
Wind and Structures, Vol. 31, No. 1 (2020) 75-84 

DOI: https://doi.org/10.12989/was.2020.31.1.75                                                               75 

Copyright © 2020 Techno-Press, Ltd. 
http://www.techno-press.com/journals/was&subpage=7                                     ISSN: 1226-6116 (Print), 1598-6225 (Online) 

 
1. Introduction 
 

In the last decade, suspension bridges have been 

increasingly considered and now are one of the most 

significant kinds of long-span bridges. Owing to their high 

flexibility, the stability of suspension bridge due to wind 

loads is a significant subject in the design and construction 

of long-span suspension bridges.  

The subject of aeroelastic behavior of suspension bridge 

has been studied for many years, and several numerical 

models (Selvam, Govindaswamy et al. 2002), (Zhang 

2008), (Arena, Lacarbonara et al. 2014), (Arena, 

Lacarbonara et al. 2016) and experimental procedures have 

been proposed. Some experimental approaches are usually 

utilized to describe the bridge behavior to different static 

and dynamic wind loads (Diana, Fiammenghi et al. 2013), 

(Diana, Rocchi et al. 2015), (Ge, Xia et al. 2018). Hirai et 

al. (1967) and Cheng (2000) discovered that torsional 

divergence of the suspension bridges with long spans 

becomes apparent due to the action of static wind loads in 

wind tunnel tests of the bridge model. However, the 

experimental approaches could be costly, time consuming 

and somehow difficult to provide suitable real world 

conditions. Hence, developing numerical simulations of the 

bridge behavior is highly desirable for reducing the 

modeling time and increasing the accuracy and reliability of 

the computational results. 
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As a consequence of the fast growing computational 

power and the challenging issues of the scaled physical 

modeling, numerical method is being developed to protect 

or to replace the costly and time-consuming part of the 

experimental methods. Over the last recent years, the 

numerical study on the suspension bridge has been 

extensively performed by finite element method (FEM). For 

example, Arzoumanidis et al. (1985) explored the effects of 

steady and unsteady wind forces by using FEM. They 

developed a three-dimensional bridge structure model 

taking into consideration both the nonlinear material 

properties and the geometric nonlinearities of structural 

members (included cables and elements of deck system). 

They reported that the modeling of the external loads and 

the structural system of the bridge is realistically possible 

by the finite element method. Zhang et al. (2002) developed 

an approach of nonlinear aerostatic and aerodynamic 

analysis for long-span suspension bridges. Their reported 

results of numerical analysis for the three-dimensional finite 

element model demonstrated that the nonlinear effects 

significantly influence the aerostatic and aerodynamic 

behaviors of long-span suspension bridges. Petrini et al. 

(2007) applied four types of time domain techniques 

(including nonaeroelastic, steady, quasi steady, modified 

quasi steady) to investigate the response and the stability of 

a long-span suspension bridge. They considered a three 

dimensional finite element model of the bridge for analysis. 

The aerostatic behavior of suspension bridges has been 

investigated by some studies. For example, Cheng et al. 

(2002), (2003) investigated nonlinear aerostatic stability 

analysis of the suspension bridge. They proposed a new 

nonlinear method to evaluate aerostatic stability of 

suspension bridges, based on the simultaneous effect of the 

geometric nonlinearity and the three components of wind 
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loads. A computer program NASAB were developed for 

their analysis. The results of these researches indicated that 

critical wind velocity of aerostatic instability considerably 

reduce as the effects of the geometric nonlinearity and the 

three-component displacement-dependent wind loads are 

simultaneously considered in the analysis. Other researchers 

like Boonyapinyo et al. (2006) performed nonlinear 

aerostatic stability analysis of long-span suspension bridges 

formulating wind induced aerostatic instability using the 

FEM. They considered material nonlinearity as well as 

three components of wind loads and geometric nonlinearity. 

