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A deformable section model for the dynamics
of suspension bridges.

Part I : Model and linear response

Vincenzo Sepe† and Giuliano Augusti‡

Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma “La Sapienza” ,
via Eudossiana 18, 00184 Roma, Italy

Abstract. The classical two-degree-of-freedom (2-d-o-f) “sectional model” is currently used to stud
dynamics of suspension bridges. Taking into account the first pair of vertical and torsional modes 
bridge, it describes well global oscillations caused by wind actions on the deck and yields very us
information on the overall behaviour and the aerodynamic and aeroelastic response, but does not 
relative oscillation between main cables and deck. The possibility of taking into account these re
oscillations, that can become significant for very long span bridges, is the main purpose of the 
model, proposed by the Authors in previous papers and fully developed here. Longitudinal deform
of the hangers (assumed linear elastic in tension and unable to react in compression) and externa
on the cables are taken into account: thus not only global oscillations, but also relative oscillations between
cables and deck can be described. When the hangers go slack, large nonlinear oscillations are po
the hangers remain taut, the oscillations are small and essentially linear. This paper describes th
proposed for small and large oscillations, and investigates in detail the limit condition for linear res
under harmonic actions on the cables (e.g., like those that could be generated by vortex shedding
results are sufficient to state that, with geometric and mechanical parameters in a range correspo
realistic cases of large span suspension bridges, large relative oscillations between main cables a
cannot be excluded, and therefore should not be neglected in the design. Forthcoming papers will inv
more general cases of loading and dynamic response of the model.

Key words: suspension bridges; wind effects; sectional model; nonlinear dynamics; vortex sheddin

1. Introduction

The design of long span suspension bridges under wind action is usually performed by me
mechanical models and then carefully assessed through wind tunnel tests on rigid section or
models of the whole bridge. Both very complex or very simplified numerical and experim
models are used in current practice. Examples of the first are sophisticated finite element m
which can take into account appropriate wind time-histories and also structural details; however, t
interpretation of their results can be difficult, because of the very large number of degre
freedom involved and of the many input data required to define properly the wind action alon
span. On the contrary, the results given by simplified models can be interpreted more easily a
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therefore convenient at least at a preliminary design stage; however, they may miss aspects 
become very significant in particular situations. For example, the classical 2-d-o-f “sectional m
widely used also in experimental investigations, allows to consider only two natural modes r
to global oscillations of the bridge, while neglecting the direct loading on the cables, the longitu
deformability of the hangers and their lack of compression resistance. This model, therefor
yield very useful information on the overall behaviour and the aerodynamic and aeroelastic res
but cannot describe any relative oscillations between main cables and deck that, as recently sh
(Augusti et al. 1997, Augusti and Sepe 1999) can be significant and potentially dangerous for
long span bridges and wind velocities within realistic limits.

To the authors’ knowledge, the first authors who tackled the effects of the unilateral behavi
hangers (elastic in tension but without any strength in compression) and of the direct loading 
cables were McKenna and his co-workers (McKenna and Walter 1987, Glover et al. 1989, Lazer
and McKenna 1990). In particular, they attribute to the unilateral behaviour of hangers some p
and unusual aspects of the response of the Tacoma Narrows bridge well before collapse con
like large amplitude vertical oscillations under relatively low wind speed (Glover et al. 1989). The
unilateral behaviour of hangers, according to Lazer and McKenna (1990) is also responsible 
travelling waves observed on the Golden Gate bridge (USA) during an unusually violent 
(February 1938) and the seismic oscillations of the same bridge during the California earthquake 
1989 (� According to witnesses ... the bridge did indeed go immediately into the nonlinear re
with the stays connecting the roadbed to the cables alternately loosening and tightening
spaghetti”�, Lazer and McKenna 1990).

In their 1987 paper, McKenna and Walter studied the response of a one-dimensional
(representing the deck) suspended by unilateral elastic hangers to the main cables, consid
fixed constraint; the possibility of both small (linear) and large amplitude vertical oscillations wa
shown under the action of the deck weight and of a periodic forcing with appropriate intensit
frequency. Glover et al. (1989), considering only vertical oscillations without nodes, reduced 
previous beam model to a one-degree-of-freedom model, however sufficient to explain the alread
recalled large amplitude oscillations of the Tacoma Narrows bridge. Later, this model was ex
into two 2-d-o-f models (Lazer and McKenna 1990) that take into account respectively (i) the
vertical displacements of the cables (assumed equal to each other) and of the deck, and ii) the
vertical displacement and torsional rotation of the deck, allowed by the differential deformati
the hangers, without displacement of the main cables. In both models the hangers are mod
linear elastic in tension and unable to react in compression.

These papers have been reconsidered by Doole and Hogan (1996) who have investigate
and nonlinear response of the 1-d-o-f model of Glover and co-workers under harmonic forcin
discussed the stability of periodic response: some results of this paper will be examined
(Section 5). Recently, Ahmed and Harbi (1998) have presented a mathematical analysis 
continuous model of Lazer and McKenna (1990) and discussed linear and nonlinear oscill
either free or under moving loads, in presence of aerodynamic damping; the energy transfer b
cables and deck has also been shown for several examples.

