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1. Introduction  
 

In coastal engineering, submerged structures are used as 

breakwaters to protect the coastline and coastal structures 

from high wave attack. These breakwaters are environment-

friendly as allowing water exchange between the sea and 

lee sides of those. Furthermore, their installation does not 

depend on the seabed condition as they can be easily 

installed or removed from the site, keeping a less footprint 

on the sea bed. In addition, they are economical compared 

with the traditional bottom-mounted breakwaters. In the 

marine environment, the other applications of submerged 

structures are artificial reefs, observatories, and submerged 

tunnels (Chakrabarti et al. 2008, Huang et al. 2016). 

A number of studies (Patarapanich 1984, Patarapanich 

and Cheong 1989, Liu and Iskandarani 1991, Porter 2015, 

Behera and Sahoo 2015) have been carried out on the wave 

interaction with a thin horizontal submerged plate that is 

used to attenuate the wave height in the coastal region. 

Using potential water wave theory, they solved this problem 

and computed the reflected and transmitted wave energy to 

show the efficiency of a submerged plate as a breakwater. 

On the other hand, Wang and Shen (1999) using linear 

potential theory computed wave reflection and transmission 

by a group of submerged plates which are placed 

horizontally on a vertical line. They observed that the 

reflection and transmission coefficients depend on the plate  
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length and the depth of the plates from the free water 

surface. The wave transmission decreases with the increase 

in the length of the plates. Mondal and Banerjea (2016) 

considered an inclined submerged porous plate in the ocean 

in the presence of an ice-covered surface and investigated 

the wave energy attenuation. They presented the reflection 

and transmission coefficients computed numerically for 

different physical parameters. They observed that due to the 

presence of inclined submerged plate, the reflection and 

transmission wave energy reduces. 

In the above-mentioned studies, the plate thickness was 

not considered in the formulation of the problem. However, 

many researchers (Kojima et al. 1994, Cheong et al. 1996, 

Williams and McDougal 1996, Hu et al. 2002, Rahman et 

al. 2006, Zheng et al. 2007a, Peng et al. 2013) investigated 

the problem of water wave scattering by submerged 

rectangular blocks of finite thickness. Cheong et al. (1996) 

solved the problem of wave interaction with a fixed 

submerged body using eigenfunction expansion method 

(EEM) and finite element method (FEM). They numerically 

computed the reflection, transmission coefficients, and 

hydrodynamic forces acting on the submerged body. They 

observed that the EEM has a good agreement with FEM. 

Williams and McDougal (1996) adopted eigenfunction 

expansion technique and solved the problem of wave 

interaction with submerged structure. The derived solution 

was used to compute hydrodynamic force, added mass, 

reflection, and transmission coefficients. Furthermore, the 

computed results were compared with the results obtained 

from the model test and reasonable agreement was 

exhibited. The minimum transmission occurred near the 

surge natural frequency, with the radiated and diffracted 

waves having the same amplitudes in 180o phase. Zheng et 
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al. (2007a) solved the problem of oblique wave scattering 

by an infinitely long rectangular submerged structure, using 

the variable separation and eigenfunction expansion 

matching methods. They presented numerical results for 

reflection and transmission coefficients, and hydrodynamic 

forces acting on the submerged body. Zheng et al. (2007b) 

studied the radiation and diffraction of linear water waves 

by a submerged structure in the presence of a vertical wall. 

They estimated the hydrodynamic forces acting on the 

submerged body and vertical wall. The hydrodynamic 

forces acting on the submerged body were periodic in 

nature, and the amplitude of forces decreased with the 

increase of the wavenumber and submergence depth.  

In the aforementioned studies, a single submerged block 

was considered to investigate the problem of wave structure 

interaction. To the authors’ knowledge, a few studies (Liu et 

al. 2009, Medina-Rodriguez and Silva 2018) are found on 

the wave interaction with multiple submerged blocks. Liu et 

al. (2009) used the eigenfunction expansion method to 

investigate the hydrodynamic performance of two side-by-

side submerged horizontal breakwaters of equal width but 

of different thicknesses. They identified that the spacing 

between the two breakwaters does not influence much on 

the reflection of water waves. 

In the above studies, the water depth was considered 

uniform. However, submerged structures commonly are 

installed near the coastline where the water depth is not 

uniform in general. Therefore, it is required to study the 

hydrodynamic performance of submerged structures in the 

presence of an uneven bottom. For simplicity, we consider a 

step bottom in the present study. Furthermore, these 

breakwaters are commonly used to protect bottom-mounted 

coastal structures such as vertical wall, jetties or wharfs and 

continental shelves, behaving as a vertical wall. Therefore, 

in the present study a vertical wall is also considered.  