The numerical modeling indicated that incorporation of 

geometric nonlinearity, material nonlinearity and nonlinear 

three-component displacement-dependent wind loads cause 

to occur the aerostatic instability in the long-span 

suspension bridge. In addition, they showed that the critical 

wind velocity for nonlinear aerostatic instability is 

appreciably less than the critical velocity of flutter 

instability. Zhang (2011) and Zhang et al. (2013) also 

evaluated the nonlinear aerostatic stability in long-span 

suspension bridges by FEM. The coupled influence of 

aerostatic loads and structural deformation was considered 

in these researches.  

 Hence, in addition to examining the elastic flutter 

analysis, it is necessary to perform accurate analysis of the 

nonlinear aerostatic instability of the bridge structure. 

Despite previous researches in this field, many problems in 

accurate numerical modeling still remain. The FEM is a 

robust and entirely developed method, and hence it is 

widely used in suspension bridge modeling due to its 

versatility for complex geometry and availability well 

developed commercially FEM packages (Duan, Xu et al. 

2011), (Hong, Ubertini et al. 2011), (Kilic, Raatschen et al. 

2017). However, the FEM has the inherent deficiency of 

numerical methods that rely on meshes or elements. 

Generally in using any FEM codes and packages, the 

creation of a mesh for a problem domain is required as a 

prior knowledge. Furthermore, resolving large movement 

and deformation of structures (which associate with aero-

elastic behavior of cables and deck of the long-span 

suspended bridges) is still a challenging task for mesh based 

FEM analysis. 

Usually a time consuming quality mesh generation for 

suspension bridge in three-dimensional domains becomes 

the major component of the modeling procedure. In 

addition to, under large deformations, considerable loss in 

accuracy in FEM results can arise from the element 

distortions. These issues can considerably affect the results 

obtained by FEM for aero-elastic analysis of a long-span 

suspension bridge. It can be stated that the root of these 

problems is the use of elements or mesh in the FEM. As an 

alternative solution of problem, the meshfree methods are 

developed with idea of getting rid of the elements and 

meshes in the process of numerical simulation.  

The main objective of this study is to develop a 

nonlinear Element-free Galerkin (EFG) method to prevail 

drawbacks of mesh based methods to investigate the 

nonlinear aerostatic stability of suspension bridge. The 

nonlinear aerostatic stability analysis is presented by 

considering the simultaneous influences of nonlinearities of 

structural geometric and nonlinear three components 

displacement-dependent wind loads. The EFG method is 

utilized to evaluate the torsional divergence of a long-span 

suspension bridge with a main span of 888 meters assuming 

wind loads to be the function of the torsional response of 

structure. The numerical simulation is performed by 

programming in the MATLAB software framework. 

 

 

2. Numerical implementation 
 

The static response of problem with large deformation is 

considered in a domainΩ , bounded by Γ . The strong-

form of system equation is given as follow 

0 T
L σ b  (1) 

where is differential operator, is stress, is a body force vector 

(Liu and Gu 2010). 

The common boundary conditions of above equation are as 

follows 

σn t  in Γt  (2) 

u = �̅� in Γu  (3) 

where is displacement, is the vector of unit outward normal at a 

point on the natural boundary and and denote the prescribed 

displacements and tractions values, respectively (Liu and Gu 

2010).  

The constrained Galerkin weak-form should be posed as 

follows 

 

(4) 

where is a diagonal matrix of penalty factors. In this paper, in 

order to impose essential boundary condition, the penalty 

method is used (Liu and Gu 2010). 

 
 

3. Discrete equations 
 

The main structural components of a suspended bridge 

include the deck, cables, hangers and towers. For the cable, 

hangers and deck, nonlinear geometrical effects are 

significant. Hence, in the present paper, the cable, hangers 

and deck are considered for numerical simulation of 

suspension bridge (Fig. 1). The geometric nonlinearities 

originate from the cable sag, the action of the loads due to 

the cables on the bridge deck that causes large deformations 

and the effect of the structure’s relatively large deflection 

due to stresses and forces. 