The four-degree-of-freedom “deformable section” model, already proposed by the writers (Augus
et al. 1997, Augusti and Sepe 1999), combines and extends McKenna’s numerical models by cons
at the same time torsional rotation and vertical displacement of the deck and vertical displac
of the two cables (Fig. 1). As in the quoted papers by McKenna and co-workers, the hange
assumed linear elastic in tension and ineffective in compression: thus, the proposed model, 
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developed in this paper, is able to describe the global and relative oscillations for the whole ra
behaviour of the hangers; to the authors’ knowledge, no analytical sectional model had eve
related to these relative oscillations before. In fact, even very recent investigations on the condition
for incipient multi-modal dynamic instability, that can become relevant for long bridges (Jain et al.
1996, D'Asdia and Sepe 1998) keep assuming a rigid behaviour of the cross-section. O
contrary, the theoretical and numerical analyses developed in this paper and in its follow-up
and Augusti 2001) confirm the already presented preliminary results (Augusti et al. 1997, Augusti
and Sepe 1999), i.e., that, in the case of very large bridges, significant relative motions can d
because of the zero stiffness of the hangers when in compression.

The full behaviour of the proposed model can be found only by step-by-step integration 
equations of motion, because of the discontinuity and the consequent nonlinearity of the eq
of motion. It has deemed therefore appropriate to examine first in full detail the conditions that guarantee
small amplitude oscillations (hangers always taut) around the equilibrium configuration, and ex
large amplitude oscillations (hangers loosening and tightening, alternatively). As described in Section
4.2 and Section 4.3, this analysis shows that the possibility of the latter type of response ma
under wind speeds within realistic limits.

The forthcoming Part II (Sepe and Augusti 2001) will investigate and discuss the non
dynamic behaviour of the model for wind-induced forces both on the main cables and on the 

2. The proposed model

The proposed analytical model aims at describing the oscillations of a suspension bridge in
by fluctuating actions on the main cables and on the deck around the configuration of equil
under dead loads.

While cables and deck are assumed to behave elastically, hangers are considered as lineastic
in tension and ineffective in compression; because of pre-tension due to deck weight in the reference
configuration, this unilateral behaviour becomes significant depending on the amplitude of the r
oscillations.

In order to obtain still a relatively simple model, however, it is assumed that the three prin
components of the bridge, namely the main cables and the deck, oscillate with the same long
shape ψ(x), although not with the same amplitudes. This is indeed the assumption under whi
sections behave in a similar way, and therefore the bridge response can be described by a “s

Fig. 1 The 4-d-o-f “deformable section” model
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model ”: in the present case, a “deformable section” model, that improves the classical 2-d-o-f
section model, because it is able to account for relative displacements between main cab
deck, made possible by the elasticity of the hangers in tension and their “slackness” in compr

Let x and t be the coordinate along the bridge axis and the time, respectively, and assum
same shape ψ(x) for the first vertical and torsional modes of oscillation of the bridge deck: 
vertical displacement y (x, t) and the rotation θ (x, t) of any generic cross section of the deck c
be written:

y (x, t) = Y (t) ψ (x) ; θ (x, t) = Θ (t)ψ(x) (1)

where x� [0, L], with L the length of the main span of the bridge, and Y(t) and Θ (t) are the
generalised displacement or rotation related to the assumed pseudo-modal shape ψ (x).

Assume that also the vertical displacements of the cables z1 (x, t) and z2 (x, t) have the same
longitudinal shape:

z1 (x, t) = Z1(t) ψ (x) ; z2(x, t) = Z2(t)ψ (x) (2)

The relative vertical displacements ∆y1(x, t) and ∆y2 (x, t) between each cable and the correspond
point of the deck read therefore (Fig. 1)

∆y1 (x, t) = (y + bθ − z1) = (Y+ bΘ − Z1)ψ(x) = ∆Y1 (t)ψ (x)
∆y2 (x, t) = (y − bθ − z2) = (Y − bΘ − Z2)ψ(x) = ∆Y2 (t)ψ (x) (3)

where Zi(t), ∆Yi (t) denote generalised displacement components.
Assume also, as legitimate at least in the small oscillations range, that cables and deck ar

elastic around the reference (dead loads) equilibrium configuration. Then, an usual procedure o
dynamics allows to define generalised masses and stiffnesses related to the arbitrarily chosen long
shape ψ (x) (e.g., Clough and Penzien 1993): it must be underlined that, differently from the “clas
sectional model in which stiffnesses and mass of the whole section are considered, each ca
the deck are considered independent from each other in the present model. Four ordinary diff
equations in the four degrees of freedom Y (t), Θ (t), Z1 (t), Z2 ( t) can thus be derived.

Namely, let Kc , Ky, Kθ be the vertical (geometrical) generalised stiffness of each cable and
vertical and torsional generalised stiffness of the deck, respectively: the potential elastic energreads

(4)

where ∆Φ denotes the contribution due to the deformation of the hangers, which will be disc
below (Section 3).

