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1. Introduction 

 

Functionally graded materials (FGM) are a new 

generation of a composite material whose properties change 

gradually along a direction. Since 1984, the using and 

investigations of functionally graded materials have been 

increasing. Functionally graded materials have many 

advantages in contrast with classical composites. 

Porosities could occur due to production or technical 

errors in the functionally graded materials. This is because 

of the large difference in solidification temperatures 

between material constituents (Zhu et al. 2001). With 

porosity, the mechanical behavior of functionally graded 

materials changes considerably. Thus, the effect of the 

porosity on the functionally graded materials is an 

important problem and must be investigated in order to safe 

design of this composites.  

In last years,  many researchers interested in 

investigation of porous functionally graded materials; 

Wattanasakulpong and Ungbhakorn (2014) studied 

vibration characteristics of FGM porous beams by using 

differential transformation method with different kinds of 

elastic supports. Ebrahimi and Jafari (2016) investigated 

thermal vibration of FGM porous beams. Hadji et al. (2016) 

studied effects of porosity on the static and vibration 

responses of FGM beams by using Navier solution. Wu et 

al. (2018) performed a finite element analysis to study the 

free and forced vibration FGM porous beam using both 

Euler-Bernoulli and Timoshenko beam theories.Yang et al . 

(2018) used Chebyshev-Ritz method to study buckling and 

free vibration of FGM graphene reinforced porous 

nanocomposite. Akbaş (2017) examined the vibration and  
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static analysis of functionally graded plates with porosity. 

Fazzolari (2018) exploited generalized beam theories to 

study the vibration and stability of porous FGM sandwich 

beams resting on elastic foundations. Jouneghani et al. 

(2018) studied analytically the structural response of porous 

FGM nonlocal nanobeams under hygro-thermo-mechanical 

loadings. Bennai et al. (2019) investigated the dynamic and 

wave propagation of FGM plates with porosities using a 

four variable plate theory. Avcar (2019) examined the free 

vibration of functionally graded beams with porosity with 

different porosity distribution models. Ramteke et al. 

(2019) studied effects of the porosity on the Eigen 

characteristics of functionally graded structures with 

different types of porosity and material distributions. 

Benahmed (2019) investigated buckling analysis of FGM 

nanobeams with porosity by using higher-order shear 

deformation theory. Taati and Fallah (2019) presented 

forced vibration of sandwich modified strain gradient 

microbeams with FGM core. Xu et al. (2019) studied 

buckling analysis of functionally graded porous plates with 

laminated face sheets by using finite element method based 

on first order shear deformation theory. Zhao et al. (2019) 

investigated vibration behavior of the FGM porous curved 

thick beam, doubly-curved panels and shells of revolution 

by using a semi-analytical method. Keddouri et al. (2019) 

presented static responses of functionally graded plates with 

porosity effects by using the Navier method. Alimirzaei et 

al. (2019) studied nonlinear analysis of viscoelastic micro-

composite beam with geometrical imperfection using FEM: 

MSGT electro-magneto-elastic bending, buckling and 

vibration solutions. Addou et al. (2019) investigated the 

influences of porosity on dynamic response of FG plates 

resting on Winkler/Pasternak/Kerr foundation using quasi 

3D HSDT. Medani et al. (2019) developed static and 

dynamic behavior of (FG-CNT) reinforced porous sandwich 

plate using energy principle. Alimirzaei et al. (2019) studied 

nonlinear analysis of viscoelastic micro-composite beam  
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Fig. 1 Geometry of a simply supported sandwich 

rectangular plate with functionally graded porous layers 

 

 

with geometrical imperfection using FEM: MSGT electro-

magneto-elastic bending, buckling and vibration solutions. 

Berghouti et al. (2019), "Vibration analysis of nonlocal 

porous nanobeams made of functionally graded material. 