The EFG method, which is based on the Moving Least 

Squares approximation (MLS), requires only nodal data and 

no element connectivity, and thus has more flexibility than 

the conventional FEM. 

Consider an unknown scalar function of a field variable 
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 u x in the domain  Ω . The MLS approximation of 

 u x is described at an arbitrary point x as 

         
1

 
m

h
j j

j

u x p x a x T
p x a x  (5) 

where presents the approximated function, is the basis 

function in the spatial coordinates and is the order of basis 

function (Liu and Gu 2010). 

PT(x) = {1 x x2 … xm-1 xm} (6) 

and   a x is a vector of coefficients given by 

        1 2           ma a aT
a x x x x  (7) 

The vector of coefficient  T
a x  is a function of x . 

The coefficients  a x  can be obtained by minimizing 

the following equation (Lancaster and Salkauskas 1981): 

     
2

1

ˆ



    
n

i i

i

J W x x uT
ip x a x  (8) 

In the above,    ˆ   iW x x is a positive weighting function, 

n is the number of nodes in the support domain쟸 and iu

refers to the nodal parameter of u at  ix x .  

The minimum of J with respect to  a x  leads to the 

following set of linear relations: 

     A x a x B x u  (9) 

or 

     1a x A x B x u  (10) 

where 

       
1

ˆ  


 
n

i i

i

x x T
i iA x W p x p x  (11) 

and 

 

           1 1 2 2, , ,?  ˆ ˆ ˆ



 
 nW W W n

B x

x p x x p x x p x
 (12) 

 1 2       
T

nu u uu  (13) 

By substituting (10) to (5), MLS approximation can be 

obtained as 

     Φ   
n

h
I I

I

u u Φ
T

x x u  (14) 

where 
hu presents the approximated displacements of a 

point which can be a quadrature point or a sampling point, 

the vector u collects the nodal parameters of u for all the 

nodes in the support domain and  Φ x  is the vector of 

MLS shape functions corresponding n nodes in the 

support domain of the point x . 

The shape function   ΦI x  for the Ith node is defined 

by 

        

  

1

1

1

Φ   










m

I j
jI

j

I

p

p
T

x x A x B x

x A B

 (15) 

In this paper, the cubic spline weight function is used (Liu 

and Gu 2010) 

 

(16) 

where 


 
ii

i

w w

x xd
r

r r
in which  i id x x presents 

the distance from node ix to the sampling point x and 

wr is the size of the support domain for the weight function 

(Liu and Gu 2010). 

The MLS shape functions produced by n nodes in the 

local support domain are applied to approximate the 

displacement for major members of bridge, as follow: 

• Deck 

The bridge deck is adopted as a continuous beam. 

 

(17) 

• Suspended cable and Hangers 

 

(18) 

where u , v , w are the components of displacement field 

of the deck and cables and  Ψ Ψ x   is the rotation of the 

deck about the x axis (longitudinal direction of the deck). 
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Iu , Iv  and Iw  are the parameters of displacements for 

Ith node in the x ,y, z directions and xI , yI  and zI  

are parameters of rotations for Ith node about the x ,y, z 

axis, respectively (see Fig. 2 for Iu , Iv  and Iw as well 

as xI , yI andis the matrix of MLS shape Φ  ). zI  

functions (Arzoumanidis and Bieniek 1985). 

The strain components of deck consist of the axial 

strain, xe , two curvatures, yk and zk , and the twist, xt

, writing as 

 , , , x y z xe k k tε
T
k  (19) 

Whereas, the strain components of cable and hangers are 

only consisted of the axial strain, xe .i.e.,  xeε
T
k

(Arzoumanidis and Bieniek 1985). 

The strain-displacement relations are as follows: 

2 2 2
1 1 1

e
2 2 2

        
        
        

x

u u v w

x x x x
 

2

2


 


y

v
k

x
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2

2


 


z

w
k

x
, 

Ψ
t





x
x

 

(20) 

From the definitions mentioned above and the relation 

(17),  B matrix of the node can be determined 

   dεk B du  (21) 

The matrix B is decomposed in the following  

  L NLB B B  (22) 

where LB  is a constant matrix corresponding to the linear 

terms in the strain displacement relations while NLB

represents the geometric nonlinearities (Arzoumanidis and 

Bieniek 1985). 

