Hogan (1996) who have investigated lines
and nonlinear response of the 1-d-o-f model of Glover and co-workers under harmonic forcing and
discussed the stability of periodic response: some results of this paper will be examined later
(Section 5). Recently, Ahmed and Harbi (1998) have presented a mathematical analysis of the
continuous model of Lazer and McKenna (1990) and discussed linear and nonlinear oscillations,
either free or under moving loads, in presence of aerodynamic damping; the energy transfer betweer
cables and deck has also been shown for several examples.

The four-degree-of-freedondéformable sectidnmodel, already proposed by the writers (Augusti
et al. 1997, Augusti and Sepe 1999), combines and extends McKenna’s numerical models by considering
at the same time torsional rotation and vertical displacement of the deck and vertical displacements
of the two cables (Fig. 1). As in the quoted papers by McKenna and co-workers, the hangers are
assumed linear elastic in tension and ineffective in compression: thus, the proposed model, further
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B=2b

Fig. 1 The 4-d-o-f leformable sectidnmodel

developed in this paper, is able to describe the global and relative oscillations for the whole range of
behaviour of the hangers; to the authors’ knowledge, no analytical sectional model had ever been
related to these relative oscillations before. In fact, even remmnt investiggons on the condition

for incipient multi-modal dynamic instability, that can become relevant for long bridgesefJain

1996, D'Asdia and Sepe 1998) keep assuming a rigid behaviour of the cross-section. On the
contrary, the theoretical and numerical analyses developed in this paper and in its follow-up (Sepe
and Augusti 2001) confirm the already presented preliminary results (Awjusti 1997, Augusti

and Sepe 1999), i.e., that, in the case of very large bridges, significant relative motions can develop
because of the zero stiffness of the hangers when in compression.

The full behaviour of the proposed model can be found only by step-by-step integration of the
equations of motion, because of the discontinuity and the consequent nonlinearity of the equations
of motion. It has deemed therefore appropriate to examine first in full detail the conditionsathaiteg
small amplitude oscillations (hangers always taut) around the equilibrium configuration, and exclude
large amplitude oscillations (hangers loosening and tightening, alternatively). As descriesctiam
4.2 and Section 4.3, this analysis shows that the possibility of the latter type of response may arise
under wind speeds within realistic limits.

The forthcoming Part Il (Sepe and Augusti 2001) will investigate and discuss the nonlinear
dynamic behaviour of the model for wind-induced forces both on the main cables and on the deck.

2. The proposed model

The proposed analytical model aims at describing the oscillations of a suspension bridge induced
by fluctuating actions on the main cables and on the deck around the configuration of equilibrium
under dead loads.

While cables and deck are assumed to behave elastically, hangers are considered assfioear ela
in tension and ineffective in compression; because of pre-tension due to deck weightefertrece
configuration, this unilateral behaviour becomes significant depending on the amplitude of the relative
oscillations.

In order to obtain still a relatively simple model, however, it is assumed that the three principal
components of the bridge, namely the main cables and the deck, oscillate with the same longitudinal
shapey(x), although not with the same amplitudes. This is indeed the assumption under which all
sections behave in a similar way, and therefore the bridge response can be described by a “section:
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model”: in the present case, a “deformable section” model, that improves the classical 2-d-o-f rigid-

section model, because it is able to account for relative displacements between main cables an

deck, made possible by the elasticity of the hangers in tension and their “slackness” in compression.
Let x andt be the coordinate along the bridge axis and the time, respectively, and assume the

same shapey(x) for the first vertical and torsional modes of oscillation of the bridge deck: the

vertical displacemeny (x, t) and the rotatior@ (x, t) of any generic cross section of the deck can

be written:

yxn=Y@Q ¢ ; f(x 1) =0 1YX) (1)

where x< [0, L], with L the length of the main span of the bridge, aft) and ©(t) are the
generalised displacement or rotation related to the assumed pseudo-modal 6t)ape

Assume that also the vertical displacements of the cablgst) and z (x,t) have the same
longitudinal shape:

z(x )=z ¢ ; %(x, 1) = Z(O) Y (X (2)

The relative vertical displacemerty;(x, t) andAy, (x, t) between each cable and the corresponding
point of the deck read therefore (Fig. 1)

Byr (%, 1) = (y + b= 2) = (Y+bO - Z3)Y(x) =AY, ()¢ (X)
Ay, (%, 1) = (y — b= 2) = (Y- bO - Z5)Y(x) =AY, ()Y (X) 3

whereZ(t), AY; (t) denote generalised displacement components.

