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1. Introduction 

 

Due to the last improvement in technology and science, 

composite reinforcement has attracted considerable 

attention (Gao et al. 2020, Gao, Wu et al. 2020, 

Hassanzadeh-Aghdam et al. 2018, Gao et al. 2018, Zhu et 

al. 2018, Gao et al. 2019, He et al. 2019, Liu et al. 2019, 

Gao et al. 2020, Li et al. 2020, Luo et al. 2020, Wang et al. 

2020a, Wang et al. 2020b). There are a range of practical 

applications in GPL fillers which are presented in Ref (Shi 

et al. 2018). Moreover, the GPLs’ mechanical 

characteristics making them a suitable selection in the 

usages of physics, chemistry, materials science, electrical 

engineering and nanosciences (Shi et al. 2018). Zhao et al. 

2020) presented a review on the GPLs for their enhanced 

mechanical behaviors such as improved Young’s modulus, 

which is exceptional along with high specific surface area, 

high strength, and a decent conductivity.  

Rafiee et al. 2009 contrasted the epoxy’s mechanical 

characteristics of nanocomposites enhanced by 1% fraction 

of multi-walled-carbon-nanotubes (MWNTs), single-

walled-carbon-nanotubes (SWNTs) and each GPL. Their 

outcomes disclose that, GPLs’ overall tensile strength,  
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Young constant, resistance of fatigue, energy of fracture, 

and toughness of fracture are much higher than conventual 

materials. Thereby, GPL fillers can be used in many 

applications instead of highly-used MWNTs and SWNTs as 

reinforcements. Moreover, Yavari et al. 2010) presented 

epoxy/GPL nanocomposites’ microstructure. Ref. (Bourada 

et al. 2020) analyzed SWCNTs’ dynamic and stability 

investigations reinforcing a concrete beam lied on an 

elastic-substrate. In their work, the analytical solutions were 

derived through using energy methods and Navier approach 

for finding buckling and natural frequency information of 

the structure. Bousahla et al. 2020) studied dynamic and 

buckling characteristics of the simply supported SWCNTs 

reinforced beams using an integral-first-shear-deformation 

approach. Ref. (Alimirzaei et al. 2019) has scrutinized 

nonlinear viscoelastic-micro-composite-beams’ vibration, 

buckling, and static investigations filled by multifarious 

boron nitride nanotube (BNNT) distributions with primary 

imperfect configuration via modified-strain-gradient model 

(MSG) through employing a finite element (FE) model. 

Medani et al. 2019) investigated dynamic and static 

characteristics of SWCNTs sandwich (PMPV) polymer 

plate with porosity via FSDT. Based on the FSDT dynamic 

and static characteristics of carbon-nanotube-composite 

filled sandwich plates via Hamilton’s principle and 

analytical equations were presented by Ref. (Draoui et al. 

2019). Researches demonstrated that subjoining highly 
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Abstract.  The current research deals with, stability/instability and cylindrical composite nano-scaled shell’s resonance 

frequency filled by graphene nanoplatelets (GPLs) under various thermal conditions (linear and nonlinear thermal loadings). The 

piece-wise GPL-reinforced composites’ material properties change through the orientation of cylindrical nano-sized shell’s 

thickness as the temperature changes. Moreover, in order to model all layers’ efficient material properties, nanomechanical 

model of Halpin-Tsai has been applied. A functionally modified couple stress model (FMCS) has been employed to simulate 

GPLRC nano-sized shell’s size dependency. It is firstly investigated that reaching the relative frequency’s percentage to 30% 

would lead to thermal buckling. The current study’s originality is in considering the multifarious influences of GPLRC and 

thermal loading along with FMCS on GPLRC nano-scaled shell’s resonance frequencies, relative frequency, dynamic 

deflection, and thermal buckling. Furthermore, Hamilton’s principle is applied to achieve boundary conditions (BCs) and 

governing motion equations, while the mentioned equations are solved using an analytical approach. The outcomes reveal that a 

range of distributions in temperature and other mechanical and configurational characteristics have an essential contribution in 

GPLRC cylindrical nano-scaled shell’s relative frequency change, resonance frequency, stability/instability, and dynamic 

deflection. The current study’s outcomes are practical assumptions for materials science designing, nano-mechanical, and micro-

mechanical systems such as micro-sized sensors and actuators. 
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graphene’s negligible amount into initial matrix would 

enhance its thermal, mechanical and electrical behaviors. It 

would be worth mentioning that nano-scaled structures 

enhanced by GPLs are much more practical in designing of 

engineering applications. Therefore, a focus on GPLs 

reinforcing nanostructure would be highly suggested by 

researchers. Thereby, mechanical behaviors’ studies are of a 

great interest for manufacture and engineering design 

(Zhang and Ou 2015, Liu et al. 2020, Yang et al. 2020, 

Zhang et al. 2020). One key issue in the mechanical 

engineering is energy management (Gao et al. 2016, Chen 

et al. 2017, He et al. 2018a, He et al. 2018b, Lu et al. 2019, 

Wang et al. 2019, Li et al. 2020, Lv et al. 2020, Shi et al. 