Bourada et al. (2019), studied dynamic investigation of 

porous functionally graded beam using a sinusoidal shear 

deformation theory. Batou et al. (2019), developed wave 

dispersion properties in imperfect sigmoid plates using 

various HSDTs. Kaddari et al. (2020) used a new quasi-3D 

model for structural behaviour of functionally graded 

porous plates on elastic foundation. Hadji and Avcar (2021) 

studied the free vibration analysis of FG porous sandwich 

plates under various boundary conditions. 

Since shear deformation theories are widely used in 

FGM structures, the first-order shear deformation theory 

and higher-order shear deformation theories should be used. 

By using these theories, many papers have been developed 

to study static, vibration and buckling analysis of FG and 

nano structures such as (Karami et al. 2019, Boutaleb et al. 

2019, Safa et al. 2019, Balubaid et al. 2019, Hussain et al. 

2019, Belbachir et al. 2019, Sahla et al. 2019, Abualnour et 

al. 2019, Draiche et al. 2019, Tounsi et al. 2020, Refrafi et 

al. 2020, Chikr, et al. 2020, Matouk et al. 2020, Rahmani et 

al. 2020, Bousahla et al. 2020a, 2020b, Bellal et al. 2020, 

Belbachir et al. 2020, Shariati et al . 2020a, 2020b; Bourada 

et al. 2020, Hussain et al. 2020a, 2020b, Asghar et al. 2020, 

Taj et al. 2020). 

Recently, many researchs focus on the study of buckling 

of FG structures; Zenkour and Sobhy (2010) investigated 

the thermal buckling of various types of FGM sandwich 

plates. Trinh et al. (2018), used state-space levy solution for 

size-dependent static, free vibration and buckling 

behaviours of functionally graded sandwich plates. 

Karamanli and Aydogdu (2020) studied the bifurcation 

buckling conditions of FGM plates with different 

boundaries. 

In this study, buckling analysis of a simply supported 

sandwich plate with functionally graded layers whose 

properties are porous. The buckling problem is solved by 

using the Navier method based on the higher-order shear 

deformation plate theory. In the numerical examples, the 

effects of the porosity parameters and porosity types in 

FGM layers, geometry parameters on the critical buckling 

of the functionally graded sandwich plates are presented  

 

Fig. 2 Porosity Distribution Models 

 

 

and discussed. The contribution of this study on literature is 

to present and investigate the effects of porosity on the 

buckling behavior of FGM sandwich plates. 

 

 

2. Problem formulation 
 
A simply supported sandwich rectangular plate with 

porous functionally graded face layers subjected to biaxial 

compressive loads in X and Y directions is shown in Fig. 1. 

Where, a, b and h indicate the dimension in the X, Y and Z 

directions, respectively. 

The sandwich plate is made of three layers, an isotropic 

core and two power-law functionally gradedlayers. The 

material properties of the face layers vary from metal to 

ceramic and the core layer is made of ceramic. The volume 

fraction (𝑛) of layer 𝑛 (𝑛=1,2,3), varies according to the 

following power-law function across the plate thickness 

𝑉(1)(𝑍) = (
𝑍 − ℎ1
ℎ2 − ℎ1

)
𝑛

ℎ1 ≤ 𝑍 ≤ ℎ2 (1a) 

𝑉(2)(𝑍) = 1  ℎ2 ≤ 𝑍 ≤ ℎ3 (1b) 

𝑉(3)(𝑍) = (
𝑍 − ℎ4
ℎ3 − ℎ4

)
𝑛

ℎ3 ≤ 𝑍 ≤ ℎ4 (1c) 

where h1, h2 and h3 are the bottom surface coordinates of the 

bottom face layer, the core layer and the top layer 

respectively. Likewise, h2, h3 and h are the top surface 

coordinates of the bottom face layer, the core layer and the 

top layer respectively. In equation 1, n indicates the power-

law coefficient (volume fraction index). When n=0, the 

material of plate gets homogenous ceramic. 