Recently, Mondal and Takagi (2016, 2019) studied wave 

scattering by a fixed submerged body in infinite and semi-

infinite fluid domains. They computed the hydrodynamic 

forces acting on the submerged body. They observed that 

the bottom effect needs not to be considered if h/H > 0.9, 

where h and H are the water depths in shallower and deeper 

regions, respectively. In addition, they computed the 

amplitude of free water surface elevation and observed that 

the wave amplitude in the lee side is smaller than that of the 

seaside of submerged breakwaters. Thus, the submerged 

breakwater can provide a relatively calm region on the lee 

side. In the present study, we extend the work of Mondal 

and Takagi (2019) by considering two identical submerged 

blocks in both cases of infinite and semi-infinite fluid 

domains. In the presence of two submerged blocks, the 

model configuration domain differs from the work of 

Mondal and Takagi (2019). It was not possible to compute 

the hydrodynamic behavior from Mondal and Takagi’s 

(2019) work by induction. We thus need to solve the present 

problem separately to understand the hydrodynamic 

behavior in the presence of two submerged blocks. Our aim 

is to solve the problem analytically using the eigenfunction 

expansion method and to compute the hydrodynamic forces 

acting on the submerged blocks and vertical wall for 

different geometrical parameters. Like other coastal  

 

Fig. 1 Schematic view of submerged blocks and step bottom 

in infinite fluid domain 

 

 

structures, submerged blocks are pile-supported and for 

simplicity the pile effect is not incorporated in this study. 

The present study is of application in the design of multiple 

submerged horizontal block-type breakwaters used for 

mitigating wave attacks and coastal morphology control (Yu 

2002, Wang et al. 2006). 

 

 

2. Problem statement and solution 
 

The problem of wave interaction with two identical 

rectangular blocks fixed and submerged is studied for 

infinite and semi-infinite fluid domains under the 

assumption of small amplitude linear water wave theory. 

The problem statement and solution for infinite and semi-

infinite cases are presented in subsequent subsections 2.1 

and 2.2, respectively. In the present study, the three-

dimensional Cartesian coordinate system is used such that 

the x-y plane represents mean free surface and the z-axis is 

vertically upward, with the origin located above the centers 

of the breakwaters (Fig. 1). 

 

2.1. Infinite fluid domain 
 

The side view of the submerged breakwaters (blocks), 

which are infinitely extended along the y-axis, in the infinite 

fluid domain is shown in Fig. 1. The two blocks (B1 and 

B2), each of width 2d and thickness s, are placed over the 

step at a depth h1 and h3, respectively, from the mean free 

surface. The gap spacing between the two breakwaters is 

denoted by 𝑐1= h3 – h2 (Fig. 1). At the seabed, a finite step 

at x = d is considered, with the water depth changing from 

H to h (< H). Depending on the geometrical configuration, 

the fluid domain is divided into five regions, R1: d < x < ∞, 

– H < z < η; R2: – d < x < d, – h1 < z < η; R3: – d < x < d, 

– h3 < z < – h2; R4: – d < x < d, – h < z < – h4 and R5: – ∞ 

< x < – d, – h < z < η, where η is the free surface elevation 

from the mean water level. 

The fluid of density ρ is considered inviscid, 

incompressible. The fluid motion is irrotational and simple 
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harmonic in time, having angular frequency ω. Considering 

the small-amplitude water wave theory, the oblique water 

wave is adopted. It is also assumed that the incident waves 

propagate, making an angle θ with the positive x-axis. Thus, 

the velocity potential Φ(x,y,z,t) can be written as 
( )

( , , , ) Re[ ( , ) ]yi k y t
x y z t x z e





  , where Re represents the 

real part and ky = k0 sin θ being the y-component of the 

incident wavenumber k0. Therefore, the spatial velocity 

potential ( , )x z satisfies the Helmholtz equation 

2 2
2

2 2
0,yk

x z


  
   

  
 (1) 

in the fluid domain.  

Linearized free surface boundary condition at z = 0 is 

2

0,
z g

 



 


 (2) 

where g is the acceleration of gravity. As fluid does not 

penetrate through the seabed, the boundary conditions are 

as follows 

0,  at ,   and ,  z H d x z h x d
z


          


 (3a) 

0,  at ,  .x d H z h
x


     


 (3b) 

The boundary conditions on the rigid submerged 

breakwaters are prescribed as 

2 2 10,  at ,  ,j jx d h z h
x





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
 (4a) 

2 1 20,  at z ,  ,j jh h d x d
z





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
 (4b) 

where j = 1 and 2 indicate the submerged blocks B1 and B2, 

respectively.  

Along with the above boundary conditions, the velocity 

potential ϕ(x, z) satisfies the far-field radiation condition 

 0 0( ) ( ) 0

0

cosh ( )
( , ) ,  

cosh

                                                          as ,

x xik x d ik x d k H z
x z Ie Re

k H

x
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 
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 (5a) 

0 ( ) 0

0

cosh ( )
( , ) ,  as ,
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xi x d h z

x z Te x
h

 




  
   (5b) 

where I and R are associated with the incident and reflected 

wave heights, respectively, in region R1, and T is associated 

with transmitted wave height in region R5. The quantities 

k0x = k0 cos θ and 
0 0 cosx    are the x-component of 

the incident wavenumber k0 and transmitted wavenumber 

0 , respectively, where  is the wave angle of the 

transmitted waves with the x- axis. 

Using the eigenfunction expansion method, the velocity 

potentials ϕ(x, z) for each region Rl (where l = 1, 2, 3, 4 and 

5) are computed. The velocity potentials ϕ1(x, z) satisfy Eq. 