2020, Shi et al. 2020, Wang et al. 2020, Yang et al. 2020, 

Zhang 2020, Zhao et al. 2020, Zhu et al. 2020, Zuo et al. 

2020). For improving the energy management, and 

dynamics control performance, designers can use this kind 

of material for fabrication of the various applicable 

structures (Zhang and Ou 2008, Xu et al. 2014, Zhang 

2014, Zhang and Wang 2019, Wang et al. 2020, Yu et al. 

2020, Zhang and Wang 2020). Feng et al (Feng et al. 2017) 

suggested a new glass created using multi-layer composite 

polymer beams filled by GPLs for studying its nonlinear 

bending behavior. They proposed that symmetric 

distribution an increased GPLs’ weight fraction in beams 

would lead to less sensitivity in the nonlinear deformation. 

Dong et al. 2020) studied nonlinear harmonic resonance 

behaviors of GPLRC spinning cylindrical thin shells 

subjected to a thermal load and an external excitation. One 

of their amazing results was that the Coriolis effect due to 

the spinning motion has a contribution to the damping terms 

of the system. Post-buckling and buckling characteristics of 

GPLs reinforcing composite dielectric beams were analyzed 

through mathematical formulation by Ref. (Wang et al. 

2019). They demonstrated that the buckling of dielectric 

beams are highly sensitive to the AC current change within 

a specific range. Ref. (Dong et al. 2019) studied spinning 

cylindrical GPLRC shells’ low-speed influence under 

impact, thermal and external axial loads through employing 

an exact study. Dong et al. (Dong et al. 2018) evaluated the 

cylindrical GPLRC shells’ buckling with the motion of 

spinning and under an integrated action of external axial 

compressive force and radial pressure. They extracted the 

governing equations via von Kármán's geometrical 

nonlinearity and minimum potential energy principle. In 

their work, they specifically highlighted the influences of 

porosity factors, the cylindrical shells’ scattering pattern, 

the weight fraction, the GPLs’ configurational size, and 

rotational velocity on the wide range of structure’s critical 

buckling load classes and structure’s pre-buckling 

deformation. FG nanocomposite porous plates’ free 

vibration and buckling boosted by GPLs using Chebyshev-

Ritz approach was conducted by Ref. (Yang, Chen et al. 

2018). They found that GPL nanofillers’ geometric factors 

and weight fraction and the porosity factor have a vital 

contribution in the porous nanocomposite plates’ vibration 

and buckling information. The theoretical along with 

experimental researches disclose that scale influences have 

significant contribution in their mechanical properties. 

However, inaccurate responses would be the result of 

eliminating the mentioned impacts. It, however, could be 

noted that, the size-dependency is not taken into account in 

the basic continuum models, then these models would not 

be able to be used in nano and micro sizes (Balubaid et al. 

2019, Bedia et al. 2019, Berghouti et al. 2019, Boutaleb et 

al. 2019, Hussain et al. 2019, Karami et al. 2019, Semmah 

et al. 2019, Asghar et al. 2020, Bellal et al. 2020, Hussain et 

al. 2020, Matouk et al. 2020). However, there are 

approaches including simulation of molecular dynamic 

(MD), FE model along with non-classical continuum 

method which are likely to be used in analyzing nano-

scaled structures. Simulations using MD contain time-

consuming and complex computations which would be 

undesirable for researchers, while, efficient and simple, 

higher-order-continuum-mechanic models, have newly 

attracted scientists’ attentions. As investigating the nano-

scaled shells’ mechanical performances pertains to 

dimensions of submicron, they would not be able to be 

predicted precisely by the basic model. Thereby, for size-

dependency consideration, higher-order-continuum models 

are applied. These mentioned models contain the modified-

couple-stress model, Eringen model, and nonlocal-strain-

gradient method. Ref (Čanađija et al. 2016) has analyzed 

Bernoulli-Euler approach for modelling nano-sized beams 

employing fields of nonhomogeneous temperature, based 

on Eringen's approach. They, finally reported that reliable 

nonlocality and thermodynamically consistent would be 

applied to non-isothermal and non-homogenous situations. 

Employing a nonlocal thermodynamic model, Barreta et al 

reported a highly gradient elasticity for nanobeams’ 

bending. The mentioned paper deals with an analytical 

approach for solving Clamped-Free nanobeam. In another 

work Barreta et al. 2018) scrutinized a stress-driven model 

to evaluate nanobeams’ thermoelastic behavior applying the 

approach of nonlocal size-dependency.  