In the porosity distribution of functionally graded layers, 

four different porosity distribution models are used. These 

porosity distribution models are shown in Fig. 2. Used the 

porosity models in this study are; homogeneous porosity 

distribution, X porosity distribution, O porosity distribution 

and V porosity distribution. 

According to these models, the effective material 

properties (P) for each layers are given as follows: 

For Homogeneous Porosity Distribution: 

20
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{
 
 

 
 𝑃(1)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉

(1)(𝑧) −
𝜉

2
(𝑃𝑐 + 𝑃𝑚)

𝑃(2)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧)

𝑃(3)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) −

𝜉

2
(𝑃𝑐 + 𝑃𝑚)

 (2) 

For X Porosity Distribution: 

𝑃(1)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(1)(𝑧) −

𝜉

2
(𝑃𝑐 + 𝑃𝑚) |

2𝑧 − (ℎ1 + ℎ2)

ℎ1 − ℎ2
|

𝑃(2)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧)

𝑃(3)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) −

𝜉

2
(𝑃𝑐 + 𝑃𝑚) |

2𝑧 − (ℎ3 + ℎ4)

ℎ3 − ℎ4
|

 (3) 

For O Porosity Distribution: 

{
 
 
 
 

 
 
 
 

𝑃(1)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(1)(𝑧) −

𝜉

2
(𝑃𝑐 + 𝑃𝑚)√(

ℎ1 − ℎ2
2

)
2

− (𝑧 − (
ℎ1 + ℎ2
2

))

2

𝑃(2)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧)

    

𝑃(3)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) −

𝜉

2
(𝑃𝑐 + 𝑃𝑚)√(

ℎ3 − ℎ4
2

)
2

− (𝑧 − (
ℎ3 + ℎ4
2

))

2

 (4) 

For V Porosity Distribution: 

{
 
 

 
 𝑃(1)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉

(1)(𝑧) −
𝜉

2
(𝑃𝑐 + 𝑃𝑚) (

𝑧 − ℎ2
ℎ1 − ℎ2

)

𝑃(2)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(2)(𝑧)

𝑃(3)(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚)𝑉
(3)(𝑧) −

𝜉

2
(𝑃𝑐 + 𝑃𝑚) (

𝑧 − ℎ4
ℎ3 − ℎ4

)

 (5) 

where 𝜉  ( 𝜉 < 1)  demotes the the volume fraction of 

porosity. 

Based on the higher-order shear deformation plate 

theory, the displacement fields of the plate are presented as 

follows: 
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 (6) 

Where, u, v and w are the displacements functions of X, 

Y and Z directions, respectively. u0, v0 and w0 and   are 

the four unknown displacement of the mid-plane of the 

plate. In equation (6), f(z) is defined according to the 

higher-order shear deformation plate as follows: 

2
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sec
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tanh
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 hz

h

z
hzf   (7) 

It can be seen that the displacement field in Eq. (6) 

introduces only four unknowns ( 0u , 0v , 0w  and  ). The 

nonzero strains associated with the displacement field in 

Eq. (6) are 
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Where 
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(9b) 

and 

dz

zdf
zg

)(
)(   (10) 

The integrals defined in the above equations shall be 

resolved by a Navier type method and can be written as 

follows: 

yx
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(11) 

where the coefficients 'A  and 'B  are expressed 

according to the type of solution used, in this case via 

Navier. Therefore, 'A , 'B , 1k  and 2k  are expressed as 

follows: 

2

1
'


A , 

2

1
'


B , 2

1 k , 2
2 k  (12) 

where   and   are defined in expression (28). For 

elastic and isotropic FGMs, the constitutive relations can be 

expressed as: 
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where (
x , 

y , 
xy , 

yz , 
xz ) and (

x , 
y , 

xy , 
yz , 

xz ) are the stress and strain components, respectively. 
ijC  

are the
 
stiffness coefficients and can be given as 

,
1
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22211
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(14) 