(1) along with the boundary conditions as in Eqs. (2) - (5). 

Proceeding in a similar manner as in Mondal and Takagi 

(2019), the velocity potentials ϕ1(x, z)
 
for each domain Rl 

are expressed as 

0 ( ) ( )

1 0

0

( ) ( ),x nxik x d ik x d

n n

n

Ie f z A e f z


  
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where {Xn}≡ {An, Bn, Cn, Dn, En, Fn, Gn, Hn} are unknown 

constants to be determined to know the velocity potentials 

completely. The eigenfunctions fn(z), ψn(z), φn(z), xn(z) and 

gn(z) are given by  

cosh ( )
( ) ,  for 0,1, 2,...,  and

cosh

n

n

n

k H z
f z n

k H


   (11) 

3

1,  for 0
( )

cos ( ),  for 1, 2,... .
n

n

n
z

p h z n



 

 
 (12) 

The eigenfunctions φn(z) and gn(z) can be obtained from 

Eq. (11) replacing (kn, H) by 
1( , ) and ( , ),n nh h   

respectively. In addition, the eigenfunction 
nχ (z)  as 

appearing in Eq. (9) can be obtained from Eq. (12) by 

replacing pn and h3 by qn and h, respectively. The quantities, 

knx, μnx, pnx, qnx and κnx, which appear in Eqs. (6) - (10) are 

of the form 

2 2 2 2 2 2

2 2 2 2

,   ,    ,   

,   ,

nx n y nx n y nx n y

nx n y nx n y

k k k p p k q q k

k k   

     

   
 (13) 

With pn = nπ/(h3-h2) and pn = nπ/(h-h4). The wavenumber 

( , , )n n n nk    and associated water depth 
1( , , )H h h   

satisfy the dispersion relation 

2 tanh ,   0,1,2,....n ng n      (14) 

The eigenfunctions ( ),  ( )n nf z z  and ( )ng z  

appearing in Eqs. (6), (7) and (10), respectively satisfy the 

following orthogonal relations 

0

( ) ( ) ,m n n mn

H

f z f z dz 


 C  (15) 
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0

( ) ( ) ,m n n mn

H

f z f z dz 


 C  (15) 

1

0

( ) ( )    andm n n mn

h

z z dz  


 D  (16) 

0

( ) ( ) ,m n n mn

h

g z g z dz 


 H  (17) 

 

for m, n = 0, 1, 2, …, and 
mn  is the Kronecker delta and 

the orthogonality constant 
nC  is of the form 

2

2 sinh 2

4 cosh

n n

n

n n

k H k H

k k H


C ,  n = 0, 1, 2,…. (18) 

The orthogonality constants Dn and Hn can be obtained 

from Eq. (18) replacing (kn, H) by 
1( , )n h  and ( , )n h , 

respectively. On the other hand, the eigenfunctions ( )n z  

and ( )n z appearing in Eqs. (8) and (9), respectively, 

satisfy the orthogonal relations 

2

3

( ) ( )

h
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h

z z dz  


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 Y , and (19) 
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h
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h

z z dz  





 Z  (20) 

for m, n = 0, 1, 2, … and the orthogonality constant 
nY  is 

of the form 

2

3

3

1n n

h
h

h


 
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 
Y , n = 0, 1, 2,… (21) 

where 
n = 1 for n = 0, else 

n = 1/2. The orthogonality 

constant nZ  can be obtained from Eq. (21) by replacing h2 

and h3 by h4 and h, respectively. 

For the computation of unknowns {Xn}, the continuities of 

velocity and pressure are introduced at the interfaces x = ± d 

in the following forms 

11
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l
x x
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where suffix l = 1, 2 and 3 are associated with the spacing 

1 0h z   , 3 2h z h    , and 4h z h    , 

respectively. The matching conditions (Eqs. (22), (23)), 

boundary conditions (Eqs. (3b), (4a)), and the orthogonal 

relations (Eqs. (15) – (17), (19) – (20)) are used to obtain a 

system of algebraic equations of unknowns {Xn} which 

appear in Eqs. (6) – (10). 

First, we consider the matching conditions of pressure at 

x = d as defined in Eqs. (22), and (23) along with the 

orthogonality relations of ( ),  ( )n nz z   and ( )n z  as 

defined in Eqs. (16), (19) and (20), respectively, which 

yield the system of equations 

1
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where m = 0, 1, 2, …. Again, considering the first relations 

of Eqs. (22) and (23) at x d   and applying the 

orthogonality relations of ( ),  ( )n nz z  and ( )n z as in 

Eqs. (16), (19) and (20), we obtain 
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0
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where m = 0, 1, 2, …. The no flow boundary conditions 

(Eqs. 3b, 4a) and the continuity of velocity (Eq. 22) at x = d, 

along with the orthogonality relation of fn(z) (Eq. 15) yield 

0 0 0 0( ) ,    ,x mx m m mik I A J k A J  C C  (30) 

where Jm is given by 
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for m = 0, 1, 2, …. Lastly, we consider the no-flow 

boundary condition (Eq. 4a), matching condition of velocity 

(Eq. (23)) at x d  and implement the orthogonality 
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condition of gn(z) (Eq. 17) which give 