Denoting by mc the generalised mass of each cable and by my, I the generalised mass an
torsional inertia of the deck, respectively, and neglecting the mass of the hangers with respecmc ,
my , the kinetic energy results

(5)

where a superimposed dot denotes derivation with respect to time t.
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Note that, if all elements of the bridge oscillate with the same longitudinal shape ψ (x), the motion
of all sections of the bridge are similar to each other: it is this assumption that allows to descr
proposed, the response of the whole bridge by means of a sectional model (Fig. 1), whos
degrees of freedom correspond to the generalised oscillating displacements of each bridge com
Y(t), Θ (t), Z1(t) , Z2(t).

It might be possible to remove the assumption that the cables oscillate in the same shape
deck: in this case, still considering few modes, the dynamics could be described by means o
of global “modes” (vertical and torsional, similar to each other as in the rigid section model), p
pair of vertical and torsional relative displacement fields with a different shape (e.g., with a wa
length smaller than the bridge span, as it may sometimes be appropriate); the bridge be
would still be described by a set of four ordinary differential equations, but the physically attractiv
and efficient use of a “section” model in the description of the whole dynamics is no more pos
because global and local components of displacement combine differently along the span
alternative approach will not be explored further in this paper.

3. Small amplitude oscillations (linear behaviour of the hangers)

In the assumed reference configuration (equilibrium under dead loads) the hangers are in 
because of the weight of the deck. Therefore, as long as the relative oscillations between
cables and deck are smaller than the elongation ∆y0 corresponding to the dead weight, the hange
remain in tension (Fig. 2), and their contribution ∆Φ to the potential elastic energy is 

(6)

where ∆yi are defined in Eq. (3) and kh (x) denotes the elastic stiffness of a row of hangers per 
length of the bridge.

Introducing Eqs. (3), Eq. (6) becomes

(7)

∆Φ 1
2
--- kh

0

L

∫ ∆y1
2dx

1
2
--- kh

0

L

∫ ∆y2
2dx+=

∆Φ 1
2
---Kh0 ∆Y1

2 ∆Y2
2+( )=

Fig. 2 Relationship between axial force Nh and relative displacement ∆yi in each hanger. ∆yi is measured from
the equilibrium configuration under dead loads; ∆y0 is the static elongation due to the deck weight.
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(8)

is the (elastic) generalised stiffness of one row of hangers corresponding to the assumed long
shape ψ (x).

The following normalisation is also introduced

(9)

where mc , my, I are the generalised masses and inertia, µc is the mass of each cable per unit leng
and µy, iy are respectively the mass and the torsional inertia of the deck per unit length (all as
constant along the span).

If kh(x) and ψ (x) are both known or given, Kh0 can easily be obtained in closed form or b
numerical integration, in analogy to Kc , Ky, Kθ .

Noting that near the ends of the main span (x = 0, x = L), displacements and torsional rotations of
the deck are usually negligible, longitudinal shapes ψ (x) in the form of one or more sinusoidal ha
waves can be acceptable approximations of pseudo-modal shapes. It can also be observed 
to the varying length of the hangers, their stiffness kh (x) is maximum at mid-span and much smalle
near the ends: therefore kh (x) can also be approximated by a sinusoidal half wave.

Hence, it can be assumed :

(10)

with n an integer and kh
max  the stiffness of the shortest hangers. For n = 1 (no-node symmetric mode

shape) and n = 2 (1-node anti-symmetric mode shape), Eqs. (10) yield respectively

(11)

From expressions (4), (5), (7) of kinetic and elastic energy, the four Lagrange equations gov
the motion are obtained

mc + 2ζcωcmc + KcZ1 − Kh0 (Y+ bΘ − Z1) = Fc1(t)

mc + 2ζcωcmc + KcZ2 − Kh0 (Y − bΘ − Z2) = Fc2(t)

my + 2ζyωymy + KyY + Kh0 [(Y+ bΘ − Z1) + (Y − bΘ − Z2)] = Fy(t)

I + 2ζθωθ I + KθΘ + Kh0b[(Y+ bΘ − Z1) − (Y − bΘ − Z2)] = Mθ(t) (12)

where damping terms ζc , ζy, ζθ have been introduced, b = B / 2 denotes the deck half-width (Fig. 1
and angular frequencies ωc , ωy, ωθ are defined as usual. Eqs. (12) include forcing terms Fc1 , Fc2 ,
Fy, Mθ on the main cables and on the deck, while no loads on the hangers have been include

Kh0 kh

0

L

∫ ψ x( )2dx=

ψ
0

L

∫ x( )2dx L= mc µcL,= my µyL,= I i yL=⇒

ψ x( ) 2= sin n
πx
L
------ 

  kh x( ) kh
maxsin

πx
L
------=,

n 1= ⇒ Kh0
8

3π
------= kh

maxL n 2= ⇒ Kh0
32

15π
---------= kh

maxL
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3.1. Free oscillations

A classical eigenvalue analysis of Eqs. (12) yields the four natural frequencies of the se
model in the elastic range. Remember that Eqs. (6-8), hence Eqs. (12), hold only as long
hangers keep taut, and also that mc , my, I and Kc , Ky, Kθ represent respectively the generalise
masses and stiffnesses of cables and deck considered as if they were independent from ea
while the link between them is described through Kh0 .