The governing equations of equilibrium can be derived 
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by using the principle of virtual displacements. The 

principle of virtual work in the present case yields 
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The governing equations of equilibrium can be derived 
from Eq. (15) by integrating the displacement gradients by 
parts and setting the coefficients zero 

0u , 
0v , 

0w , and 

  separately. Thus one can obtain the equilibrium 
equations associated with the present refined shear 
deformation plate theory 
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(17) 

Substituting Eq. (13) into Eq. (16) and integrating 

through the thickness of the plate, the stress resultants are 

given as 
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The stiffness coefficients 
ijA , 

ijB and 
ijD , etc., are 

defined as 
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Introducing Eq. (18) into Eq. (17), the equations of 

motion can be expressed in terms of displacements (
0u , 

0v

, 
0w ,  ) and the appropriate equations take the form: 
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(20d) 

where 
ijd , 

ijld  and 
ijlmd  are the following differential 

operators: 
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(21) 

The Navier solution method is employed to determine 

the analytical solutions for which the displacement 

variables are written as product of arbitrary parameters and 

known trigonometric functions to respect the equations of 

motion and boundary conditions. 
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With 

am /   and bn /   (23) 

The plate is subjected to two types of loading, a 

transverse load q and in-plane forces in two directions 
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Where 
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3. Numerical results 
 

In this numerical study, effects of the porosity 

distributions, the porosity parameters, geometry parameters 

of plates and stacking sequence of layers on the critical 

buckling loads of the functionally graded sandwich simply-

supported plates are investigated. The sandwich FGM plate 

is composed of Aluminum face sheets (as metal) and 

Alumina core (as ceramic). Young’s modulus and Poisson’s 

ratio of Aluminum are Em=70 GPa, νm=0.3 respectively, and 

those of Alumina are Ec=380 GPa, νc=0.3. The following 

dimensionless form is used: 

3

0

2

100 hE

aN
N cr  (27) 

Some kinds of symmetric and non-symmetric FGM 

sandwich plate are used as follows; 

The (1-0-1) FGM sandwich plate: The plate is made of 

two layers of equal thickness withouta core: 
 

h1=h3=h/2, h2=0 
 

The (1-1-1) FGM sandwich plate: The plate is made of 

three equal-thickness layers: 
 

h1=h2= h3=h/3 
 

The (1-2-1) FGM sandwich plate: The core thickness 

equals the sum of faces thickness: 
 

h1=h3=h/4, h2= h/2 
 

The (2-1-2) FGM sandwich plate: The upper layer 

thickness is twice the core layer while it is the same as the 

lower one: 

h1=h3=2h/5, h2=h/5 

 

The (2-2-1) FGM sandwich plate: The core thickness 

is twice the upper face while it is the same as the lower one. 

 

h1=h2=2h/5, h3=h/5 

 

In order to validate proposed model, a comparison study 

is performed. In the validation study, non-dimensional 

critical buckling load of square FGM sandwich plates with 

different stacking sequences andvolume fraction index k are 

presented and compared with the results obtained from this 

theory and those obtained by Zenkour (2005) based on 

sinusoidal shear deformation theory (SSDT), trigonometric 

shear deformation theory (TSDT), the first-order shear 

deformation theory (FSDT), a new hyperbolic shear 

deformation theory by El Meiche et al. 2011 and the new 

first-order shear deformation developed by Thai et al. 

(2014) for uniaxial and biaxial compressive loads in table 1 

and table 2, respectively, for a/h=10.   

It is seen from Tables 1 and 2, a good agreement 

between the results of the present theory with other theories. 

In the present theory includes only four unknowns in 

contrast with five unknowns in the SSDT, TSDT and FSDT. 

In addition, the using shear deformation theory does not 

require a shear correction factor as FSDT. So, the using 

shear deformation theory can be useful and more practice in 

the modelling of the composite plates.  