In the field of static/dynamic analysis of the small-

scaled structures of GPLRC, Sahmani et al. 2017) 

scrutinized GPLRC nano-sized shells’ nonlinear instability 

subjected to hydrostatic pressure applying MSGT and 

nonlocality. Moreover (Sahmani and Aghdam 2017), they 

have analyzed GPLRC nano-sized shells’ nonlinear 

instability under axials loads based on NSGT. It, however, 

could be mentioned that, MSGT is considered as a high-

order-continuum model employing three types of length 

scale factors (Mirsalehi et al. 2017). The mentioned factors 

would by highly used in small-sized structures’ simulation 

presented in the outcome step. However, in the structures’ 

forced vibration area, Song et al (Song, Kitipornchai et al. 

2017) studied FG composite polymer plates’ forced and free 

vibration filled by GPLs. They investigated the impacts of 

GPL distribution types, configuration, weight function and 

overall layers’ number, as well as, the size on the plates’ 

dynamics. Atanasov et al. 2017), in another investigation 

have proposed orthotropic double-nanoplate system’s 

Forced vibration employing nonlocal model. Their paper, 

applies an analytical approach to the orthotropic double-

nanoplate systems’ dynamics for a broad range of 

transversal external forces. Furthermore, Du et al. 2014) 

have analyzed FG cylindrical shells’ nonlinear forced 

vibration which is infinitely long employing the multiple  
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scale approach and Lagrangian model. The most exciting 

outcome of their paper is that, power-law index have a vital 

contribution in the cylindrical FG shells’ amplitude 

response. Li et al. 2018) scrutinized the axially and 

rotational moving thin-walled composite beam’s dynamics. 

Their research dealt with a range of interesting results 

regarding the crucial rotational angular velocity and critical 

axial velocity. As another essential element in the composite 

nanostructures’ design is an imperfection in the 

manufacturing processes appearing as porosity. Thereby, 

The mentioned imperfection should be taken into account in 

the modelling and simulation of nano-sized structures. For 

instance, an FG imperfect small-scaled plates’ nonlinear 

large-amplitude dynamics filled by GPLs in the framework 

of NSGT has been scrutinized by Sahmani et al. 2018). 

Moreover, Barati et al. 2018 investigated heterogeneous 

nano-sized plates’ forced vibration considering 

imperfections as porosity employing generalized NSGT. 

They disclosed that the nanoplate’s forced vibration are 

highly affected by the frequency of excitation, nonlocality, 

porosities and location of dynamic load. Chen et al. (Chen 

et al. 2016) have studied slightly thick porous beam’s 

nonlinear free vibration. Their paper used von Kármán class 

of nonlinear strain-displacement relations and Ritz approach 

for extracting the equations. Due to their results, ratio of 

slenderness, porosity factor, ratio of thickness and other 

factors have a prominent contribution in the slightly thick 

porous beam’s nonlinear vibration. Moreover, Refs. (El-

Hassar, Benyoucef et al. 2016; Fahsi, Tounsi et al. 2017; 

Issad et al. 2018, Sadoun et al. 2018, Younsi et al. 2018, 

Ahmed et al. 2019, Boulefrakh et al. 2019, Chikr et al. 

2020, Rabhi et al. 2020) reported instability/stability 

structures’ investigation using various solution processes. 

For all we know, there are no investigations presented in 

the literature for analyzing thermal buckling employing 

changes of relative frequency. This study is a pioneering 

investigation in this field, revealing that thermal buckling 

would happen as long as if the percentage of the change of 

the relative frequency reaches to 30%. The newness of the 

present paper is applying distributions of multifarious 

temperature, GPLRC, size effects and dynamic load to the 

suggested model employing FMCS. Due to the high 

precision and analytical approaches’ efficiency, it is applied  

 

 

to solve the problem’s governing equations. The boundary 

conditions (BCs) and governing equations are extracted 

employing potential minimum energy which has been 

solved using an analytical approach. Eventually, using the 

previously-mentioned continuum mechanics model, the 

study is created considering the pattern of GPL distribution 

and thermal distribution impacts on the stability/instability, 

resonance frequency, relative frequency change and 

dynamic deflection of the system. 

 
 

2. Mathematical model 
 

The structure in the shape of cylindrical nano-sized shell 

in thermal situations and subjected to dynamic forces is 

mathematically modeled. The length, thickness, and the 

cylindrical shell’s radius of middle surface are depicted by 

L, h, along with R, respectively. Moreover, transverse loads 

are denoted by q0 according to inserted dynamic forces (Fig. 

1). 