The internal forces in the nodes of the deck bridge 

consisting of the normal force xN , two bending moments 

yM and zM and the torsional moment xT , i.e. 

 , , , x y z xN M M TT
IS  (23) 

It should be noted that internal forces in the nodes of the 

cable and hangers system are only consist of the normal 

force, xN . The computation of IS in terms of εk is 

performed according to elastic theory of beams 

(Arzoumanidis and Bieniek 1985). 

The final discrete equations can be achieved by 

substituting equations of approximate solution u and 

strains and internal forces into the weak form in Eq. (4), 

which yields 

   int ext
f K f FU  (24) 

where 


K  and 


F  are the global penalty stiffness and 

force matrices, respectively. Also,  U  presents the vector of 

nodal parameters of displacements for all nodes in the entire 

problem domain, 
ext

f is the global external force vector 

assembled using the nodal force vectors 
ext

If . The vector 

int
f presents the global internal force vector. It is formed 

using the nodal internal force vectors 
int

If . In Eq. (24), 


K , 

int
f , 

ext
f and 


F consist of sub-matrices IJ


K , 

int
If , 

ext
If and I


F , given by 

 Γ IJ d

Γ
Φ Φ

u

T
I JK α   (25) 

 Ω 
int T

I I
x

dIf B σ  (26) 

Γ
Γ Ω  

ext
I d d

Ω
Φ Φ

T T
I If t b  (27) 

 Γ I d

Γ
Φ

u

T
IF αu  (28) 

The tangent stiffness matrix of the Ith node  T I
K  

that plays a fundamental part in large deformation analysis, 

is defined by 

   
int

I
T I

K
df

du
 (29) 

In order to accomplish the numerical integrations in Eqs. 

(25) - (28), the problem domain is discretized into a set of 

background cells. The Gauss quadrature scheme is used to 

carry out the numerical integrations over these cells (Liu 

and Gu 2010). The nonlinear geometry is accounted by 

Updated Lagrangian description (Bathe 2006). 

 

 
4. Aerostatic analysis of suspension bridges 

 
In order to evaluate the aerostatic behaviors of 

suspension bridges, the following characteristics is 

considered: (1) the effect of three components of 

displacement-dependent wind loads and geometric 

nonlinearity of structure is simultaneously considered; (2) 

incremental-two-iterative solution scheme (Cheng, Jiang et 

al. 2002) is used to determine the wind velocity–deflection 

curve for a nonlinear aerostatic stability problem. 

 

4.1 Wind loads  
 

Generally the action of static wind loads on the bridge 

structure is recognized as the aerostatic effect. The 

aerostatic forces including the drag force, lift force and 

pitch moment (Fig. 3), vary as the bridge structure displaces, 

and is expressed as the function of the effective attack angle. 

As seen in Fig. 3, the effective angle of attack    is the sum 

of the wind angle of incidence and the torsional  
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displacement of deck x . The three components wind 

loads per unit length acting on the deformed deck (Fig. 3) 

which are dependent on torsional displacement of bridge 

structure, can be expressed as follows (Cheng, Jiang et al. 

2002): 

 21
 

2
D r DF V D C   (30a) 

 21
 

2
L r LF V B C   (30b) 

 2 21

2
x r MM V B C   (30c) 

where DF , LF and xM are the aerodynamic drag, lift 

and moment, respectively,  is the air density, rV is the 

mean velocity at the bridge deck level, D and B are the 

bridge deck height and width, respectively,  DC  , 

 LC   and  MC   are the coefficients of drag force, 

lift force, and pitch moment in local bridge axes, 

respectively.  