For typical geometrical and mechanical parameters of long span suspension bridges, Ky�Kc , Kθ�

Kcb
2, Kh0� Kc (cf. Section 4 below). Therefore, the first two modes (Fig. 3a, 3b) of free oscilla

of the 4-d-o-f sectional model correspond to motions with small (often practically negligible)
deformations of the hangers, and therefore their frequencies ω1 , ω2 are almost independent from th
stiffness of the hangers Kh0 and very close to the frequencies of the classical rigid section m
(Kh0�� ): these modes are denoted in the following as global vertical and torsional modes. On th
other hand, the frequencies ω3 , ω4 that correspond to relative modes (i.e., oscillations with cable
and deck moving vertically out of phase, Fig. 3c, 3d), are much higher than the first two frequencie
and are strongly influenced by Kh0. 

3.2. Forced oscillations: limit of linear behaviour of hangers

In the case of forced oscillations, the limits of validity of Eqs. (12), i.e., of linear behaviour, are
certainly of interest. Although the model can take into account loading both on the main cable
on the deck, only the weight (of deck and cables) and harmonic vertical forces on the cab
considered in the following. This load condition enhances high frequency relative mot
complementary to slow global motions well described through the rigid section model (and m
due to actions on the deck). As already noted (and as confirmed in Section 4.1), ω3 and ω4 are
usually much larger than ω1, ω2 and therefore, as long as the oscillations are small, the contribu
to the dynamic response of relative and global motions, excited by forces of different natur
frequency on cables and deck, respectively, can be considered with sufficient approximat
independent from each other.

The forces on the cables are assumed vertical and harmonically varying with time (a ph
justification of such actions will be discussed later, Section 4.3). The amplitude FC and the
frequency Ω of the actions are equal for both cables, with a phase lag ∆ϕ between them, that will
be seen to have a great effect on the response (Appendix).

As already repeatedly stated, in the reference configuration (static equilibrium under dead loads)
the hangers are in tension (Fig. 2), and thus remain as long as their relative end displacem
smaller than the corresponding elastic elongation. Otherwise, the relative oscillations may b

Fig. 3 Diagram of the linear modes of the 4-d-o-f sectional model



8 Vincenzo Sepe and Giuliano Augusti

c

 

mple

 action
oading
cables

 of the
uction

e first
erefore

 hanger
large, with hangers alternatively slack and taut.
For given damping coefficients ζc , ζy, ζθ and phase lag ∆ϕ , the amplitude of the relative elasti

oscillations depends on the action amplitude FC and frequency Ω . If ∆Y1 and ∆Y2 are respectively
the generalised relative displacement of the two rows of hangers (Eq. 3), and ∆Y0 the corresponding
elastic elongation of the hangers due to the weight of the deck, in the plane of the parametersFC , Ω
the region below the lines given by the conditions

(13)

corresponds to small-amplitude oscillations, starting from the equilibrium configuration. An exa
of such boundary will be presented and discussed in Section 4.2.

Since the model is highly sensitive to selected loading frequencies, the assumed harmonic
could also be interpreted as representative of the effective component of more complex l
histories, both on the cables and on the deck or of high frequency periodic motion of main 
acted on by random large buffeting forces, as suggested by Lazer and McKenna (1990).

4. An application

An example of application of the proposed model has been developed introducing the data
Akashi-Kaikyo suspension bridge (Katsuchi 1997), partially re-elaborated and completed by ded
when necessary (Table 1). The normalisation of Eq. (9) has also been introduced. 

4.1. Free linear oscillations

Calculations and experiments have shown (Katsuchi 1997) that the longitudinal shape of th
vertical and torsional modes are symmetric and do not have nodes along the main span; th
half-sine waves have been assumed for the modes of oscillations and for the variation of the
stiffness along the bridge span kh(x), according to (Eq. 10). 

With values in Table 1, the linear natural frequencies of the four modes a, b, c, d of the sectional
model (Fig. 3) are:

ω1= 0.44 ; ω2 = 0.90 ; ω3 = 70 ; ω4 = 170 (rad/s) (14)

max∆Y1 t( ) ∆Y0= ; max∆Y2 t( ) ∆Y0=

Table 1 Data and properties of the Akashi-Kaykio bridge 

mass per unit length stiffness per unit 
length

modal mass for the
first symmetric mode

modal stiffness for the
first symmetric mode

main cable µc = 7� 103 kg/m mc= 1.393� 107 kg Kc = 8� 103 KN/m
deck (vertical) µy = 2.9� 104 kg/m my= 5.771� 107 kg Ky = 0.8� 103 KN/m
deck (torsional) iy= 7� 105 kgm2/m I = 1.393� 109 kgm2 Kθ = 3.2� 106 KNm
hangers kh

max = 3� 104 kN/m2

(cf. Eq. (10)2)
Kh = 5.07� 107 kN/m

          (Eq. (11)1)

main span length L = 1990 m ; deck width B = 2b = 35.5 m.
ω1 = 0.44 rad/s (1st vertical mode); ω2= 0.90 rad/s (1st torsional mode)

(elaborated from Katsuchi 1997)
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As expected, the frequencies of the global modes a, b (ω1 , ω2 respectively) are much smaller tha
the frequencies of the relative modes c, d (i.e., ω3 , ω4).