0 0 0 0 ,    ,mx mx m mJ i H J H   H H  (32) 

where 
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where m = 0, 1, 2,… Eqs. (24) - (30) and (32) represent a 

system of linear algebraic equations of unknowns {Xn}, n = 

0, 1, 2,… which appear in velocity potentials ,l  l = 1, 2, 

3, 4 and 5. For the purpose of numerical computation, we 

need to truncate the infinite series over n for a large value of 

n = N for which the infinite series converges. Suppose, the 

infinite series over An, Bn, Cn, Dn, En, Fn, Gn and Hn 

converge for n = N1, N2, N3, N4, N5, N6, N7 and N8, 
respectively. Therefore, Eqs. (24 – 30) and (32), yield 

8

1

( 1)j

j

N


  linear algebraic equations having the same 

number of unknowns. For the purpose of simplicity, we 

consider N = max{N1, N2, …, N8}. This gives the total 

number of (8N+8) algebraic equations having the same 

number of unknowns. The solution of the above system of 

equations (Eqs. (24) – (30) and (32)) provides the velocity 

potentials completely. 

 

2.2. Semi-infinite fluid domain 
 

In the present subsection, we formulate and solve the 

problem of wave diffraction by two submerged breakwaters 

and a step bottom in the case of semi-infinite fluid domain. 

The geometrical configuration of the fluid domain and 

submerged blocks are considered the same as discussed in 

subsection 2.1, except a vertical rigid wall assumed at x = -

L as in Fig. 2. Considering geometrical configuration, the 

semi-infinite fluid domain can be divided into five regions 

where regions R1 – R4 are the same as defined in the case of 

the infinite fluid domain. The region R5 in the semi-infinite 

fluid domain is given by – L < x < – d, – h < z < η, where η 

is the free surface elevation from the mean water level. We 

assume that the fluid properties are the same as stated in 

subsection 2.1. Hence, the velocity potential 𝜙 satisfies the 

governing Eq. (1) along with the boundary conditions (Eqs. 

(2) – (5a)). In addition, no flux across rigid vertical wall 

yields 

0,    at ,  x L h z
x





     


 (34) 

Proceeding in a similar manner as stated in subsection 

2.1, the velocity potentials are computed in the case of the 

semi-infinite fluid domain and the details are not given here 

to avoid repetition. It is observed that the velocity potentials 

𝜙𝑙, where l = 1, 2, 3 and 4 are associated with regions R1, 

R2, R3 and R4, respectively, are of the same form as defined 

in Eqs. (6) - (9). On the other hand, the velocity potential 

𝜙5 in region R5 is obtained as 

5

0
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
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
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where Hn, n = 0, 1, 2, … are unknown constants. The 

eigenfunction gn(z) and eigenvalues 𝜅𝑛𝑥 are of the same 

form as stated in sub-section 2.1. Considering the matching 

condition at x = d as defined in Eqs. (22); boundary 

conditions (Eqs. 3b, 4a) and orthogonality properties of 

fn(z), ( ),  ( )n nz z   and ( )n z
 

give the same set of 

algebraic equations as defined in  Eqs. (24), (25), (26) and 

(30). Furthermore, using the first relation of Eq. (23) at x = 

– d along with the orthogonality relations of ( ),  ( )n nz z   

and ( )n z , we obtain the same set of algebraic equations 

as in Eqs. (27), (28) and (29). However, the second relation 

of Eq. (23), no flux boundary condition in Eq. (4a) at x = – 

d, and orthogonality relation of gn(z) Eq. (17) give the 

following system of equations 

 

 

0 0 0 0

0

tan ( ) ,    

tanh ( ) ,   0,1, 2,...

x x m

m n nx x m

J H L d

J H L d m

 

 

  

   

H

H

 (36) 

where 
mJ  is of the same form as defined in Eq. (33). As 

done in the case of the infinite fluid domain, in the semi-

infinite fluid domain we solve the system of Eqs. (24) – 

(30) and (36) to find out the unknown constants {Xn}. 

 

 

3. Results and discussion 
 

In this section, hydrodynamic forces acting on the 

submerged blocks and vertical wall are discussed for 

different physical parameters. The horizontal force (Fx1, Fx2) 

and vertical force (Fz1, Fz2), where subscripts 1 and 2 

represent the blocks B1 and B2, respectively, are computed 

by 

    
2 1

2

1 5, , ,   1, 2

j

j

h

xj

h

F i d z d z dz j  
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     and (37) 
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d

F i x h x h dx j    
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    (38) 

The hydrodynamic force (Fxw) acting on the vertical 

wall at x = – L is evaluated by 

0

5 ( , )xw

h

F i L z dz 


   (39) 

The hydrodynamic forces and free surface elevation in 

the non-dimensional form are 

* * *,   ,   ,
xj zj xw

xj zj xw

a a a

F F F
F F F

gH gH gH     
    (40) 

where j = 1, 2; and a  is the incident wave amplitude. The  
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numerical results for the infinite and semi-infinite fluid 

domains are discussed in subsections 3.1 and 3.2, 

respectively. 