Generally, theoretical curves for the coefficients of the 

wind loads components (  DC  ,  LC   and 

 )MC   which is derived by the experimental 

measurements are nonlinear. Curves for coefficients of drag 

force, lift force and pitch moment of wind loads are 

approximately estimated by linear segments between two 

experimental measurement points which can be written as 

 


 


D
D Do

C
C C 


 (31a) 

   


 


L
L Lo

C
C C 


 (31b) 

 


 


M
M Mo

C
C C 


 (31c) 

where DoC ,   LoC , MoC are wind load coefficients and  





DC


, 




LC


 and 





MC


 are drag, lift and moment 

gradients (Arzoumanidis and Bieniek 1985). 

 
4.2 Assumption 

 
The first assumption is that the force-displacement 

transfer between the structure and the wind flow happens on 

the bridge deck and the cable systems (including suspended 

cable and hangers with no direct wind loading) only support 

the structural behavior of the deck. The second assumption 

is that vertical hangers connected to deck are distributed 

along the bridge length direction. 

 

4.3 Solution algorithm 

Since the displacement-dependent wind forces are 

considered as nonlinear functions of the wind attack angle, 

an incremental two-iterative solution scheme (Cheng Jiang 

et al. 2002) is used for solving nonlinear equation. 

Nonlinear analysis of bridge structure under any given wind 

velocity using Newton–Raphson method is performed in the 

inner loop of iteration. In the general loop of iterations, 

nonlinear analysis under the additional wind forces, induced 

by torsional deformations of the deck, is carried out. The 

computation procedure can be briefly expressed as follows: 

(1) An initial wind velocity is considered. (2) The wind 

loads based on initial wind velocity are calculated. (3) The 

geometric nonlinear analysis of bridge structure under the 

aerostatic forces is performed by Newton–Raphson method 

and then the displacements are obtained. (4) Based on the 

obtained torsional angle of nodes, wind forces acting on the 

bridge structure under initial velocity is recalculate. (5) The 

state of convergence is determined whether the Euclidean 

norm of wind load coefficients is less than the prescribed 

tolerance. If the solution is convergent, increase wind 

velocity according to considered variation in wind velocity 

length. Otherwise, mentioned steps repeat until convergence 

is reach. (6) If the iterations do not converge for the given 

wind velocity, then get back previous wind velocity and 

calculate again by shortening length of wind velocity 

variation until the difference between two successive wind 

velocity is lower than the prescribed tolerance (Cheng et al. 

2002). A flowchart for the solution procedure is given in 

Fig. 4. 

 

 

5. Verification study 
 

Based on the formulation and algorithm presented in 

previous sections, the numerical simulation is performed by 

programming in the MATLAB software framework for the 

nonlinear aerostatic stability analysis of suspension bridges. 

The accuracy of the programming is verified through 

following problems. 

The first example is static problem which examine the 

ability of EFG method to model a cantilever beam under a 

transverse point load acting at the free end (Fig. 5). The 

utilized model takes into account the geometric 

nonlinearities and structural responses are determined 

through an iteration routine based on the Newton-Raphson 

method, in which the load was applied in a certain number 

of increments. 

The schematic nodal distributions are shown in Fig. 5. 

The computational domain of the beam is exhibited by 

regularly distributed field nodes. In order to perform the 

numerical integrations, the regul arly rectangular 

background cells are also employed. Three-point Gauss 

quadrature is used in each background cell. The circular 

support domains are chosen for the construction of 

meshfree shape functions and the size of support domains is 

also defined 2 times the nodal spacing. In order to impose 

79



 

Golriz Zamiria and Saeid R. Sabbagh-Yazdi 

essential boundary conditions, the penalty method is 

utilized (Liu and Gu 2010). In the EFG method, the  

 

Fig. 4 Flowchart for solution procedure 

 

 

Fig. 5 Horizontal cantilever with a vertical point load at the 

free end 

 

 

quadratic basis functions are used in the MLS 

approximation. 