Assume also, as legitimate at least in the small oscillations range, that cables and deck are linea
elastic around the reference (dead loads) equilibrium configuration. Then, an usual procedure of linear
dynamics allows to define generalised masses and stiffnesses related to the arbitrarily chosen longitudine
shapey (X) (e.g., Clough and Penzien 1993): it must be underlined that, differently from the “classical’
sectional model in which stiffnesses and mass of the whole section are considered, each cable an
the deck are considered independent from each other in the present model. Four ordinary differentia
equations in the four degrees of freedwrtt), © (), Z; (t), Zx(t) can thus be derived.

Namely, letK., Ky, Ko be the vertical (geometrical) generalised stiffness of each cable and the
vertical and torsional generalised stiffness of the deck, respectively: the potential elasticeadsgy

@ = %KYYZ + %ngz + %Kc(zf +722) +A® (4)
where A® denotes the contribution due to the deformation of the hangers, which will be discussed
below (Section 3).

Denoting by m. the generalised mass ehch cable and byn, | the generalised mass and
torsional inertia of the deck, respectively, and neglecting the mass of the hangers with raspect to
my, the kinetic energy results

. .2 . .
T = %myvz+%|@ +%mc(Zf+Z§) 5)

where a superimposed dot denotes derivation with respect td.time
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Note that, if all elements of the bridge oscillate with the samgitlafinal shapep (x), the motion
of all sections of the bridge are similar to each other: it is this assumption that allows to describe, as
proposed, the response of the whole bridge by means of a sectional model (Fig. 1), whose four
degrees of freedom correspond to the generalised oscillating displacements of each bridge componer
Y(1), ©), 4At), Z(t).

It might be possible to remove the assumption that the cables oscillate in the same shape as th
deck: in this case, still considering few modes, the dynamics could be described by means of a pai
of global “modes” (vertical and torsional, similar to each other as in the rigid section model), plus a
pair of vertical and torsionaklative displacement fields with a different shape (e.g., with a wave
length smaller than the bridge span, as it may sometimes be appropriate); the bridge behavioul
would still be described by a set of four ordinary etéintial equations, but the physically attractive
and efficient use of a “section” model in the description of the whole dynamics is no more possible,
because global and local components of displacement combine differently along the span. This
alternative approach will not be explored further in this paper.

3. Small amplitude oscillations (linear behaviour of the hangers)

In the assumed reference configuration (equilibrium under dead loads) the hangers are in tensior
because of the weight of the deck. Therefore, as long as the relative oscillations between main
cables and deck are smaller than the elongatigncorresponding to the dead weight, the hangers
remain in tension (Fig. 2), and their contributid to the potential elastic energy is

L L
-1 2y 4 1 2
AD = 2_(|;khAyldx+ 2_([khAyzdx (6)

where Ady; are defined in Eq. (3) arlg, (xX) denotes the elastic stiffness of a row of hangers per unit
length of the bridge.
Introducing Egs. (3), Eq. (6) becomes

AP = %KhO(AYf + AY?) (7)
N
|/ N arctg ky Ay;
| ;
—Ays

Fig. 2 Relationship between axial forbi and relative displacemedty; in each hangerly, is measured fro
the equilibrium configuration under dead loady; is the static elongation due to the deck weight.
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where
L
Kno = [knt(X)*dx ®8)
0

is the (elastic) generalised stiffness of one row of hangers corresponding to the assumed longitudina
shapey (X).
The following normalisation is also introduced

L
Jo)’dx=L O me=pl, m=pl, I=il 9)
0

wherem., m, | are the generalised masses and ingutias the mass of each cable per unit length,
and uy, iy are respectively the mass and the torsional inertia of the deck per unit length (all assumed
constant along the span).

If ky(X) and ¢ (x) are both known or giverKn, can easily be obtained in closed form or by
numerical integration, in analogy K , K, Kg.

Noting that near the ends of the main span @, x=L), displacements and torsional rttas of
the deck are usually negligible, longitudinal shaggs) in the form of one or more sinusoidal half
waves can be acceptable approximations of pseudo-modal shapes. It can also be observed that di
to the varying length of the hangers, their stiffnlegx) is maximum at mid-span and much smaller
near the ends: therefokg(x) can also be approximated by a sinusoidal half wave.