4.2. Limit of linear behaviour

The curves (FC , Ω) corresponding to Eq. (13) for the assumed bridge data and several phas
∆ϕ have been obtained as described in Appendix. Modal quantities are shown in Table 2; the
of example calculations are shown in Fig. 4 and Fig. 5, where the non-dimensional load par
fc = FC / mCg has been introduced. These curves are characterised by hollows when Ω ≈ωi, with
fc = 0 in the case of zero damping (Fig. 4). 

The value ∆ϕ = 0 represents in-phase actions on the cables, that only excite vertical mo
(global and relative), without torsional motions of the deck. In this case, in the high frequency
range, where the contribution of the global modes to the length variation of the hang
negligible, the limit curve (∆ϕ = 0 in Fig. 4b) is similar to the curve found by Doole and Hog
(1996) for an 1-d-o-f piece-wise elastic system (cf. Section 5 and Fig. 6). Similarly, ∆ϕ = π
represents actions in opposition of phase, and only the (global and relative) torsional modes d

For ∆ϕ different from 0 and π , both vertical and torsional modes are excited; the limit cur
calculated for sample phase-lags (∆ϕ = π / 8 and ∆ϕ = π / 2, Fig. 4a,b) and zero damping show fou
hollows as expected, but are always above at least one of the curves valid for ∆ϕ = 0 or ∆ϕ = π . It
can be in fact demonstrated (Appendix) that for zero damping the limit condition for arbitrary ∆ϕ is
given by the lower FC value corresponding either to ∆ϕ = 0 or ∆ϕ = π (Fig. 5a). The limit condition

Fig. 4 Non-dimensional loading amplitude fc = FC / mCg vs. angular frequency Ω [rad/s] corresponding to
upper limit of elastic behaviour, Eq. (13), for several phase lags ∆ϕ and zero damping (mCg = cable
weight); a) low frequencies, b) high frequencies. The calculations refer to the values in Table 1.

Table 2 Modal quantities for the example in Section 4 (cf. Table 1 and Appendix). Eigenvectors normali
in Eq.A7

mode 1 2 3 4

components of eigen-
      vectors (Eq. A7) 

A = 1.000105 B = 0.0563343 C = −0.4830409 D = −0.35502333

modal mass m1 = 6.14mc m2 = 2.32mc m3= 2.96mc m4= 14.6mc

modal stiffness K1= 2.10 Kc K2 = 3.27Kc K3 = 2.75� 104 Kc K4 = 6.66� 105 Kc

modal frequency [rad/s]ω1 = 0.44 ω2= 0.90 ω3 = 70 ω4 = 170
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for arbitrary phase-lag calculated in the same way with non-zero damping does not reach do
horizontal axis. A detail of this curve for ζ1 = ζ2 = ζ3 = ζ4 = 0.005 (i.e., damping 0.5 % of critical) is
shown in Fig. 5b.

4.3. Actions due to vortex shedding

The vertical harmonic action on the cables introduced in previous Sections can be relate
widely accepted - although simplified - model of vortex shedding (Simiu and Scanlan 1996),
forcing amplitude FC and frequency Ω both depending on a single control parameter (the m
wind speed U) through the relations 

(15)FC
1
2
---= ρU2DCLsinΩt Ω 2πS

U
D
----=,

Fig. 5 Comparison of vortex shedding action with linear limit condition. Solid line: detail of limit condition
for arbitrary ∆ϕ in the high frequency range: a) zero damping (cf. Fig. 4b); b) modal damping 0.5% of
critical. Dashed line: values of fc= FC / mCg and Ω [rad/s] related to the control parameter U (mean
wind speed) through the vortex shedding model (Simiu and Scanlan 1996) Eq. (15), for D = 1.4 m.
Calculations made using other parameters from Table 1

Fig. 6 Eq. (24), upper limit curve of small oscillations in the plane (f, ω ) of the forcing parameters,
according to Doole and Hogan (1996); f and ω are the amplitude and the frequency of the force act
on the deck, respectively.
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whereρ =∼1.25 kg / m3 is the air density, CL an aerodynamic coefficient, D the cable diameter, and S
the so-called “Strouhal number ”. CL and S depend on the section (for a circular cylinder 
appropriate range of Reynold’s number: CL = 0.7, S= 0.2).

Fig. 5a and Fig. 5b show (dashed line) the curve obtained introducing in Eqs. (15) an approx
value D = 1.4 m for the main cable diameter. It appears that this curve overcomes the linear
curve, albeit in short ranges of frequencies, and with little damping: it thus appears that, wi
numerical values introduced (cf. Appendix), nonlinear response can be expected for wind 
fairly high, but not unrealistic.