Investigation of above mentioned beam is also 

performed by the FEM. In FEM, nonlinear beam elements 

are utilized. The results acquired by the EFG method and 

FEM are compared to numerical results of Mattiasson 

(Mattiasson 1981) in Table 1. Comparisons of the 

displacement values obtained by both methods show good 

agreements with results of Mattiasson (Mattiasson 1981). 

However, the EFG method yields more accurate results 

compared with the FEM. 

The second set of examples evaluates the results of 

nonlinear static analysis of the cable system of suspension 

bridge including suspended cable. The numerical simulation 

is performed by programming in the MATLAB software.  

The material properties and geometric parameters of the 

cable system used in this study are presented in Table 2. For 

suspended cable, sag-to-span ratio is about one-tenth. The 

supports boundary conditions of cable system are 

considered as the hinged conditions. The domains used for 

the evaluation of the behavior of cables system are also 

indicated in Fig. 6. 

The domain of the cable is presented by regularly 

distributed 201 field nodes and three -point Gauss 

quadrature is applied in all background cells. The linear 

basis functions are considered for the EFG interpolation. In 

the production of mesh free shape functions, the circular 

support domains are chosen and the dimension of support 

domains is also defined 2 times the nodal spacing. The 

penalty method is used for imposing the essential boundary 

conditions. 

For numerical analysis, a suspended cable system 

subjected to point load is considered and the nonlinear 

geometry is included. The loads are applied in increments 

and the incremental load being applied to the equilibrium 

configuration of the previous load stage to obtain 

convergence condition. The initial position is considered as 

the self-weight equilibrium position.  

The displacements under the specified load computed by 

EFG method are compared with the displacements obtained 

by modelling the cable using truss elements of FEM 

(Jayaraman and Knudson 1981) and are presented in Table 

3. It can be observed that the results obtained by both 

numerical methods are coincident.  

Presented test cases indicate that computed results by 

EFG method under large deformations demonstrate 

acceptable accuracy. From the CPU time consumption 

report in Table 1, it can be noticed that EFG method 

consumes more computational time in comparison to the 

classical FEM. However, since in EFG method for a 

problem domain does not require any mesh generation, total 

modeling efforts are less than methods like FEM. EFG 

method shows suitable accuracy in comparison to the 

classical FEM. 

 

 

6. Case study 
 

To investigate efficiency of the developed EFG method 

for modeling the nonlinear effects on the aerostatic 

behavior, the numerical analysis of a long-span suspension 

bridge under wind loads are evaluated. The wind loads are 

considered as a function of the torsional response of 

structure. The suspension bridge is analyzed using 

numerical procedure described in the preceding sections. 

The general configuration of the bridge is presented in Fig. 

7. We investigate suspension bridge with a main span of 

888 m and deck with 3.012 m depth and 35.6 m width; the 

spacing between the successive hangers is 12.0 m (Cheng 

Jiang et al. 2003). For suspended cable, sag-to-span ratio is 

considered about one-tenth. The mechanical properties of 
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the main members of bridge structure are presented in Table 

4. It should be noted that elastic material properties is  

 

Table 2 Numerical values of the cable system parameters 

parameters Suspended cable values 

Length (m) 304.8 

Young's modulus  2
N

m
 713357.7 10  

Cross section area 
2( )cm  5.4842 

Weight  N
m

 47 

Load point ( )KN  35.586 

 

 

Fig. 6 Nodal arrangements used to model the cable system 

suspended cable 

 

Table 3 Displacement under load 

Displacement of load 

point (m) 
EFG method 

FEM using Truss element

 (Jayaraman and Knudson

 1981) 

Vertical -5.4724 -5.472 

Horizontal -0.845 -0.845 

 

 

considered in present analysis. 

It should be stated that the utilized curves for 

coefficients of wind loads are those presented by Cheng et 

al. (2003). The coefficient curves of lift force and pitch 

moment of aerostatic loads are considered to be 

approximately linear, and linear curve fitting is employed. 