Hence, it can be assumed :

- L TXO — pmaxgi o JX
W(x) = J2sinth Ch k(0 = ksinT (10)
with n an integer and&"® the stiffness of the shortest hangers. frerl (no-node symmetric mode

shape) ancdh = 2 (1-node anti-symmetric mode shape), Egs. (10) yield respectively

Nn=1 0 Kpy= %Tk;pam N=2 0 Ky= %Tk;”am (11)

From expressions (4), (5), (7) of kinetic and elastic energy, the four Lagrange equations governing
the motion are obtained
MeZs + 20.axmeZa+ KoZy = Ko (Y + bO = Z3) = Fey(t)
MeZz+ 2cMeZ2 + KoZs — Kno (Y = bO = Z5) = Feo(t)
m,Y + 2,am,Y + K)Y + Ko [(Y + bO = Z3) + (Y —bO - Z,)] = F(t)
|0+ 2o o+ Ke® + Kpob[(Y + bO = Z1) — (Y — bO — Z,)] = M((1) (12)
where damping termé&, {,, {s» have been introducet,= B/ 2 denotes the deck half-width (Fig. 1)

and angular frequencias,, w,, wy are defined as usual. Egs. (12) include forcing tefgs Fe.,
Fy, Mg on the main cables and on the deck, while no loads on the hangers have been included.
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3.1. Free oscillations

A classical eigenvalue analysis of Egs. (12) yields the four natural frequencies of the sectional
model in the elastic range. Remember that Egs. (6-8), hence Eqgs. (12), hold only as long as the
hangers keep taut, and also that, m,, | andK., K, Kg represent respectively the generalised
masses and stiffnesses of cables and deck considered as if they were independent from each othe
while the link between them is described throkgh.

For typical geometrical and mechanical parameters of long span suspension Biidges, Ke<
Kb Kno > K, (cf. Section 4 below). Therefore, the first two modes (Fig. 3a, 3b) of free oscillation
of the 4-d-o-f sectional model correspond to motions with small (oftewtipally negligible)
deformations of the hangers, and therefore their frequengieg, are almost independent from the
stiffness of the hangersy, and very close to the frequencies of the classical rigid section model
(Kno — 2 ): these modes are denoted in the followinglabal vertical and torsional modes. On the
other hand, the frequencies, w, that correspond teelative modes (i.e., oscillations with cables
and deck moving vertically out of phase, Fig. 3c, 3@, much higher than the first two frequencies
and are strongly influenced .

3.2. Forced oscillations: limit of linear behaviour of hangers

In the case of forced oscillations, the limits of validity of Egs. (12), i.e., ehtfitbehaviour, are
certainly of interest. Although the model can take into account loading both on the main cables and
on the deck, only the weight (of deck and cables) and harmonic vertical forces on the cables are
considered in the following. This load condition enhances high frequency relative motions,
complementary to slow global motions well described through the rigid section model (and mainly
due to actions on the deck). As already noted (and asrroewdfiin Section 4.1)¢; and w, are
usually much larger tham, w, and therefore, as long as the oscillations are small, the contributions
to the dynamic response of relative and global motions, excited by forces of different nature and
frequency on cables and deck, respectively, can be considered with sufficient approximation as
independent from each other.

The forces on the cables are assumed vertical and harmonically varying with time (a physical
justification of such actions will be discussed later, Section 4.3). The amplfgdand the
frequencyQ of the actions are equal for both cables, with a phasdgabetween them, that will
be seen to have a great effect on the response (Appendix).

As already repeatedly stated, in the reference configuration (stailibrgm under dead loads)
the hangers are in tension (Fig. 2), and thus remain as long as their relative end displacements ar
smaller than the corresponding elastic elongation. Otherwise, the relative oscillations may become

o

\\
a b c d
Fig. 3 Diagram of the linear modes of the 4-d-o-f sectional model
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large, with hangers alternatively slack and taut.

For given damping coefficient&, {,, {s and phase lad¢ , the amplitude of the relative elastic
oscillations depends on the action amplitideand frequency?. If AY; and AY, are respectively
the generalised relative displacement of the two rows of hangers (Eq. 3Ygthe corresponding
elastic elongation of the hangers due to the weight of the deck, in the plane of the pafameders
the region below the lines given by the conditions

maxAY,(t) = AY, ; maxaY,(t) = AY, (23)

corresponds to small-amplitude oscillations, starting from the equilibrium configuration. An example
of such boundary will be presented and discussed in Section 4.2.

Since the model is highly sensitive to selected loading frequencies, the assumed harmonic actior
could also be interpreted as representative of the effective component of more complex loading
histories, both on the cables and on the deck or of high frequency periodic motion of main cables
acted on by random large buffeting forces, as suggested by Lazer and McKenna (1990).

4. An application

An example of application of the proposed model has been developed introducing the data of the
Akashi-Kaikyo suspension bridge (Katsuchi 1997), partially re-elaborated and completed by deduction
when necessary (Table 1). The normalisation of Eq. (9) has also been introduced.