In Fig. 3, the effect the side-to-thickness ratio a/h on the 

dimensionless critical buckling loads of (2-1-2) rectangular 

sandwich plates for b=2a, n=2 and α=0.2 with uniaxial and 

biaxial compression loads. 

As seen from Fig. 3, the critical buckling loads increase 

with the increasing of the side-to-thickness ratio a/h, 

naturally. The critical buckling loads for uniaxial load are 

bigger than the critical buckling loads for biaxial load. The 

difference between the results of uniaxial and biaxial 

compression loads increase by increasing the ratio of a/h, 

significantly. The load type is very effective in the buckling 

responses of sandwich plates. 

In Fig. 4, the effects of power law index n on the 

dimensionless critical buckling load 𝑁 of square plates 

under biaxial compression are presented. As seen from fig. 

4, the dimensionless critical buckling load decreases with 

increasing of the power law index because of Eq. (1) and 

selected materials. The increasing in the power law index  
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Table 1 Comparison of nondimensional critical buckling load of square FGM sandwich plates subjected to uniaxial 

compressive load γ1=-1, γ2=0, a/h=10) 

k Theory 
Scheme  

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 

HSDT (El Meiche et al . 2011) 13.0055 13.0055 13.0055 13.0055 13.0055 

SSDT (Zenkour, 2005) 13.0061 13.0061 13.0061 13.0061 13.0061 

TSDT (Zenkour, 2005) 13.0050 13.0050 13.0050 13.0050 13.0050 

FSDT (Zenkour, 2005) 13.0045 13.0045 13.0045 13.0045 13.0045 

NFSDT (Thai, 2014) 13.0045 13.0045 13.0045 13.0045 13.0045 

Present 13.0055 13.0055 13.0055 13.0055 13.0055 

0.5 

HSDT (El Meiche et al . 2011) 7.3638 7.9405 8.4365 8.8103 9.2176 

SSDT (Zenkour, 2005) 7.3657 7.9420 8.4371 8.8104 9.2167 

TSDT (Zenkour, 2005) 7.3644 7.9408 8.4365 8.8100 9.2168 

FSDT (Zenkour, 2005) 7.3373 7.9132 8.4103 8.7867 9.1952 

NFSDT (Thai, 2014) 7.3634 7.9403 8.4361 8.8095 9.2162 

Present 7.3652 7.9415 8.4368 8.8333 9.2166 

1 

HSDT (El Meiche et al . 2011) 5.1663 5.8394 6.4645 6.9495 7.5072 

SSDT (Zenkour, 2005) 5.1685 5.8412 6.4654 6.9498 7.5063 

TSDT (Zenkour, 2005) 5.1671 5.8401 6.4647 6.9494 7.5066 

FSDT (Zenkour, 2005) 5.1424 5.8138 6.4389 6.9257 7.4837 

NFSDT (Thai, 2014) 5.1648 5.8387 6.4641 6.9485 7.5056 

Present 5.1680 5.8408 6.4652 7.0009 7.5063 

5 

HSDT (El Meiche et al . 2011) 2.6568 3.0414 3.5787 4.1116 4.7346 

SSDT (Zenkour, 2005) 2.6601 3.0441 3.5806 4.1129 4.7349 

TSDT (Zenkour, 2005) 2.6582 3.0426 3.5796 4.1121 4.7347 

FSDT (Zenkour, 2005) 2.6384 3.0225 3.5596 4.0929 4.7148 

NFSDT (Thai, 2014) 2.6415 3.0282 3.5710 4.1024 4.7305 

Present 2.6595 3.0436 3.5803 4.2339 4.7348 

10 

HSDT (El Meiche et al . 2011) 2.4857 2.7450 3.1937 3.7069 4.2796 

SSDT (Zenkour, 2005) 2.4893 2.7484 3.1946 3.1457 4.3818 

TSDT (Zenkour, 2005) 2.4873 2.7463 3.1947 3.7075 4.2799 

FSDT (Zenkour, 2005) 2.4690 2.7263 3.1752 3.6889 4.2604 

NFSDT (Thai, 2014) 2.4666 2.7223 3.1795 3.6901 4.2728 

Present 2.4887 2.7475 3.1956 3.8406 4.2802 

Table 2 Comparison of nondimensional critical buckling load of square FGM sandwich plates subjected to biaxial 