The static coefficients of wind loads for the studied bridge 

are given as follows (Cheng Jiang et al. 2003): 

 
(32a) 

 
(32b) 

Furthermore, due to nonlinearity of the wind load 

coefficient curve of drag force, the nonlinear curve is  

 

 

piecewise linearized. The coefficients of drag force that are 

given by (Cheng, Jiang et al. 2003): 

 

(33) 

An EFG model is developed for the evaluation of 

behavior of the considered suspension bridge. The 

numerical model takes the geometric nonlinearities into 

consideration. The computational domain shown in Fig. 7 is 

used for the study. The bridge deck segments are considered 

as continuous beam and the computational domain of the 

beam is considered by regularly distributed 149 field nodes. 

Also, for the evaluation of the behavior of suspended cables 

system is used regularly distributed 149 nodes in domain 

and the domains of hangers are also considered by regularly 

distributed nodes. In each rectangular background cell, 

three-point Gauss quadrature is used for performing 

numerical integration. The quadratic and linear basis 

functions (Liu and Gu 2010) are employed in the MLS 

approximation for the deck and cables, respectively. The 

circular support domains are considered for the 

determination of meshfree shape functions, and the size of 

support domains is also described 2 times the nodal spacing. 

Lateral and vertical displacements of the bridge deck 

over the supports are restricted while the longitudinal 

displacement is only restricted at the left support. For the 

imposition of essential boundary conditions, the penalty 

method (Liu and Gu 2010) is used. The position of the 

hangers has been specified on the free cable. The three 

components of the displacement-dependent wind loads are 

only applied on the bridge deck and the effects of the 

aerostatic forces on the hangers and main cable are 

neglected. 

Table 1 Deflections at the free end of the cantilever beam 

 
L

u
 

L

v
 θ  

CPU 

time (s) 

 

2PL

EI
 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 

Method          

EFG 0.00263 0.01037 0.00230 0.0662 0.1390 0.1937 0.09959 0.19732 0.2913 58.21 

FEM 0.00273 0.01072 0.02397 0.06654 0.13233 0.196641 0.09972 0.19781 0.29268 27.3 

Mattiasson 

(Mattiasson 1

981) 

0.00265 0.01035 0.02249 0.06636 0.13098 0.19235 0.09964 0.19716 0.29074 - 
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A , The cross sectional of area; E , modulus of 

elasticity; 2I , out-of-plane moments of inertia; 3I , in- 

 

 

Fig. 9 Comparison of the torsional displacement of the deck 

at various wind velocities 

 

Table 5 Comparison of critical wind speed in suspension 

bridge based on two methods 

Type of 

analysis 

Nonlinear 

aerostatic 

stability 

(Presented study) 

Linear aerostatic stability 

(Xiang et al. 1996) 

Lateral- 

torsional 

buckling 

Torsional 

divergence 

Critical 

wind speed 

 m
s

 
130 165 136 

 

 

plane moments of inertia; J : St. Venant constant;  m , 

mass per unit length. 

 

6.1 Aerostatic stability  
 

  
(a) Lateral displacement (b) Torsional displacement 

 
(c) Vertical displacement 

Fig. 8 Responses at the center node of the main span, Comparison between aerostatic stability analysis including and 

excluding displacement-dependent wind loads (a) Lateral displacement (b) Torsional displacement (c) Vertical displacement 
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Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method 

In the present study, the linear and nonlinear aerostatic 

analysis are considered to investigate the torsional 

divergence of mentioned suspension bridge under 

displacement-dependent wind loads. In nonlinear analysis, 

the three components of displacement-dependent wind 

loads in addition to geometric nonlinearity are 

simultaneously considered. For comparison of computed 

results, the structural analysis has been also performed 

based on the linear theories in which the effect of torsional 

displacement of structure on the aerostatic forces is 

disregarded. It should be pointed out that aerostatic analysis 

under the initial wind attack angle equal to zero are carried.  