 

3.1. Infinite fluid domain 
 

In this section, the hydrodynamic wave forces acting on 

the submerged blocks are computed which can be used for 

the modeling of submerged break waters,  reefs, 

observatories and submerged tunnels. In Section 2, we have 

stated that the infinite series appearing in Eqs. (6) - (10) are 

truncated at n = N. Therefore, before doing extensive 

numerical computations, it is required to find the minimum 

value of N for which the numerical results converge. Here, 

we find out the minimum value of N numerically. To 

examine the convergence, the horizontal and vertical forces 

acting on the submerged blocks B1 and B2 are computed 

for different values of k0H = 0.5, 2, 4 and 8, and N = 0, 5, 

10, 20, 40, 60 and 80 where the values of different 

geometrical parameters are chosen as h/H = 0.75, h1/H = 

0.2, h3/H = 0.5, s/H = 0.1, d/H = 0.25, and θ = 30o. In all  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

other numerical computations, we considered the above 

numerical values of geometrical parameters unless it is 

mentioned. The horizontal and vertical forces acting on the 

blocks B1 and B2 are presented in Table 1 and Table 2, 

respectively. From Tables 1 and 2, it is observed that in all 

the cases, the hydrodynamic forces acting on the submerged 

blocks are correct up to three decimal places for N = 40, 60 

and 80. Therefore, N = 40 is adequate for the purpose of 

numerical computation which gives 328 linear algebraic 

equations having the same number of unknowns. These 

equations are solved to compute hydrodynamic forces 

which are presented in Figs. 3 - 6. 

Furthermore, to show the accuracy of the present 

computation, we compare the present result with the 

computed result of Mondal and Takagi (2019). They 

considered the problem of water wave scattering by a fixed 

submerged block in the presence of a step bottom. 

Presently, the thickness s/H of block B2 and gap spacing 

𝑐2/𝐻,(𝑐2 = h - h4) cannot be set to zero. Therefore, we 

considered a sufficiently small value of s/H = 0.0001 (for 

block B2) and 𝑐2/𝐻 = 0.0001. In Fig. 3, the horizontal and  

Table 1 Horizontal and vertical forces acting on block B1 in infinite fluid domain 

N 
Horizontal Force Vertical Force 

k0H=0.5 k0H =2.0 k0H=4.0 k0H=8.0 k0H=0.5 k0H=2.0 k0H=4.0 k0H=8.0 

0 0.0400 0.0829 0.066 0.0266 0.0765 0.2956 0.1984 0.0867 

5 0.0447 0.0967 0.0738 0.0272 0.0889 0.3749 0.2344 0.0923 

10 0.0460 0.0989 0.0747 0.0260 0.0919 0.3824 0.2369 0.0924 

20 0.0466 0.0998 0.0751 0.0255 0.0920 0.3827 0.2367 0.0923 

40 0.0467 0.1000 0.0751 0.0253 0.0924 0.3845 0.2374 0.0925 

60 0.0468 0.1000 0.0751 0.0253 0.0926 0.3849 0.2375 0.0925 

80 0.0468 0.1001 0.0751 0.0253 0.0926 0.3849 0.2376 0.0926 

Table 2 Horizontal and vertical forces acting on block B2 in infinite fluid domain 

N 
Horizontal Force Vertical Force 

k0H=0.5 k0H =2.0 k0H=4.0 k0H=8.0 k0H=0.5 k0H=2.0 k0H=4.0 k0H=8.0 

0 0.0356 0.0512 0.0291 0.0031 0.0178 0.0839 0.0863 0.0086 

5 0.0358 0.0551 0.0322 0.0028 0.0129 0.0945 0.0836 0.0032 

10 0.0373 0.0567 0.0324 0.0021 0.0127 0.0981 0.0849 0.0038 

20 0.0378 0.0574 0.0328 0.0019 0.0127 0.0977 0.0848 0.0035 

40 0.0378 0.0575 0.0328 0.0019 0.0126 0.0983 0.0849 0.0036 

60 0.0379 0.0576 0.0328 0.0019 0.0126 0.0985 0.0849 0.0036 

80 0.0379 0.0576 0.0328 0.0019 0.0126 0.0985 0.0849 0.0037 

  

Fig. 3 Comparison of present result (blue line) with Mondal and Takagi’s (2019) (red circles) 
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vertical forces acting on the block B1 are plotted against 

k0H with h1/H = 0.2 and s/H = 0.1, thickness of block B1. 

Fig. 3 depicts that both the horizontal and vertical forces 

computed from the present case (blue line) have a good 

agreement with those computed by Mondal and Takagi 

(2019) (red circle) which illustrate the accuracy of the 

present computation. 