5. Large amplitude oscillations (unilateral behaviour of hangers)

In general, the effective generalised stiffness Khi (i = 1,2) of the i-th row of hangers depends on th
relative motion between main cables and deck. In fact, Khi is equal to Kh0, Eq. (8), only as long as
all the hangers remain in tension, hence behave elastically. 

If for some hangers the relative end displacement is negative and larger than the elastic elo
due to the deck weight, the actual tangent stiffness Khi becomes smaller: it varies during th
oscillation, and at any instant is not larger than the elastic value Kh0 . In fact, the larger is the
oscillation amplitude, the smaller is the number of hangers that remain taut during the 
oscillation, hence the smaller is Khi (softening behaviour). Assuming that all longitudinal shap
remain ψ (x), Khi can be expressed at any t as 

(16)

where l i = li (t) denotes the length of the bridge where the hangers are slack (zero stiffness) 
instant t and stiffness-reduction coefficients δi (t), varying during the motion, are defined as

δi (t ) = Khi (t) / Kh0 0� δi (t)� 1 (17)

Thus, while each hanger has a unilateral, discontinuous stiffness, the overall stiffness of the
row varies with continuity (assuming, of course, that the hangers are “smeared” along the 
Indeed, when a part of the hangers go slack, the shape of the bridge oscillations is likely to 
during the motion. However, ψ(x) in Eq. (8) is only a plausible shape compatible with the giv
constraints (and not a modal shape); hence a motion-dependent pseudo-modal stiffness Khi, Eq. (16),
can still be accepted as an approximation.

In this case, due to the time-dependence of Khi , the equations governing the motion becom
nonlinear, and their solution could be found only by step-by-step numerical integration in the
domain. In such a way the dynamic response of the bridge could be followed for the whole ra
behaviour of the hangers, but it is easy to expect that this approach would lead to very lengt
cumbersome computations. 

Augusti et al. (1997) introduced the simplifying and limit assumption that the stiffness-reduc
coefficients δ i can be only either 0 or 1, depending on sign and value of the generalised re
displacement introduced in Eq. (3), ∆Yi ( i = 1,2), i.e.,

δi = 1, if ∆Yi � −∆Y0 ; δi = 0, if ∆Yi� −∆Y0 ; i = 1, 2, (18)

where ∆Y0 is the already defined generalised relative displacement corresponding to the stic

Khi t( ) kh

0

L

∫ x( )ψ x( )2dx kh

li t( )
∫ x( )ψ x( )2dx δi=–= t( )Kh0 i 1 2, ,=
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elongation of the hangers due to the weight of the deck (cf. also Eq. 13).
The assumption (18) leads to piecewise-linear equations of motion

mc + 2ζcωcmc + KcZ1 − δ1Kh0 (Y+ bΘ − Z1) + (1 − δ1)Kh0∆Y0 = Fc1(t)

mc + 2ζcωcmc + KcZ2 − δ2Kh0 (Y − bΘ − Z2) + (1 − δ2)Kh0∆Y0 = Fc2(t)

my + 2ζyωymy + KyY+ Kh0[δ1(Y+ bΘ − Z1) − (1 − δ1)∆Y0 + δ2 (Y − bΘ − Z2) − (1 − δ2)∆Y0] = Fy(t)

I + 2ζθωθ I + KθΘ + Kh0b[δ1(Y+ bΘ − Z1) − (1 − δ1)∆Y0 − δ2 (Y− bΘ − Z2) + (1 − δ2)∆Y0] = Mθ(t)
(19)

that, introducing non-dimensional variables and parameters (cf. Fig. 1)

(20)

(21)

(22)

become eventually

(23)

The assumption of discontinuity in the stiffness of the cable-to-deck connections, Eq. (18
would seem trivial if the section model shown in Fig. 1 were considered in isolation, represent
a limit hypothesis when the section model is used to describe the dynamics of the whole brid
fact, it would imply that all hangers suddenly pass from elastic tensile behaviour to slac
Therefore, as already noted in Augusti et al. (1997), assumption (18) can be accepted as a g
approximation only for large relative oscillations of the bridge in a longitudinal no-node shap
which case most hangers of a row go slack for long intervals.

In any case, even if the vertical and torsional displacements change sign along the sp
relative stiffness Khi (as defined in Eq. 16) does decrease with increasing oscillations amplitude
(softening behaviour): therefore assumption (18), and consequently Eq. (19) or (23), can alw
considered as a correct limit approximation of the actual behaviour.

An assumption similar to Eq. (18) has been introduced, as already said, by McKenna and 
workers (Glover et al. 1989), that assumed a no-node modal shape to obtain a piecewise- linear 
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model from their previous model of a one-dimensional beam suspended by unilateral elastic h
to the main cables (McKenna and Walter 1987). Instead, a progressive softening nonlinearity 
hangers behaviour has been found by Brownjohn (1994) by means of a FEM approach.