Composite materials would create the modeled 

cylindrical nano-sized shell. There are four GPL distribution 

pattern types including U, X, O, A patterns in which volume 

fractions are as follows 

Pattern 1: 
*: ( )GPL GPLU Pattern V k V   (1) 

Pattern 2: 
*: ( ) 2 2 1 /GPL GPL L LX Pattern V k V k N N     

(2) 

Pattern 3: 

 *: ( ) 2 1 2 1 /GPL GPL L LO Pattern V k V k N N        
(3) 

Pattern 4: 
*: ( ) 2 (2 1) /GPL GPL LA Pattern V k V k N    

(4) 

here k is layers’ number of the nano-sized shell, overall 

layers’ number is denoted by 𝑁𝐿 and 𝑉𝐺𝑃𝐿
∗  is the overall 

GPLs’ volume fraction. The equation between their weight 

fraction 𝑔𝐺𝑃𝐿and 𝑉𝐺𝑃𝐿
∗  would be defined by 

 

Fig. 1 Geometry of cylindrical FG nano-scaled shell subjected to dynamic load and thermal environment 
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in which 𝜌𝑚  and  𝜌𝐺𝑃𝐿 are the polymer matrix’s and 

GPLs’ densities. Employing Halpin-Tsai approach, the 

following equations approximate composites’ elastic 

modulus which is randomly reinforced by GPLs (Dong et 

al. 2018) 

3 5
,

8 8

1 1
,

1 1

L T

L L GPL T T GPL
L m T m

L GPL T GPL

E E E

n V n V
E E E E

n V n V

 

 

 
 

 
 

(6) 

here composites’ effective Young modulus which is 

enhanced using GPLs is depicted by E. However, ET 

and EL are the transverse and longitudinal elasticity 

module for a lamina which is unidirectional. In Eq. (6) 

the GPL configuration factors (𝜉𝐿and 𝜉𝑇) and other 

elements are presented by (Dong et al. 2018): 

2( / ), 2( / ),

( / ) 1 ( / ) 1
,

( / ) ( / )

L GPL GPL t GPL GPL

GPL m GPL m
L T

GPL m L GPL m T

h b h

E E E E
n n

E E E E

 

 

 

 
 

 
 

(7) 

here GPL  ,ℎ𝐺𝑃𝐿  ,𝑏𝐺𝑃𝐿  are the GPLs’ thickness, width 

and mean length. By applying mixture rule, GPL/ polymer 

nanocomposite’s mechanical properties are defined as 

,

,

,

.

GPL GPL M M

GPL GPL M M

GPL GPL M M

GPL GPL M M

E E V E V

V V

V V

V V

  

  

  

 

 

 

 
 

(8) 

The cylindrical FG-GPLR shell’s mechanical properties 

with a range of distribution classes would be achieved by 

(Sahmani, Aghdam et al. 2018): 

Due to the FSDT, the cylindrical shell’s displacement 

field through three directions of θ, x, z would be as follows 

0

0

0

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )

( , , , ) ( , , )

xu z x t u x t z x t

v z x t v x t z x t

w z x t w x t



   

   

 

 

 



 (9) 

here, w0 (x, θ, z), v0 (x, θ, z) and u0(x, θ, z) denotes the 

displacements in radial, circumferential and axial 

orientations, respectively. ψθ(x, θ,t) and ψx(x, θ, t) are the 

axial orientation and  normal to the element middle plane’s 

rotations about the circumferential. Moreover, the three-

dimensional strain–stress equations may be defined as 

follows (Ghabussi et al. 2019, Habibi et al. 2019, Al-Furjan 

et al. 2020a, Al-Furjan et al. 2020b, Al-Furjan et al. 2020b, 

Al-Furjan et al. 2020c, Al-Furjan et al. 2020d, Al-Furjan et 

al. 2020e, Al-Furjan et al. 2020f Al-Furjan et al. 2020g, Al- 

et al. 2020h, Mohammadgholiha et al. 2020, Oyarhossein et 

al. 2020a, Oyarhossein et al. 2020b, Oyarhossein et al. 

2020c, Safarpour et al. 2020a, Ebrahimi et al. 2020, 

Safarpour et al. 2020b, Moayedi et al. 2020a, Moayedi et 

al. 2020b, Oyarhossein et al. 2020c, Ghabussi et al. 2020, 

Shokrgozar et al. 2020): 

 

(10) 

Ref (Barooti, Safarpour et al. 2017) would lead to 

obtaining Eq. (10) which defines the stiffness factors. 