4.1. Free linear oscillations

Calculations and experiments have shown (Katsuchi 1997) that the longitudinal shape of the first
vertical and torsional modes are symmetric and do not have nodes along the main span; therefore
half-sine waves have been assumed for the modes of oscillations and for the variation of the hange
stiffness along the bridge spég(x), according to (Eqg. 10).

With values in Table 1, the linear natural frequencies of the four nedg<, d of the sectional
model (Fig. 3) are:

w=044; =090 ; w=70; w=170 (rad/s) (24)

Table 1 Data and properties of the Akashi-Kaykio bridge

mass per unit length stiffness per unit  modal mass for the modal stiffness for the

length first symmetric mode first symmetric mode
main cable U.=7- 10°kg/m m.=1.393 10" kg K.=8 10°KN/m
deck (vertical) p,=2.9 10'kg/m m,=5.771 10"kg K,=0.8 10°KN/m
deck (torsional) iy=7- 10° kgm¥/m 1=1.393 10 kgn?  Ky=3.2 1CPKNm
hangers k&= 3. 10* kN/m? K,=5.07 10'kN/m
(cf. Eqg. (10)) (Eq. (11)

main span length = 1990 m ; deck widtlB = 2b=35.5m.
w = 0.44 rad/s (% vertical mode),= 0.90 rad/s (% torsional mode)

(elaborated from Katsuchi 1997)
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As expected, the frequencies of the global magds(cw,, w, respectively) are much smaller than
the frequencies of the relative modgd (i.e., w;, ).

4.2. Limit of linear behaviour

The curvesKc, Q) corresponding to Eq. (13) for the assumed bridge data and several phase lags
A¢ have been obtained as described in Appendix. Modal quantities are shown in Table 2; the results
of example calculations are shown in Fig. 4 and Fig. 5, where the non-dimensional load parameter
f.=Fc/ meg has been introduced. These curves are characterised by hollowsQvhen with
f.=0 in the case of zero damping (Fig. 4).

The valueA¢ =0 represents in-phase actions on the cables, that only excite vertical motions
(global and relative), without torsional motions of the deck. In this case, in thefremuency
range, where the contribution of the global modes to the length variation of the hangers is
negligible, the limit curve 4¢ =0 in Fig. 4b) is similar to the curve found by Doole and Hogan
(1996) for an 1-d-o-f piece-wise elastic system (cf. Section 5 and Fig. 6). Simigrly, T
represents actions in opposition of phase, and only the (global and relative) torsional modes develop

For A¢ different from 0 andr, both vertical and torsional modes are excited; the limit curves
calculated for sample phase-lagsp(= 11/ 8 and A¢ = rt/ 2, Fig. 4a,b) and zero damping show four
hollows as expected, but are always above at least one of the curves valg=fOror A¢ = 1. It
can be in fact demonstrated (Appendix) that for zero damping the limit condition for arldifrasy
given by the lowelFc value corresponding either fi = 0 or A¢ = 1 (Fig. 5a). The limit condition

Table 2 Modal quantities for the example in Section 4 (cf. Table 1 and Appendix). Eigenvectors normalised as

in Eq.A7
mode 1 2 3 4
components of eigen- A=1.000105 B =0.0563343 C=-0.4830409 D =-0.35502333
vectors (Eqg. A7)
modal mass my=6.14m, my=2.32m, my=2.96m, my= 14.6m,
modal stiffness Ki1=2.10K, K,=3.27K, Ks=2.75 100K, K;=6.66 10K,
modal frequency [rad/s]a = 0.44 w,=0.90 w;=70 wy=170

(b)

Fig. 4 Non-dimensional loading amplitude= Fc/ mcg vs. angular frequency? [rad/s] corresponding to
upper limit of elastic behaviour, Eqg. (13), for several phase Aggand zero dampingnig = cable
weight); a) low frequenciesh) high frequencies. The calculations refer to the values in Table 1.
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Fig. 5 Comparison of vortex shedding action with linear limit conditi®olid line: detail of limit condition
for arbitrary A¢ in the high frequency range: a) zero damping (cf. Fig. 4bdxjal damping 0.5%fo
critical. Dashed line: values d6f=Fc/ mcg and Q [rad/s] related to the control parametér(mean
wind speed) through the vortex shedding model (Simiu and Scanlan 1996) Eq. (13); fo4 m.