Even with assumption (18), the nonlinear dynamic response can be sought only by num
integration of Eq. (19). A detailed investigation of nonlinear behaviour for wind-induced force
the main cables (both in-phase and out-of-phase) and on the deck will be reported in Part II 
paper (Sepe and Augusti 2001). Due to the asymmetric behaviour of the hangers, the rel
displacements between main cables and deck during the large amplitude oscillations are not symmetric
with respect to the reference configuration: negative relative displacements (slack hangers:
and deck “getting closer ”) are in fact much larger than relative displacements in the opsite
direction, and for small structural damping can be as much as 50 times the static elongation ∆Y0 due
to the dead load. 

Preliminary results (Augusti et al. 1997), obtained for in-phase forcing on the main cab
(∆ϕ = 0), showed the coexistence of multiple solutions with the same period but different amp
and velocity for a wide range of forcing frequency below the significant linear natural frequenc
typical for softening systems. 

These results show interesting analogies with results (not known to the authors at the t
writing the 1997 paper) obtained by Doole and Hogan (1996) for a 1-d-o-f system represent
in Glover et al. (1989), the no-node vertical oscillations of a unidimensional beam suspende
unilateral hangers to fixed constraints. The vertical displacements y of the beam, measured from th
stress free configuration, are described by the nondimensional equations

(24)

where beam mass and stiffness are normalised to unity and ζ denotes the damping coefficient; g , f,
ω , k represent respectively normalised beam weight, amplitude and frequency of the action 
deck and hanger stiffness.

Doole and Hogan derive analytically and numerically an upper bound of linear behaviour, 
lower bound of the region of possible large amplitude oscillations (Fig. 6): this curve ca
considered as the 1-d-o-f equivalent of the analogous limit curve for ∆ϕ = 0 of the proposed 4-d-o-f
model (Fig. 4b). Then, by means of a theoretical analysis and numerical investigation, they ex
in detail the case k = 10, f / g = 0.5, and show the existence of harmonic and subharmonic ste
state response, depending on the forcing frequency; in particular, they find the coexistence o
amplitude multiple solutions, with the same period of the actions, for forcing frequencies betwe
ωa ≈ 1.6 and ωb ≈ 3.3; when ω ≈ 1.6, the relative displacements are up to 25 times the static elstic
elongation of the hangers produced by a force with intensity f. Although Doole and Hogan do no
relate these significant values of the frequencies to any mechanical characteristic of the sys
seems to the writers noteworthy that ωb corresponds almost perfectly to the natural frequency
linear oscillations ω0 = ≈ 3.3.

With this observation, the results by Doole and Hogan appear analogous not only to Fig.
this paper, but also to the quoted preliminary numerical investigation in the nonlinear range (Augus
et al. 1997). In particular, they confirm the existence of large amplitude oscillations, due to non
behaviour of hangers, for forcing frequencies below the significant natural elastic frequency.

y·· 2ζy· k 1+( )y g f+=+ + sinωτ y 0>,

y·· 2ζy· y g f+=+ + sinωτ y 0≤,

1 k+
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6. Conclusions

The proposed 4-d-o-f model extends the classical 2-d-o-f rigid section model, drawin
attention on the possibility of relative displacements and rotations between deck and cables
suspension bridges. 

Masses, stiffnesses and natural frequencies of the model are identified with appropriate gen
quantities corresponding to an assumed longitudinal shape for vertical and torsional oscillati
main cables and deck. The oscillations around the reference configuration started by vortex-
shedding-like actions on the main cables can be sought by ordinary differential equations. Outside
the range of small oscillations these equations become nonlinear due to the unilateral behav
hangers; in fact, when during the motion some or all the hangers of a row become slac
corresponding generalised stiffness is reduced by coefficients δi� 1, that depend on the sign an
magnitude of the relative displacements between main cables and deck (So far, it has been a
that either δi = 1 or δi = 0). No other source of nonlinearity is introduced in the model. Through
the treatment, in fact, the restraints on the cables and the deck have been assumed linear: h
“geometrical nonlinearity ” is considered during the oscillations. 

Due to the unilateral response of the hangers, the negative displacements between main ca
deck (hanger ends “getting closer”) can become very large, especially in case of small str
damping. A wide investigation in the nonlinear range of response will be presented in a follo
paper: preliminary results always indicate the coexistence of multiple solutions with the same 
but different amplitude and velocity for a wide range of forcing frequency below the signific
linear natural frequencies, as typical for softening systems.

The proposed simple model is just an intermediate step to describe wind-induced relative m
between main cables and deck and could be further refined. For example, a first improvemen
be to attribute to the stiffness reduction coefficient δi (by means of numerical techniques) values 
the whole range between 0 and 1, depending on how many hangers are slack.

Along a similar line, the model could also be extended to describe the local motion of a p
the bridge, taking into account, for example, higher vibration modes of the cables, with frequ
in between those of the pseudo-modal shapes here considered, depending on the wave le
such cases the displacements of the cables, in addition to the mechanism of large amplitude osc
already discussed, could reach significant amplitude also as a consequence of lock-in with
shedding forces.