Moreover, ∆T and αi are (in x, θ along with z orientations) 

changes of temperature and thermal expansions, 

respectively. For the BCs’ and motion’s relations, the 

minimum energy approach states that: 

 
(11) 

FMCS’s Strain energy of cylindrical nano-sized shell is 

explained as 

 

(12) 

In Eq. (12) σij  and εij  denote the stress tensor and 

strain tensor elements explained in Ref (Barooti, Safarpour 

et al. 2017). Moreover, mij and χij
s  are the elements of a 

higher-order tensor of stress and spinning gradient 

symmetric tensor, which would be written as 

 

(13) 

here l and φi respectively denote the MCS factor and 

highly small spinning vector, which is pertained to 

symmetric rotation gradients would be written as 

 (14) 

However, the symmetric spinning gradient tensor’s non-

zero elements are achieved as 
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Ultimately, the non-classical and classical current 

study’s strain energies based on FMCS elements are defined 

as 

 

(16) 

where parameters used in above equation are explained as 

 

(17) 

Furthermore, the FG-GRCs cylindrical nano-scaled shell’s 

kinetic energy using MCS element would be expressed as 

 

(18) 

In the current study, it is suggested that the temperature 

may be distributed through-thickness direction as presented 

by Refs. (Abualnour et al. 2019, Belbachir et al. 2019, 

Hellal et al. 2019, Mahmoudi et al. 2019, Zarga et al. 2019, 

Boussoula et al. 2020, Matouk et al. 2020, Refrafi et al. 

2020, Tounsi et al. 2020). So, the work conducted in the 

result of temperature change would be explained as 

 
(19) 

here 𝑁2
𝑇 and 𝑁1

𝑇are the thermal resultants. It is worth to 

mention that the two thermal outcomes would be obtained 

as 

 

(20) 

Also, thermal expansion factors are 

 
(21) 

 

2.1. Linear temperature changes 
 

In the linear form of the temperature distribution, the 

temperature shifts would be explained as (Shahsiah and 

Eslami 2003) 

 
(22a) 

 

2.2. Nonlinear temperature changes 
 

In this case, nonlinear temperature changes may be 

defined as (Shafiei, Mirjavadi et al. 2017). 

 (22b) 

in which 𝛼𝑝 presents the index of variation function of 

temperature power, for instance, using 𝛼𝑝 ≥2 the variation 

of temperature through thickness will be nonlinear. The 

work conducted by inserted forces will be explained as 

 
(23) 

Transverse force is likely to be denoted by q dynamic 

representing inserted dynamic load. However, by inserting 

Eqs. (12), (18), (19) and (23) into Eq. (11) and by part 

integration, the GPL cylindrical nano-scaled shell’s BCs 

and motion equations in thermal situations employing MCS 

factor would be achieved as: 
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In addition, governing equations and BCs are given in 

the appendix. 

 

 

3. Solution procedure 
 

The current step proposes an analytical approach for 

solving the complicated governing equations of MSGT-

based on GPLRC small-sized shell. However, this research 

dealt with modeling a simply-supported shell in which x=L, 

0 and θ=π/2,3π/2. Then, the field of displacements are 

likely to be computed as: 

 

(25) 

here {U0mn,Vomn,W0mn,Ψxmn,Ψθmn} would be the unknown 

Fourier factors that need to be achieved for all m and n 

amounts. Moreover, m and n could be defined as numbers 

of the axial wave and circumferential, respectively. For 

structure’s vibration investigation, by inserting Eq. (25) into 

governing relations, one achieves 

 

(26) 

It may be essential to mention that mass elements and 

stiffness are presented in the paper’s appendix. In Eq. (26), 

natural frequency is shown by ω and inserted dynamic load 

(qdynamic) is written as 

 
(27) 

 

 

Table 2 Comparisons of natural frequencies parameters 

(𝜔/2π) of simply-supported isotropic cylindrical shell with 

L=0.2 m, r=0.1 m, and h=0.247×10-3 m 

n 

Ref.  

(Dong, Zhu et al. 

2018) 

Ref.  

(Pellicano 2007) 
Presented study 

7 488.424 484.6 487.598563 

8 494.495 489.6 493.659826 

9 551.750 546.2 550.598563 

10 642.650 636.8 641.985639 

 

Table 3 Epoxy’s and GPL’s Material properties (Wu, 

Kitipornchai et al. 2017) 

Material properties Epoxy GPL 

Young’s modulus (GPa) 3 1010 

Density (kg m-3) 1200 1062.5 

Poisson’s ratio 0.34 0.186 

Thermal expansion 

coefficient(10-6/K) 
60 5 

 

 
Eq. (27)’s Solution provides the imperfect FG-GPLRC 

cylindrical small-scaled shell’s deflection related to 

dynamics and its excitation frequency. The forced vibration 

amplitude and nondimensional excitation frequency are 

explained as 

 (28) 