Calculations made using other parameters from Table 1

3 4

Fig. 6 Eqg. (24), upper limit curve of small oscillations in the plarfew() of the forcing parameters,
according to Doole and Hogan (1996gnd w are the amplitude and the frequency of the force acting

on the deck, respectively.

for arbitrary phase-lag calculated in the same way with non-zero damping does not reach down the
horizontal axis. A detail of this curve f@i = {>= {s= {4,=0.005 (i.e., damping 0.5 % of critical) is

shown in Fig. 5b.
4.3. Actions due to vortex shedding

The vertical harmonic action on the cables introduced in previous Sections can be related to a
widely accepted - although simplified - model of vortex shedding (Simiu and Scanlan 1996), with
forcing amplitudeFc and frequency both depending on a single control parameter (the mean
wind speedJ) through the relations

Fo= %pUZDCLsin_Qt, 0= 2ns% (15)
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where p 01.25 kg / ni is the air densityC, an aerodynamic coefficieri) the cable diameter, ar®l
the so-called “Strouhal numberC_ and S depend on the section (for a circular cylinder in
appropriate range of Reynold’s numb€r:=0.7,5S=0.2).

Fig. 5aand Fig. 5b show (dashed line) the curve obtained introducing in Egs. (15) an approximate
value D =1.4m for the main cable diameter. It appears that this curve overcomes the linear limit
curve, albeit in short ranges of frequencies, and with little damping: it thus appears that, with the
numerical values introduced (cf. Appendix), nonlinear response can be expected for wind speed
fairly high, but not unrealistic.

5. Large amplitude oscillations (unilateral behaviour of hangers)

In general, the effective generalised stiffnEggi = 1,2) of thei-th row of hangers depends on the
relative motion between main cables and deck. In fgtis equal toKyo, Eq. (8), only as long as
all the hangers remain in tension, hence behave elastically.

If for some hangers the relative end displacement is negative and larger than the elastic elongatior
due to the deck weight, the actual tangent stiffni€gsbecomes smaller: it varies during the
oscillation, and at any instant is not larger than the elastic WlyelIn fact, the larger is the
oscillation amplitude, the smaller is the number of hangers that remain taut during the whole
oscillation, hence the smaller s, (softening behaviour). Assuming that all longitudinal shapes
remainy(x), Ky can be expressed at angs

Kni(t) = [ka()@()%dx— [ k() @()’dx= (DK~ 1=1,2 (16)
0 (1)

wherel;=1; (t) denotes the length of the bridge where the hangers are slack (zero stiffness) at the
instantt and stiffness-reduction coefficiendqt), varying during the motion, are defined as

3 (t) = Kni(t) / Kro 0=a()=1 (17)

Thus, while each hanger has a unilateral, discontinuous stiffness, the overall stiffness of the whole
row varies with continuity (assuming, of course, that the hangers are “smeared” along the span).
Indeed, when a part of the hangers go slack, the shape of the bridge oscillations is likely to change
during the motion. However(x) in Eq. (8) is only a plausible shape compatible with the given
constraints (and not a modal shape); hence a motion-dependent pseudo-modal ksjffeesq16),
can still beaccepted as an approximation.

In this case, due to the time-dependenceKgf the equations governing the motion become
nonlinear, and their solution could be found only by step-by-step numerical integration in the time
domain. In such a way the dynamic response of the bridge could be followed for the whole range of
behaviour of the hangers, but it is easy to expect that this approach would lead to very lengthy anc
cumbersome computations.

Augustiet al. (1997) introduced the simplifying and limit assumption that the stiffness-reduction
coefficients d; can be only either 0 or 1, depending on sign and value of the generalised relative
displacement introduced in Eq. (3)Y; (i= 1,2), i.e.,

=1, if AY,> =AY, ; 8=0, if AV < -AY: i=1,2 (18)

where AY,; is the already defined generalised relative displacement corresponding to dtie ela
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elongation of the hangers due to the weight of the deck (cf. also Eq. 13).
The assumption (18) leads to piecewise-linear equations of motion
MeZy+ 24carmeZs + KeZy = &1Kro (Y + DO = Z1) + (1= 8)KpoAYo= Fea(t)
MeZz+ 24caMeZ2 + KoZa = &Ko (Y = 0O = Z5) + (1 = 8)KnoAYo = Feo(t)
MY+ 24,m, Y + K,Y + K[ Si(Y + bO— Z3) = (1 = 3)AYo+ & (Y ~bO - Zo) — (1 - G)AYg] = Fy(t)
| 0+ 2760051 O+ K@+ Kngh[81(Y + bO = Z1) = (1 = 6)AYp = & (Y = bO = Z,) + (1 = 5)AYo] = Me(t)