Figs. 8(a), 8(b), and 8(c) indicate the lateral, torsional 

and vertical responses at the center node of the main span of 

bridge structure versus wind velocity. The presented results 

in Fig. 8 refer to the analysis based on including three 

components of displacement-dependent wind loads and 

excluding displacement-dependent wind load. It can be 

observed in the figures that the vertical, the lateral and the 

torsional responses for nonlinear analysis are larger than 

those for the condition of linear analysis at the same wind 

velocity. Hence, it can be stated that when the wind velocity 

reaches higher values, near to what might be the critical 

velocity of investigated suspension bridge, the differences 

between the responses of the linear and nonlinear analysis 

would appear. So it can be stated that the nonlinear effects 

caused by the deformation of the bridge deck influence the 

displacement responses of long-span suspension bridge and 

nonlinearity of the displacement responses of bridge under 

the displacement-dependent wind loads is observed. 

Fig. 9 presents a comparison between the torsional 

responses of the bridge deck at several wind velocities 

along the bridge deck. It can be seen that torsional response 

of the deck increases significantly as wind speed increases. 

Also, results indicate that in wind speed 130 m/s in 

investigated bridge, increasing of torsional displacement is 

more obvious and it expects occurring torsional instability 

in studied bridge. The computed speed in this study is 

compared with linear aerostatic stability analysis of Xiang 

et al. (1996) based on simplified formula of torsional 

divergence and lateral-torsional buckling, as shown in Table 

5. It can be also observed from Table 5 that the linear 

aerostatic stability analysis estimates more critical wind 

speed in contrast to nonlinear aerostatic stability analysis 

presented in this study. Generally, investigation of results 

obtained by the EFG method show that this method 

provides the suitable results in the aerostatic stability of 

suspension bridge. 

 

 

7. Conclusions  
 

An EFG structural solver is developed to predict 

aerostatic stability analysis of suspension bridge with a 

main span of 888 meters. The simultaneous influences of 

the geometric nonlinearity of structure and the three 

components of displacement-dependent wind loads on 

torsional divergence analysis of long-span suspension 

bridges are considered. Also, the numerical simulation has 

accounted for the elastic material properties. 

The authors have implemented the EFG method in a 

program in the MATLAB software framework. Efficiency 

and accuracy of the implementation is verified through two 

examples of cantilever beam and suspended cable. The 

results of the EFG method indicate suitable accuracy in 

solution of large deformation structural problems. Although 

the EFG method does entail more computational costs for 

the analysis than methods based mesh, this shortcoming 

may be compensated by the ease of node generation task for 

the modeling of the problem domain in EFG method. The 

time consumption of EFG solver arises from the need to 

find the nodes within the domain of support of each Gauss 

point. However, since in EFG method for a problem domain 

does not require any mesh generation, total modeling efforts 

are less than based mesh methods like FEM. Meanwhile, 

EFG method obtains more accuracy results compared to the 

classical FEM.  

Finally, in order to evaluate the performance of the EFG 

method, the numerical example of a long-span suspension 

bridge is investigated under wind loads to be the function of 

the torsional displacement of structure. The nonlinear 

effects induced by the static wind-structure interactions 

have affected the vertical, lateral and torsional 

displacements. Nonlinearity of the displacement responses 

of bridge structure under the displacement-dependent wind 

loads are observed. Therefore, in order to evaluate the 

aerostatic stability of long-span suspension bridges, 

nonlinear effects induced by the wind-structure interactions 

should be adopted. 

Generally, the obtained results indicate that the EFG 

method is practical, and effective for                   

modeling suspension bridge structure and also investigating 

the torsional divergence of suspension bridge. Finally, based 

on the numerical investigations of present work, we would 

highly recommend using the EFG method for analyzing the 

large deformation of structural cases under displacement-

dependent wind loads which provides very promising 

method for analysis on stability of long-span suspension 

bridges under aerostatic forces.  

However improving the techniques for finding the 

associated nodes of each support domain can speed up the 

computational procedure of the developed EFG solver for 

structures with large deformation. 
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