In Fig. 4, hydrodynamic horizontal forces acting on the  

 

 

submerged blocks B1 and B2 are plotted as functions of 

non-dimensional wavenumber k0H for different values of 

block thickness s/H (= 0.1, 0.15, and 0.2), with h1/H = 0.2 

and h3/H = 0.5. Fig. 4 shows that, with the increase of k0H, 

the forces initially grow and reach maxima before 

progressively declining to zero. The maximum force on 

body B1 occurs at k0H = 2.0, 1.86 and 1.63 for the thickness 

s/H = 0.1, 0.15 and 0.2, respectively, whereas that on body  

  

Fig. 4 Variations in horizontal forces on blocks (a) B1 and (b) B2 with k0H for different values of thickness s/H. h1/H = 0.2; 

h3/H = 0.5 

  

Fig. 5 Variations in horizontal forces on blocks (a) B1 and (b) B2 with k0H for different values of submergence depth h1/H of 

the upper block B1. h3/H = 0.5; s/H = 0.1 

  

Fig. 6 Variations in vertical forces on blocks (a) B1 and (b) B2 with k0H for different values of submergence depth h1/H of the 

upper block B1. h3/H = 0.5; s/H = 0.1 
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B2 prevails at k0H = 1.47, 1.25 and 1.06. That is, the k0H 

corresponding to the maximum force is inversely related to 

s/H. The force on the submerged body increases with the 

increase of the thickness because the frontal surface area 

increases with the increase of thickness. In the case of the 

upper body B1, the force tends to zero at k0H ≈ 11, whereas 

in the case of lower body B2, the force becomes zero for 

smaller values of k0H ≈ 8.5. Furthermore, for a given s/H, 

the upper body undergoes more force than the lower body 

(Fig. 4a, b). This happens as the hydrodynamic pressure 

decrease with the increase in the water depth. We observed 

that the thickness had a negligible effect on the vertical 

component of hydrodynamic force acting on the submerged 

blocks B1 and B2 (results are not shown here). 

Variations in the horizontal hydrodynamic force acting 

on blocks B1 and B2 with k0H are presented in Fig. 5 for 

three different values of submergence depth of block B1 

(h1/H = 0.2, 0.25 and 0.3) when h3/H = 0.5 and s/H = 0.1. 

For the same initial conditions (e.g. h3/H = 0.5 and s/H = 

0.1), the vertical forces acting on blocks B1 and B2 are 

computed as presented in Fig. 6. Both horizontal and 

vertical forces escalate with the increasing k0H up to k0H = 

1.39 – 3.08 (depending on h1/H) and drop with a further 

increase in k0H. The horizontal and vertical forces on block 

B1 become negligible for k0H ≥ 12.6 and k0H ≥ 15, 

respectively. However, the forces acting on block B2 tend to 

zero for smaller values of k0H ≥ 10 (horizontal force) and 

k0H ≥ 7.78 (vertical force). The horizontal and vertical 

forces acting on block B1 is always greater than those 

acting on block B2. Furthermore, the forces decrease with 

the increase in the submergence depth of block B1. 

 

3.2 Semi-infinite fluid domain 
 

In this subsection, the results associated with the semi-

infinite fluid domain are discussed. For the semi-infinite 

fluid domain, we need to find out the minimum value of N  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for which numerical results converge. For the numerical 

computation of hydrodynamic forces, the vertical wall is 

assumed at a distance L/H = 1.0 and the values of other 

parameters are assumed the same as adopted for the infinite 

fluid domain under subsection 3.1. To check the 

convergence numerically, the hydrodynamic horizontal and 

vertical forces on blocks B1 and B2 are calculated for four 

different values of k0H = 0.5, 2, 4 and 8, and N = 0, 5, 10, 

20, 40, 60 and 80. The magnitudes of forces acting on 

blocks B1 and B2 are tabulated in Tables 3 and 4, 

respectively. The forces are correct up to three decimal 

places for N ≥ 40. This value is the same as obtained in the 

case of the infinite fluid domain. Thus, N = 40 is adequate 

for numerical computation. 

In support of the present computation, for the limiting 

case, we compare the results computed from the present 

solution with the result of Mondal and Takagi (2019) who 

considered the problem of wave scattering by a submerged 

block in the semi-infinite fluid domain (Fig. 7). As stated in 

subsection 3.1, we cannot consider zero thickness of block 

B2. Therefore, as a limiting case we substitute s/H = 0.0001 

(for block B2) and 𝑐2/𝐻 = 0.0001, which are the same 

considered in the infinite fluid domain (subsection 3.1). The 

numerical values of the other geometrical parameters are 

h/H =0.75, h1/H = 0.25, s/H = 0.2, L/H = 1.0 and θ = 30o. 

From Fig. 7, it is observed that both results agree well with 

each other. This shows the efficiency of the present solution 

In the semi-infinite fluid domain, the hydrodynamic 

horizontal and vertical forces acting on the submerged 

blocks B1 and B2 are shown in Figs. 8 - 13, whereas Figs. 

14, 15 and 16 present the hydrodynamic force acting on the 

vertical wall. Fig. 8 displays the horizontal forces acting on 

blocks B1 and B2 as functions of k0H for s/H = 0.1, 0.15, 

and 0.2, where blocks B1 and B2 are considered at depths 

h1/H = 0.2 and h3/H = 0.5, respectively. For the same 

configurations, the vertical forces are presented in Fig. 9. 