(19)
that, introducing non-dimensional variables and parameters (cf. Fig. 1)
Z Z Y AY,
%zgla Q2=321 Q3=51 4, =09, dozTO (20)
F
f1=_011 f2=E1 f3=_FL, f4=M_9b (21)
mg Mg m,g g
_mg _ mcb2 _ Ky
a—my, B=—. wﬁ—mc (22)
become eventually
G+ 20 + R0~ 8,08(0s + Ay =) + (1 - 8)kdy = (1)
G, + 200 + R0~ ,08(0— Ga =) + (1= &) iy = (1)
G+ 2{,wy0; + wigs+
+ awi[0,(03 + 9y —dy) — (1= 6,)dg + 0,(G3 =0y = Gp) — (1= 6,)do] = %fs(t)
Gy + 2{ g0, + Wh0,+
+ Bwi[01(ds + Ay — 1) — (1= 9,)ds=3,(ds =9y — )+ (1 - 6,)d,] = %f4(t) (23)

The assumption of discontinuity in the stiffness of the cable-to-deck connections, Eq. (18), that
would seem trivial if the section model shown in Fig. 1 were considered in isolation, represents only
a limit hypothesis when the section model is used to describe the dynamics of the whole bridge: in
fact, it would imply that all hangers suddenly pass from elastic tensile behaviour to slacking.
Therefore, as already noted in Augustial (1997), assumption (18) can be accepted as a good
approximation only for large relative oscillations of the bridge in a longitudinal no-node shape, in
which case most hangers of a row go slack for long intervals.

In any case, even if the vertical and torsional displacements change sign along the span, the
relative stiffnessKy; (as defined in Eq. 16) does decrease with increasingjatsns amplitude
(softening behaviour): therefore assumption (18), and consequently Eq. (19) or (23), can always be
considered as a correct limit approximation of the actual behaviour.

An assumption similar to Eqg. (18) has been introduced, as already said, by McKenna and his co-
workers (Gloveret al. 1989), that assumed a no-node modal shape to obtain a piecewise- linear 1-d-o-f
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model from their previous model of a one-dimensional beam suspended by unilateral elastic hangers
to the main cables (McKenna and Walter 1987). Instead, a progressive softening nonlinearity due to
hangers behaviour has been found by Brownjohn (1994) by means of a FEM approach.

Even with assumption (18), the nonlinear dynamic response can be sought only by numerical
integration of Eq. (19). A detailed investigation of nonlinear behaviour for wind-induced forces on
the main cables (both in-phase and out-of-phase) and on the deck will be reported in Part Il of this
paper (Sepe and Augti 2001). Due to the asymmetric behaviour of the hangers, the relative
displacements between main cables and deck during the large amplitude oscillations arersiticy
with respect to the reference configuration: negative relative displacements (slack hangers: cables
and deck “getting closer”) are in fact much larger than relative displacements in th&teoppo
direction, and for small structural damping can be as much as 50 times the static elahgadioa
to the dead load.

Preliminary results (Augustet al. 1997), obtained for in-phase forcing on the main cables
(A9 = 0), showed the coexistence of multiple solutions with the same period but different amplitude
and velocity for a wide range of forcing frequency below the significant linear natural frequency, as
typical for softening systems.

These results show interesting analogies with results (not known to the authors at the time of
writing the 1997 paper) obtained by Doole and Hogan (1996) for a 1-d-o-f system representing, as
in Glover et al. (1989), the no-node vertical oscillations of a unidimensional beam suspended by
unilateral hangers to fixed constraints. The vertical displacemnyesitthe beam, measured from the
stress free configuration, are described by the nondimensional equations

y+2{y+(k+1)y=g+f sinwr , y>0
y+2{y+y=g+f sinwr , y<0 (24)

where beam mass and stiffness are normalised to unity dedotes the damping coefficieut; f,
w, k represent respectively normalised beam weight, amplitude and frequency of the action on the
deck and hanger stiffness.

Doole and Hogan derive analytically and numerically an upper bound of linear behaviour, i.e., a
lower bound of the region of possible large amplitude oscillations (Fig. 6): this curve can be
considered as the 1-d-o-f equivalent of the analogous limit curv@¢ferO of the proposed 4-d-o-f
model (Fig. 4b). Then, by means of a theoretical analysis and numerical investigation, they examine
in detail the casd&=10,f/g=0.5, and show the existence of harmonic and subharmonic steady-
state response, depending on the forcing frequency; in particular, they find the coexistence of large
amplitude multiple solutions, with theme period of the actions, for forcing frequencies between
w;=1.6 andw,= 3.3; whenw= 1.6, the relative displacements are up to 25 times the stagticela
elongation of the hangers produced by a force with intefisiéfthough Doole and Hogan do not
relate these significant values of the frequencies to any mechanical characteristic of the system, i
seems to the writers noteworthy thag corresponds almost perfectly to the natural frequency of
linear oscillationsy=./1+k = 3.3.