For finding the system’s natural frequency and crucial 

temperature, by setting the factor matrix of the Eq. (26)’s 

determinant, an analytical approach may be achieved by the 

next relations 

 (29) 

Where[KT] and [Kij] are temperature shift’s coefficient 

matrix and stiffness matrix, respectively, and M denotes the 

matrix of mass. However, By equaling this polynomial to 0,  
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Table1 Comparison of non-dimensional first three natural frequencies of isotropic homogeneous nano-scaled shells, 

with a range of thicknesses, m=1 and L/R=10. 

h/R 𝑛 

Ref  

(Tadi Beni, Mehralian et al. 2016) 

(l=0) 

Present 

(l=0) 

Ref  

(Tadi Beni, Mehralian et al. 2016) 

(l=h) 

Present study 

(l=h) 

 

0.02 

 

1 0.1954 0.19536215 0.1955 0.19543206 

2 0.2532 0.25271274 0.2575 0.25731258 

3 0.2772 0.27580092 0.3067 0.30621690 

 

0.05 

 

1 0.1959 0.19542305 0.1963 0.19585782 

2 0.2623 0.25884786 0.2869 0.28543902 

3 0.3220 0.31407326 0.4586 0.45457555 
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Fig. 2 The cylindrical nanoshell’s mode shapes of thermal buckling in this research 

 
Fig. 3 Overall number of layers’ influence of NL on the proportion of first frequency shift for multifarious GPL/epoxy’s 

patterns ( , l=R/3, Pattern2, L/R=10, R/h=10 and n=m=1) 

 

Fig. 4 Weight function’s impact on the percentage of first natural frequency shift for various mode numbers ( , 

l=R/3, Pattern2, L/R=10, R/h=10) 

10T K 

10T K 
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we would be likely to obtain the system’s natural 

frequencies (ω). 

 

 

4. Validation 
 

A comparison investigation has been conducted by 

Table 1 demonstrating this paper’s outcomes and those 

published by considering simply-supported nano-sized shell 

using a model of modified-couple-stress. It would be 

observed that our achieved results are in keeping with the 

outcomes of Ref (Tadi Beni et al. 2016a). Moreover, in Ref. 

(Tadi Beni et al. 2016b), the impacts of thermal 

environment, GPL, and inserted load are neglected. The 

outcomes are revealed in Table 1 and the material properties 

considered in this study are as E=1.06 TPa, R=2.32 nm, 

ν=0.3 and L/R=5. 

To conduct more validation for this research, it could be 

shown that the reported modeling would create results 

which are in line with Refs, due to Table 2, (Pellicano 2007, 

Dong et al. 2018), where the effects of length scale 

elements, thermal forces, and nonlinearity are eliminated. 

The shell’s kinematics is established according to classical 

in Ref. (Dong et al. 2018), while in this study, the 

governing equations are defined according to FSDT. The 

material properties used in this comparison are considered 

as E= 71.02 GPa, ν =0.31, and 𝜌 = 2796𝑘𝑔/𝑚3. 

 

 

5. Results and discussion 
 
The current step is supposed to disclose analytical 

outcomes for the BC of SS of a GPL cylindrical nano-sized 

shell located in a thermal situation subjected to a range of 

thermal forces. In the current research, the nano-sized 

structure GPL considering length of aGPL=2.5𝜇m, overall 

thickness of hGPL=1.5 nm, and RGPL =0.75𝜇m which is the 

structure’s radius. Table 3 is containing GPL’s mechanical 

properties. Then, in this section the impacts of the various 

factors on the structure’s dimensionless amplitude, 

excitation frequency and relative frequency shifts have been 

reported in detail. 

Temperature dependent of the GPL materials is shown 

as follow (Wu et al. 2017): 

E=(3.52- 0.0034T) GPa, and 

αm=45(1+0.0005∆T)x10−6/K
 
in which T=T0+Δ𝑇.

 
Fig. 2 reveals cylindrical small-scaled shell’s thermal 

buckling mode shape respected to the non-dimensional 

length of cylindrical shell. For having a much better mode 

shapes’ insight, the nano-sized shell’s vertical displacement 

is non-dimensioned due to the thermal buckling mode 

shape’s maximum displacement. 

The amount demonstrated in parentheses in percentage 

scale depicts the increasing the relative frequenc (ωc- ωM) in 

which ωM and ωc respectively, are considered as natural 

frequencies without and with GPL. Figure 3 reveals the FG-

GPLRC cylindrical nano-sized shell’s relative frequency 

shifts considering multifarious overall layers’ number (NL). 