Interestingly, the dependence of the forces on k0H in the  

Table 3 Horizontal and vertical forces acting on block B1 in semi-infinite fluid domain 

N 
Horizontal Force Vertical Force 

k0H=0.5 k0H =2.0 k0H=4.0 k0H=8.0 k0H=0.5 k0H=2.0 k0H=4.0 k0H=8.0 

0 0.0431 0.1438 0.0673 0.0367 0.1856 0.0338 0.2130 0.1202 

5 0.0553 0.1647 0.0819 0.0355 0.2490 0.0038 0.3050 0.1455 

10 0.0576 0.1663 0.0868 0.0348 0.2525 0.0030 0.3106 0.1455 

20 0.0580 0.1679 0.0896 0.0349 0.2529 0.0038 0.3164 0.1459 

40 0.0583 0.1680 0.0905 0.0348 0.2541 0.0045 0.3199 0.1459 

60 0.0583 0.1680 0.0908 0.0348 0.2545 0.0047 0.3199 0.1459 

80 0.0584 0.1681 0.0909 0.0348 0.2546 0.0048 0.3199 0.1459 

Table 4 Horizontal and vertical forces acting on block B2 in semi-infinite fluid domain 

N 
Horizontal Force Vertical Force 

k0H=0.5 k0H =2.0 k0H=4.0 k0H=8.0 k0H=0.5 k0H=2.0 k0H=4.0 k0H=8.0 

0 0.0443 0.1112 0.0357 0.0056 0.0724 0.3980 0.1135 0.0096 

5 0.0589 0.1236 0.0343 0.0036 0.1268 0.4356 0.0244 0.0201 

10 0.0598 0.1271 0.0340 0.0038 0.1263 0.4421 0.0249 0.0207 

20 0.0601 0.1271 0.0331 0.0034 0.1265 0.4430 0.0192 0.0214 

40 0.0603 0.1272 0.0327 0.0033 0.1272 0.4440 0.0159 0.0214 

60 0.0604 0.1272 0.0325 0.0033 0.1275 0.4441 0.0152 0.0214 

80 0.0604 0.1272 0.0325 0.0033 0.1275 0.4441 0.0150 0.0214 
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Fig. 7 Comparison of present result (blue line) with Mondal and Takagi’s (2019) (red circles) 

  

Fig. 8 Variation of horizontal force on blocks (a) B1 and (b) B2 with k0H for different values of thickness s/H. h1/H = 0.2; 

h3/H = 0.5 

  

Fig. 9 Variation of vertical force on blocks (a) B1 and (b) B2 with k0H for different values of thickness s/H. h1/H = 0.2; h3/H = 0 

  

Fig. 10 Variation of horizontal force on blocks (a) B1 and (b) B2 with k0H for different values of h1/H. h3/H = 0.5; s/H = 0.1 
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semi-infinite domain is different from that in the infinite 

domain (Figs. 4, 8, 9). The horizontal forces increase and 

decrease in a damped wavy pattern (Figs. 8 and 9). It is 

expected that minimum and maximum values occur 

repeatedly owing to the interaction of incident waves and 

reflected waves from the vertical wall. The horizontal force 

on block B1 is negligible for k0H > 11. This value is the  

 

 

 

same as obtained in the infinite fluid domain. However, it is 

smaller (k0H > 7) for block B2. The horizontal force on 

block B1 is zero at k0H = 0.01, 3.01, and 7.02, irrespective 

of s/H. Obviously, the periodicity of the force to be zero is 

not constant, but longer at higher k0H. Similarly, the 

horizontal force on block B2 is zero at k0H = 0.01, 2.62 and 

7.25. The peak magnitude of the force increases with the  

 
 

Fig. 11 Variation of vertical force on blocks (a) B1 and (b) B2 with k0H for different values of h1/H. h3/H = 0.5; s/H = 0.1 

  

Fig. 12 Variation of horizontal force on blocks (a) B1 and (b) B2 with k0H for different values of gap spacing c1/H. h1/H = 0.2; 

h3/H = 0.5; s/H = 0.1 

  

Fig. 13 Variation of vertical force on blocks (a) B1 and (b) B2 with k0H for different values of gap spacing c1/H. h1/H = 0.2; 

h3/H = 0.5; s/H = 0.1 
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Fig. 14 Non-dimensional hydrodynamic force on vertical 

wall for different values of d/H as a function of k0H where 

L/H = 1.0 and θ = 30o 

 

 

Fig. 15 Force on the vertical wall for different values of 

incident angle θ. h1/H = 0.2, h3/H = 0.5, s/H = 0.1, and L/H 

= 1.0 

 

 

increase in s/H, as expected. On the other hand, the vertical 

force on B1 is not appreciably sensitive to s/H (Fig. 9a). 

However, s/H has a considerable effect on vertical force on 

block B2. 

Figs. 10 and 11 show the variations in the horizontal and 

vertical forces with k0H for h1/H = 0.2, 0.25 and 0.3, with 

h3/H = 0.5 and s/H = 0.1. The horizontal force on block B1 

increases with k0H for k0H = 0.1 – 1.5. Reaching a 

maximum at k0H = 1.5, it declines with further increasing 

k0H and tends to zero. This process continues with the 

increase of k0H, making a wavy pattern of the force. The 

amplitude of maximum horizontal force decreases with the 

increase of k0H, vanishing at larger values of k0H > 11. As 

the submergence depth of the block B1 increases, the k0H 

values corresponding to the occurrence of minimum forces 

get higher (Fig. 10a). The maximum forces wane with 

increasing h1/H. The horizontal force acting on block B2 is 

similar in nature to that on block B1. However, the 

horizontal force on the lower block reaches a maximum at a 

lower value of k0H = 1.15. The effect of h1/H is negligible 

on the horizontal force on block B2 (Fig. 10b). The vertical 

force acting on block B1 or B2 differs from the 

corresponding horizontal force, becoming wavier. 