compressive load (γ1=-1, γ2=0, a/h=10) 

k Theory 
Scheme  

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 

HSDT (El Meiche et al . 2011) 6.5028 6.5028 6.5028 6.5028 6.5028 

SSDT (Zenkour, 2005) 6.5030 6.5030 6.5030 6.5030 6.5030 

TSDT (Zenkour, 2005) 6.5025 6.5025 6.5025 6.5025 6.5025 

FSDT (Zenkour, 2005) 6.5022 6.5022 6.5022 6.5022 6.5022 

NFSDT (Thai, 2014) 6.5022 6.5022 6.5022 6.5022 6.5022 

Present 6.5028 6.5028 6.5028 6.5028 6.5028 

0.5 

HSDT (El Meiche et al . 2011) 3.6819 3.9702 4.2182 4.4051 4.6088 

SSDT (Zenkour, 2005) 3.6828 3.9710 4.2186 4.4052 4.6084 

TSDT (Zenkour, 2005) 3.6822 3.9704 4.2182 4.4050 4.6084 

FSDT (Zenkour, 2005) 3.6687 3.9566 4.2052 4.3934 4.5976 

NFSDT (Thai, 2014) 3.6817 3.9702 4.2181 4.4047 4.6081 

Present 3.6826 3.9708 4.2184 4.4166 4.6083 

1 

HSDT (El Meiche et al . 2011) 2.5832 2.9197 3.2323 3.4748 3.7536 

SSDT (Zenkour, 2005) 2.5842 2.9206 3.2327 3.4749 3.7531 

TSDT (Zenkour, 2005) 2.5836 2.9200 3.2324 3.4747 3.7533 

FSDT (Zenkour, 2005) 2.5712 2.9069 3.2195 3.4629 3.7418 

NFSDT (Thai, 2014) 2.5824 2.9193 3.2320 3.4742 3.7528 

Present 2.5840 2.9204 3.2326 3.5004 3.7532 

5 

HSDT (El Meiche et al . 2011) 1.3284 1.5207 1.7894 2.0558 2.3673 

SSDT (Zenkour, 2005) 1.3300 1.5220 1.7903 2.0564 2.3674 

TSDT (Zenkour, 2005) 1.3291 1.5213 1.7898 2.0561 2.3673 

FSDT (Zenkour, 2005) 1.3192 1.5113 1.7798 2.0464 2.3574 

NFSDT (Thai, 2014) 1.3208 1.5141 1.7855 2.0512 2.3652 

Present 1.3298 1.5218 1.7902 2.1169 2.3674 

10 

HSDT (El Meiche et al . 2011) 1.2429 1.3725 1.5969 1.8534 2.1398 

SSDT (Zenkour, 2005) 1.2448 1.3742 1.5973 1.5729 2.1909 

TSDT (Zenkour, 2005) 1.2436 1.3732 1.5974 1.8538 2.1400 

FSDT (Zenkour, 2005) 1.2345 1.3631 1.5876 1.8445 2.1302 

NFSDT (Thai, 2014) 1.2333 1.3612 1.5897 1.8450 2.1364 

Present 1.2444 1.3738 1.5978 1.9203 2.1401 
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Fig. 3 Comparison of dimensionless critical buckling load 𝑁 of (2-1-2) FGM sandwich rectangular plates (b=2a, n=2) 

 
Fig. 4 Effect of power law index n on the dimensionless critical buckling load 𝑁 of square plates under biaxial compression 