As it was expected, the structure’s fundamental frequencies 

using pattern of GPLs’ distribution are under effects of NL 

due to their homogeneous property. First natural frequency 

drops as overall layers’ number reach to NL=7, according to 

pattern 2 distribution type. Afterward, while NL is soared 

up, they remain almost steady. However, pattern 3in GPL 

distribution experiences exactly a reverse trend. Amongst 

the three types of non-uniform considered patterns, the first 

mode of structure’s natural frequency considering patterns 1 

in GPL distribution. and pattern 4 would be least influenced 

by the shift in NL. Due to this figure by increasing the 

layers’ number (1<NL<7) the nanostructure’s stability and 

natural frequency alter (for patterns 3 and 2 in GPL 

distribution which are non-uniform). It would be seen that, 

pattern 3 in GPL distribution which is a non-uniform 

pattern, by raising the layers’ number, the nanostructure’s 

stability and natural frequency increase. However, for the 

other non-uniform and uniform patterns of distribution, 

GPL’s number of layers would be not essential. Another 

significant outcome would be that, by soaring up the layers’ 

number in pattern 2, the stability and natural frequency 

drop. 

Fig. 4 discloses the impacts of weight function and 

mode number on the cylindrical GPL nano-sized shell’s 

relative frequency shift. Considering Fig. 4, a mode 

number’s increase would lead to a boost in the relative 

frequency, while it decreases the structure’s stability. A 

considerable outcome would be that; weight function 

contributes directly in the GPL cylindrical nano-sized 

shell’s shift of relative frequency. This phenomenon is 

happened based on softening the structure by raising the 

weight function. It would be a reason for soaring up the 

relative frequency shift.  

A range of GPL pattern of distributions is affected due 

to the Table 4. The mentioned table shows the impacts of 

thermal distribution and FMCS factor on GPL’s natural 

frequency of the nano-scaled structure. It would be 

observable that by raising pattern of GPL distribution by 3 

from 1 to 4, the natural frequency behavior depends on the 

pattern’s classes. For instance, the GPL’s patterns 3 and 2 

show the lower and higher natural frequency. As another 

example, more stability belongs to pattern 2 of GPL 

distribution in contrast with other types of patterns. It would 

be realized that the natural frequency would increase by 

raising the FMCS factor to radius ratio (l/R). However, the 

outcomes disclose that the nonlinear temperature shift 

(NLT) contributes much more considerable in natural 

frequency compared with the linear temperature shift (LT). 

MCS’s and classic theories’ influences the GPL’s 

relative frequency shifts of the cylindrical nano-scaled shell, 

respectively, have been illustrated by figure 5 and figure 6. 

Based on the mentioned figures, whenever the temperature 

change is increased, the relative frequency would be 

boosted and the structure’s stability would be decreased. In 

other words, the relative frequency will be increased 

slightly by increasing temperature change. At a specific 

amount of temperature change, a considerable increase in 

structure’s relative frequency would be seen. The occurred 

phenomena is due to the buckling behavior at this 

temperature. The significant outcome is that, MCS model  
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has more influence on the structure’s critical temperature 

compared with the classic model. Thereby, for simulating 

the small-sized structures, it would be attended to the 

theories of size dependency specially MCS model. 

Moreover, weight function contributes directly in the GPL 

cylindrical small-scaled shell’s relative frequency shifts. 

This is due to the fact that, by raising the weight function, 

the structure would be softer and it is a basis of raising the 

relative frequency shift. 

In Fig. 7 the weight function’s impact on resonance 

frequency and dynamic deflection has been reported for the 

GPL nano-sized structure. However, in this figure, various 

amounts function (gGPL) impact have been evaluated. It is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proved that, cylindrical GPL nano-sized shell’s dynamic 

deflection has been affiliated by the amount of dynamic 

load’s excitation frequency. In other words, by raising the 

excitation frequency, it would be seen a slight increase in 

dynamic deflection. At an excitation frequency’s certain 

amount, a considerable increase in cylindrical GPL nano-

sized shell’s deflection has been observed. It would be due 

to the fact that the resonance would happen, as long as the 

dynamic deflection would be infinity. By dropping the 

weight function, it could be seen that, GPL cylindrical 

nano-sized shell’s resonance would drop as well. It would 

also be due to the fact that, structure’s resonance frequency, 

stiffness and stability would boost due to raising weight  

Table 4 The impacts of various FMCS factors to radius ratio, pattern of GPL and temperature on natural 

frequency (GHz) of the GPLRC nano-sized shell with L/R=10, R/h=10, gGPL=1% and a range of 