Figs. 12 and 13 show the horizontal and vertical forces 

acting on the blocks for three different gap spacing c1/H =  

 

Fig. 16 Force on the vertical wall versus incident wave 

angle θ for different values of k0H with h1/H = 0.2, h3/H = 

0.5, s/H = 0.1, and L/H = 1.0 

 

 

0.15, 0.2 and 0.25 when blocks B1 is placed at a fixed depth 

h1/H = 0.2, with s/H = 0.1. The horizontal and vertical 

forces acting on block B1 tends to zero for k0H > 12 and 15, 

respectively (Figs. 12(a), 13(a). However, the forces on 

block B2 are negligible at k0H ≈ 8 and onward. Figs. 12 and 

13 both depict that the hydrodynamic forces vary in a wavy 

fashion with increasing k0H, reaching close to zero at 

different values of k0H. The zero values result from the 

interaction between the incident wave and reflected wave 

from the vertical wall. The upper block (B1) experiences a 

more horizontal hydrodynamic force than the lower block 

(B2). For the upper block, the horizontal force around the 

first peak shrinks with the increase in c1/H. As does that for 

the lower block. The effect of c1/H on the horizontal force 

of the upper block is less than that of the lower block. This 

is because with increasing c1/H the lower block gets closer 

to the seabed. The relationship between the vertical force 

and c1/H is not straight forward as that between the 

horizontal force and c1/H (Fig. 12). With increasing c1/H, 

the vertical force on the upper block decreases for k0H = 

0.01 – 1.9 but enhances for k0H = 1.91 – 5.34. For the lower 

block, c1/H = 0.15 produces the largest force for k0H = 0.01 

– 3.2, but beyond this limit the vertical force does not obey 

any particular law. 

The hydrodynamic force (|𝐹𝑥𝑤
∗ |) acting on the vertical 

wall is plotted in Fig. 14 as a function of k0H for different 

values of d/H (= 0.15, 0.25, 0.4, and 0.6), with h1/H =0.2, 

h3/H = 0.5, and s/H = 0.1. The force on the vertical wall 

does not depend on d/H when k0H > 7.0. There are some 

peaks and valleys at k0H =1-4, with peaks heightening with 

d/H. Furthermore, the peaks or valleys shift to smaller k0H 

when d/H is increased. For example, the peak appearing at 

k0H = 2.01 for d/H = 0.4 shifts to k0H = 1.63 for d/H = 0.6. 

Mondal and Takagi (2019) made a similar observation in 

the case of a single submerged block. 

The influence of incident wave angle θ on 

hydrodynamic force on the vertical wall is illustrated in Fig. 

15. For k0H = 0.01 – 2.44, the hydrodynamic force on the 

wall decreases with the increase in the incident angle. 

However, for k0H > 2.44, the decrease in the force is 

irregular because of a strong interaction between 
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transmitted and reflected waves. For θ = 89o, the wave is 

almost parallel with the vertical wall; the force on the 

vertical wall is therefore approximately zero. 

 

 

4. Conclusions 
 

We have formulated a boundary value problem for 

oblique water wave scattering by two fixed submerged 

blocks in the presence of a vertical step in infinite and semi-

infinite domains. The problem is solved analytically using 

the Fourier expansion method. The velocity potentials are 

described explicitly in terms of infinite series solution. It is 

observed that for the present set of numerical values of 

different physical parameters, hydrodynamics forces 

converge for the truncated value N = 40. Therefore, this 

technique is more convenient than any other numerical 

methods (e.g. finite element method, boundary integral 

method) in terms of cost and computation time. We obtain 

the solution in explicit form. Therefore, the present results 

can be considered as a benchmark to compare with the 

result obtained from numerical techniques.  

The obtained results infer that hydrodynamic horizontal 

and vertical forces acting on the upper block are always 

greater than those acting on the lower block. In the case of 

infinite fluid domain, the forces initially increase with k0H 

and reach maxima before declining with a further increase 

in k0H. On the other hand, in the case of the semi-infinite 

domain, when k0H is increased, the horizontal and vertical 

forces vary in a damped wavy pattern. The occurrence of 

the wavy pattern is ascribed to the interaction between the 

incident and reflected waves. The horizontal force acting on 

the submerged bodies enhances with the increase in block 

thickness s/H. However, s/H has less effect on the vertical 

force than on the horizontal force. With the decrease of 

submergence depth (h1/H), the maximum value of the 

horizontal force increases. The gap spacing (c1/H) has a 

negligible effect on the horizontal force acting on the upper 

block. The force on the lower block rapidly decreases with 

increase c1/H. This is attributed to the fact that the lower 

prism’s depth increases with the increase of c1/H. The 

findings are likely to be useful for the modeling of 

submerged bodies used as breakwater, submerged tunnel, 

observatories. 
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