With this observation, the results by Doole and Hogan appear analogous not only to Fig. 4b in
this paper, but also to the quoted preliminargnatical investigation in the nonlinear range (Augusti
et al. 1997). In particular, they confirm the existence of large amplitude oscillations, due to nonlinear
behaviour of hangers, for forcing frequencies below the significant natural elastic frequency.
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6. Conclusions

The proposed 4-d-o-f model extends the classical 2-d-o-f rigid section model, drawing the
attention on the possibility of relative digpements and rotations between deck and cables of
suspension bridges.

Masses, stiffnesses and natural frequencies of the model are identified with appropriate generalisec
guantities corresponding to an assumed longitudinal shape for vertical and torsional oscillations of
main cables and deck. The oscillations around rifference configuteon started by vortex-
shedding-like actions on the main cables can be sought by ordinary rdiffeerjuations. Outside
the range of small oscillations these equations become nonlinear due to the unilateral behaviour of
hangers; in fact, when during the motion some or all the hangers of a row become slack, the
corresponding generalised stiffness is reduced by coefficigstd, that depend on the sign and
magnitude of the relative displacements between main cables and deck (So far, it has been assume
that eitherd=1 or 4 = 0). No other source of nonlinearity is introduced in the model. Throughout
the treatment, in fact, the restraints on the cables and the deck have been assumed linear: hence |
“geometrical nonlinearity” is considered during the oscillations.

Due to the unilateral response of the hangers, the negative displacements between main cables ar
deck (hanger ends “getting closer”) can become very large, especially in case of small structural
damping. A wide investigation in the nonlinear range of response will be presented in a following
paper: preliminary results always indicate the coexistence of multiple solutions with the same period
but different amftude and velocity for a wide range of forcing frequency below the significant
linear natural frequencies, as typical for softening systems.

The proposed simple model is just an intermediate step to describe wind-induced relative motions
between main cables and deck and could be further refined. For example, a first improvement might
be to attribute to the stiffness reduction coefficiénfby means of numerical techniques) values in
the whole range between 0 and 1, depending on how many hangers are slack.

Along a similar line, the model could also be extended to describe the local motion of a part of
the bridge, taking into account, for example, higher vibration modes of the cables, with frequencies
in between those of the pseudo-modal shapes here considered, depending on the wave length. |
such cases the displacements of the cables, in addition to the mechanism of large amplitude oscillation
already discussed, could reach significant amplitude also as a consequence of lock-in with vortex
shedding forces.

The model could also allow to evaluate the wind induced oscillations (buffeting) in togitstdd
range of wind speed, i.e., far from self-excited or resonant oscillations. Alsoeoésintare the
relative oscillations due to the different nature and intensity of the wind actions on the main cables
and the deck, which for very long span bridges are significantly distant from each other.

However, the main goal of the proposed model was only to identify qualitatively unusual
phenomena that might be experienced by suspension bridges much longer than existing ones. Fror
the analytical developments and the preliminary calculations presented, it would appear that large
relative translations and rotations between cables and deck, allowed by theralnilehaviour of
the hangers, cannot be excluded to occur under plausible wind speeds and can perhaps explain son
phenomena observed in the Tacoma and Golden Gate bridges.

These resultseem already sufficient to warn designers not to langriori their considerations to
phenomena already observed and studied for existing bridges. The actudlitycmsib significance
of other phenomena, like those indicated in the present paper, can come only from detailed
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calculations and specific experimental research.
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Appendix: Calculation of the limit curve of linear response (Fig. 4-5)

Denote byg the vector of Lagrangian coordinates

Z,(t)

Z,(t)

- Y|
o(t)

(A1)
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The linear dynamics of the system (small oscillations around the configuration of equilibrium under dead
loads) is governed by the Eqgs. (12), now rewritten as

Mg+ Cqg+Kq = f (t) (A2)
where
m 0 O Ke + Kio 0 —Kio —tho
M = Om, 0 O K = 0 Ko+ Ko =Ko bKio
= 00 m, 0 ’ = —Kio Ko 2Ky + Ky 0
0 0 0l —bKyo  bKio 0 Ky + 2b°K o
2{..m, 0 0 0
C 0 2. w.m, 0 0 (A3)
= 0 0 2%,m, O
0 0 0 2wl

The assumed external actions consist of harmonic vertical forces on the cables, with iRtepgimal for
both cables and phase-ldg ; the force vector can therefore been expressed as