The model could also allow to evaluate the wind induced oscillations (buffeting) in the sub-critical
range of wind speed, i.e., far from self-excited or resonant oscillations. Also of interest are the
relative oscillations due to the different nature and intensity of the wind actions on the main 
and the deck, which for very long span bridges are significantly distant from each other.

However, the main goal of the proposed model was only to identify qualitatively unu
phenomena that might be experienced by suspension bridges much longer than existing one
the analytical developments and the preliminary calculations presented, it would appear tha
relative translations and rotations between cables and deck, allowed by the unilateral behaviour of
the hangers, cannot be excluded to occur under plausible wind speeds and can perhaps expl
phenomena observed in the Tacoma and Golden Gate bridges. 

These results seem already sufficient to warn designers not to limit a priori their considerations to
phenomena already observed and studied for existing bridges. The actual possibility and significance
of other phenomena, like those indicated in the present paper, can come only from d
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Appendix: Calculation of the limit curve of linear response (Fig. 4-5)

Denote by q the vector of Lagrangian coordinates

(A1)q t( )

Z1 t( )
Z2 t( )
Y t( )
Θ t( )

.=
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 dead

e

The linear dynamics of the system (small oscillations around the configuration of equilibrium under
loads) is governed by the Eqs. (12), now rewritten as 

(A2)

where

(A3)

The assumed external actions consist of harmonic vertical forces on the cables, with intensity FC equal for
both cables and phase-lag ∆ϕ ; the force vector can therefore been expressed as

 (A4)

where c.c. denotes the complex conjugate vector, i2 = −1, Ω is the angular frequency of the forcing, and th
meaning of the other symbols is easily deduced from the equation itself.

As a consequence, the linear steady-state response of the system can be written as

(A5)

Indicating by Ψ the matrix of the eigenvectors  of the dynamic problem and by Kr the stiffness of the rth

mode of the sectional model, the complex amplitude  is (Ewins 1984)

(A6)

Due to the symmetry of the problem, Ψ can also be represented and normalised as 

 ; (A7)

therefore, denoting by ∆Y0 the static change of length of the hangers due to the deck weight and by ∆Y1(0),
∆Y2(0), the amplitudes of the relative oscillations during the motion, it results also:

Mq·· Cq· Kq+ + f t( )=

M

mc 0 0 0

0 mc 0 0

0 0 my 0

0 0 0 I

= K
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(A8)

(A9)

Peaks in G1 (Ω , ∆ϕ ) and G2 (Ω , ∆ϕ ) exist when Ω is close to one of the natural frequencies ωi .
Introducing the non-dimensional amplitude fC= FC

/ (mCg) (cf. Eq. (21)), the condition defining the linea
range

| ∆Y1(0)|� ∆Y0 ; | ∆Y2(0) |� ∆Y0 (A10)

becomes

(A11)

Consequently, the limit curves f
C

(Ω, ∆ϕ ) are 

. (A12)

They are characterised by hollows when Ω ≈ ω i (Fig. 4, 5), corresponding to f
C

= 0 in the limit case of zero
damping.

The curves in Fig. 4 and Fig. 5 are obtained with the numerical values introduced in Sec.4 (cf. Ta
that lead to the modal quantities shown in Table 2. 

In particular, Fig. 4 and Fig. 5a report limit curves for the case of zero damping. The limit curve for ∆ϕ = 0
represents actions on the cables perfectly in phase, that excite only the global and relative vertical m
with no torsion of the deck; similarly, the limit curve for ∆ϕ = π  represents actions perfectly out of phas
that excite only the global torsional and the relative torsional modes.

It is evident from Fig. 4 that the other two cases considered (∆ϕ = π / 8, ∆ϕ = π / 2) yield limit curves above
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either the curve for ∆ϕ = 0 or the curve for ∆ϕ = π . This is valid in general in absence of mechanic
damping; in this case, in fact, it results (cf. Eq. A8, A9)

(A13)

with

(A14)

and also

. (A15)

For a given phase-lag, therefore, the maximum relative displacements are smaller or equal to th
∆ϕ = 0 or ∆ϕ = π  if |R|� |Q| or |R|� |Q|, respectively; as a consequence, the limit curves fC (Ω, ∆ϕ) for zero
damping (Eq. A12, Fig. 4 and Fig. 5a) are always bounded from below by either the curve for ∆ϕ = 0 or
∆ϕ = π , and attain the value fC= 0 when Ω = ωi.

For damping different from zero, also the ordinate of the limit curve fC (Ω , ∆ϕ ) is different from zero for
Ω = ωi  (Fig. 5b). If the damping is small as in Fig. 5b (0.5% of critical damping, Eq. (A9)) the broken 
related to the mean wind speed U through the vortex shedding model (Simiu and Scanlan 1996) still overc
the linear range forΩ�

�ω3 or Ω =~ ω4 , and in these cases therefore large amplitude oscillations can be pos
For larger values of damping, on the contrary, hollows become smoother, and the possibility of
amplitude oscillations may disappear within the range of wind speeds of technical interest. 
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