(1=2=-1, a=10h) 

  

(a) for (1-0-1) scheme (b) for (2-1-2) scheme 

Fig. 5 Continued 
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(c) for (1-1-1) scheme (d) for (2-2-1) scheme 

 
(e) for (1-2-1) scheme 

Fig. 5 Effect of the shape of porosity distribution on the dimensionless critical buckling load 𝑁 versus side-to-thickness a/h 

of an FGM square sandwich plate for different schemes under uniaxial compression (1=-1, 2=0) 

  

(a) for (1-0-1) scheme (b) for (2-1-2) scheme 

  
(c) for (1-1-1) scheme (d) for (2-2-1) scheme 

Fig. 6 Continued 
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yields to increase the difference among of the results in the 

stacking sequences. The biggest value of the dimensionless 

critical buckling load is obtained in the 1-2-1 scheme. The 

power law index has more effects on the buckling responses 

of sandwich FGM plates. 

In Fig. 5, the relationship between side-to-thickness 

(a/h) and dimensionless critical buckling load under 

uniaxial compression is presented for different porosity 

models for different schemes of layers for n=2 and =0.2. It 

is seen from Fig. 5 that the difference among the porosity 

models increases with increasing of a/h ratio. In higher 

values of a/h, the porosity distributions play important role 

on the buckling behavior of sandwich FGM porous plates. 

In all schemes of layers, the critical buckling loads of “O” 

porosity distribution are biggest values. The result of the 

homogeneous porosity model gives lowest values of critical 

buckling loads in all schemes. The reason of this situation is 

that the void more stack in the “homogeneous” porosity 

distribution, and so the rigidity of the plates is lowest in the 

“homogeneous” porosity model. As a result, 

“homogeneous” porosity model gives lowest the critical 

buckling loads in contrast with other porosity models. 

Fig. 6 shows the effects of porosity coefficient () on the 

dimensionless critical buckling load under biaxial 

compression for different schemes of layers for n=2 and 

a/h=10. As seen from Fig. 6, increasing the porosity 

coefficient () yields to increase the difference among of 

porosity models, significantly. The results of “X” and “V” 

porosity models are very close to each other in (1-1-1) and 

(1-2-1) schemes. However, this difference is not close in (1-

0-1), (2-1-2) and (2-1-2) schemes. It shows that the scheme 

of layer is very effective on the buckling and porosity 

behaviors sandwich FGM plates. With choosing of suitable 

layer scheme, the negative effects of porosity may be 

reduced. 
 
 

4. Conclusions 
 

In this study, buckling behavior of sandwich plates with  

 

 

porous FGM layers are investigated by using hyperbolic 

shear displacement model. Four type porosity models are 

used. In the solution of the problem, the Navier method is 

used. Effects of porosity coefficient, porosity models, FGM 

distribution parameter, side-to-thickness ratio, scheme of 

layers on the critical buckling loads of FGM sandwich 

plates are investigated for different compression load types. 

It is obtained from the numerical results the side-to-

thickness ratio is very influences on the porosity effects for 

FGM sandwich plates. The buckling behavior of the FGM 

sandwich plates on the porosity effects change with 

different scheme of layers, significantly. Also, FGM 

distribution parameter has more effects on the effects of 

porosity on buckling responses. With changing of FGM 

distribution parameter and layer scheme, the negative 

effects of porosity can be reduced, considerably. 

Briefly, the following results were obtained: 

• The values of dimensionless critical buckling load of 

FG sandwich plate decrease with the increase of the 

power-law index. 

• The type of porosity distribution model plays an 

important role in the behavior of FG porous sandwich 

plates, especially for high values of side to thickness 

ratio. 

• In all lay-up schemes, the homogenous porosity model 

has the lowest the dimensionless critical buckling load. 

• The difference between the porosity models increases 

with the increase of porosity volume fraction. 
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