Fc F.cosQt
f(t) = %_foexp(iQt) +c.c.=% Fcex;())(iAdJ) exp(iQt) +c.c.= FCCOS“;HM’) (A4)
0 0

wherec.c. denotes the complex conjugate vectbr, -1, Q is the angular frequency of the forcing, and the
meaning of the other symbols is easily deduced from the equation itself.
As a consequence, the linear steady-state response of the system can be written as

q(t) = %goexp(iQt)+c.c. (A5)

Indicating by ¥ the matrix of the eigenvectorg of the dynamic problem ank; e stiffness of theth
mode of the sectional model, the complex amplitgde is (Ewins 1984)
4 q Yr f0
q = — == 1] (A6)
B ,ZlKr%;l_ 6o, 1% [l
G 00O "D

Due to the symmetry of the proble#,can also be represented and normalised as

1111

vely w w wl= P (A7)
AO0OCDO
0B OD

therefore, denoting bylY, the static change of length of the hangers due to the deck weight afid &y
AY,), the amplitudes of the relative oscillations during the motion, it results also:
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Go = ﬁ:go M (2K + Ky) (A%
G.(Q, A) = %92 -
%l Eza(u cosAd) + ZZla%sinAd) . _%l ggl—cosam—z(za%smq; .
T R T T TR
+15‘1—Eb9£%1+ cosA¢)+2Z3a%sinA¢ — —%Ezgl—cosd¢)—254%sin4¢ .
T L
G,(Q, A) = %92 -
%l Eza(u cosAp) +2(1(%sinA¢ s __%l gzgl—cosaq;)—zzz%sinmp .
B T A e
+15‘1—Eb9£%1+ cosA¢)+2(3§35inA¢(C ) __5’1 E%l—cosﬂcﬁ)—Z&%sinAgﬁ(Db .
R S P i e -

Peaks inG, (Q, A¢) andG, (Q, A¢) exist whenQ is close to one of the natural frequenaigs
Introducing the non-dimensional amplitufle= F./ (m.g) (cf. Eq. (21)), the condition defining the linear
range

| AY1g)|= Ao 5 | A= AYo (A10)
becomes
G G
f > — = f g—2— All
*[G(2.49)] = <*[GA0 A9 (AL1)

Consequently, the limit curvés(Q A¢ ) are

mlng So So E
0G:(Q,49) ' [G,(2, 4)l

f.(Q 49) = (A12)

They are characterised by hollows wher w; (Fig. 4, 5), corresponding fa=0 in the limit case of zero
damping.

The curves in Fig. 4 and Fig. 5 are obtained with the numerical values introduced in Sec.4 (cf. Table 1),
that lead to the modal quantities shown in Table 2.

In particular, Fig. 4 and Fig. 5a report limit curves for the case of zero damping. The limit cuAMe=f@r
represents actions on the cables perfectly in phase, that excite only the global and relative vertical motions,
with no torsion of the deck; similarly, the limit curve fdp = 71 represents actions perfectly out of phase,
that excite only the global torsional and the relative torsional modes.

It is evident from Fig. 4 that the other two cases considet¢d: (1/ 8, A¢ = 1/ 2) yield limit curves above
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either the curve forAg =0 or the curve forA¢ = rr. This is valid in general in absence of mechanical
damping; in this case, in fact, it results (cf. Eq. A8, A9)

880 = Q(1+ cosng) + R(L—coxrg) , X2 =Q(1+comg) ~R(1-cosAp)  (AL3)
with
___ Al Col g BBl bD-1 g,
Ki[1-(Q/w)] Ki[1-(Q/w)] Ko[1-(Q/ )] Ki[1-(Q/w)7]
and also
ap =00 Ao = 8% - 50 | pp= o Ao = _AYae - g, (A15)
Fe Fe Fe Fe

For a given phase-lag, therefore, the maximum relative displacements are smaller or equal to those for

Ap=0ord¢g=rm if [RI=|Q| or RI= |Q|, respectively; as a consequence, the limit cuiyed Ag) for zero
damping (Eq. Al2, Fig. 4 and Fig. 5a) are always bounded from below by either the cuAg=fér or
A¢ =, and attain the valug =0 whenQ = .

For damping different from zero, also the ordinate of the limit céq¢@, A¢) is different from zero for

Q= (Fig. 5b). If the damping is small as in Fig. 5b (0.5% of critical damping, Eq. (A9)) the broken line,

related to the mean wind speddthrough the vortex shedding model (Simiu and Scanlan 1996) still overcome

the linear range foQ=wj; or Q= wy, and in these cases therefore large amplitude oscillations can be possible.
For larger values of damping, on the contrary, hollows become smoother, and the possibility of large

amplitude oscillations may disappear within the range of wind speeds of technical interest.
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