distributions of temperature changes 

 
 T =20 T =40 T =60 

 LT NLT LT NLT LT NLT 

Pattern 1 

l/R  

0 1.948752 1.982586 1.904938 1.973578 1.859902 1.964363 

1/3 2.070645 2.102498 2.028391 2.092946 1.985038 2.083173 

1/2 2.184729 2.214933 2.143707 2.204870 2.101676 2.194574 

2/3 2.302991 2.331662 2.263052 2.321068 2.222178 2.310231 

Pattern 2 

l/R  

0 1.947517 1.981282 1.903786 1.972283 1.858836 1.963078 

1/3 2.069517 2.101302 2.027344 2.091759 1.984077 2.081997 

½ 2.183646 2.213784 2.142704 2.203735 2.100757 2.193447 

2/3 2.301909 2.330516 2.262047 2.319933 2.221255 2.309107 

Pattern 3 

l/R  

0 1.951057 1.984761 1.907392 1.975764 1.862513 1.966560 

1/3 2.072872 2.104606 2.030755 2.095065 1.987547 2.085304 

1/2 1.186938 2.217031 2.146045 2.206980 2.104149 2.196697 

2/3 2.305233 2.333800 2.265415 2.323218 2.224670 2.312393 

Pattern 4 

l/R  

0 1.949577 1.983336 1.905848 1.974335 1.860901 1.965126 

1/3 2.073030 2.104788 2.030885 2.095243 1.987647 2.085479 

1/2 2.188392 2.218488 2.147493 2.208434 2.105592 2.198148 

2/3 2.307948 2.336501 2.268143 2.325918 2.227411 2.315091 

 

Fig. 5 The influences of temperature change and classical model on the relative frequency change for linear 

temperature change (LT) and various weight function (Pattern4, R/h=10 n=m=1and L/R=10) 
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Fig. 6 The effects of temperature change and MCS model on the relative frequency change for a linear temperature change 

(LT) and range of weight functions (Pattern4, , R/h=10 n=m=1and L/R=10) 

 

Fig. 7 Cylindrical nano-scaled shell’s resonance frequency and dynamic deflection of the for various weight function 

( 20T K  , l=R/3, Pattern2, R/h=10 n=m=1 and L/R=10) 

 

Fig. 8 The cylindrical nano-sized shell’s resonance frequency and dynamic deflection for various patterns of GPL distribution 

( 20T K  , l=R/3, R/h=10 n=m=1and L/R=10) 
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function. 

In Fig. 8 the influence of a range of patterns of GPL 

distribution on GPL small-scaled structure’s resonance 

frequency and dynamic deflection is revealed. It could be 

observed from the mentioned figure that as the pattern of 

GPL distribution increases by 3 from 1 to 4, the resonance 

frequency increases, it leads to a drop in the structure’s 

instability. It means A-GPLRC provides higher resonance 

frequency rather than others. Moreover, the structure’s 

resonance frequency, in the 4th pattern is much more similar 

to the 3rd pattern. The could be due to the fact that, this issue 

is in the mathematical function which is reported in last 

section.  

In Fig. 9, the influences of FMCS factor on GPL 

cylindrical nano-sized shell’s forced vibration for the 

pattern of X-GPLRC is reported. As a prominent outcome 

would observe that the FMCS element dramatically affects 

on the structure’s resonance frequency. It will be 

understood from the figure, by boosting the FMCS element, 

the structure’s resonance frequency would increases. 

However, this phenomenon enhances the GPL cylindrical 

nano-scaled shell’s stability. It, however, could be noted 

that, as the FMCS factor is zero, the classic model occurs. 

 

 

6. Conclusions 
 
This research paper provides an investigation into the 

composite cylindrical shell’s size-dependent forced and free 

vibration behaviors filled by GPL subjected to a range of 

thermal distributions in thermal situations. The GPL size-

dependent shell is investigated considering FMCS factor. 

The non-classic BCs and relation of motion are extracted 

considering the minimum energy principle. Moreover, the 

current model’s results have been verified using those 

achieved by simulation of molecular dynamics (MD). The 

impact of some vital factors including a range of thermal 

forces, patterns of GPL distribution, length to radius ratio, 

modified-couple-stress factor, thermal environment and  

 

 

mode number on the relative frequency shift, resonance 

frequency and GPL’s dynamic deflection has been 

analyzed.  In this scrutinization, the following key 

outcomes would be obtained: 

• nonlinear change of temperature has much more 

contribution in the natural frequency comparing with the 

linear changes of temperature, according to the 

illustrated results. 

• It is proved that an increase in resonance frequency is 

when weight function and the modified-couple-stress 

factor increase, and a drop would occur when the 

temperature nuances increase.  

• Due to the reported results, A-GPL provides a higher 

resonance frequency comparing with others.   

• An increase in the change of temperature would lead to 

an increase in the change of relative frequency and a 

drop in the structure’s stability, according to the 

provided results  

• By increasing the ratio of radius-to-thickness, the 

cylindrical GPL nano-scaled shell’s stability and 

resonance frequency would increase. 
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