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1. Introduction 
 

Vortex-induced vibration (VIV) of a flexible circular 

cylinder is widely encountered in engineering areas 

especially in offshore applications, such as subsea cables 

and pipelines. The VIV of these slender bodies exposed to 

ocean currents aggravates their fatigue damage. In practical 

applications, the flexible structures are not always 

perpendicular to the oncoming flow direction but are often 

inclined. The former is widely examined because of its 

simplicity while the latter is scarcely reported although 

representing the most general case in engineering 

applications. 

The proximity of a plane boundary induces complex 

interaction between the wall boundary layer and the 

cylinder shear layers, which significantly affects the flow 

field around the cylinder. The vital parameters influencing 

the interaction are the Reynolds number (Re), boundary 

layer thickness (δ/D), gap ratio (G/D), and cylinder yaw 

angle (), where Re is based on the freestream approaching 

velocity U and cylinder diameter D, and G is the distance  
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between the lower surface of the cylinder and the wall. 

Here, the α is defined as the angle between the oncoming 

flow direction and the cylinder cross-sectional plane, i.e., 

the α = 0° corresponding to the freestream velocity normal 

to the cylinder axis (Hsieh et al. 2016, Younis et al. 2016, 

He et al. 2017, Zang and Zhou 2017, Bai and Alam 2018, 

Derakhshandeh and Alam 2018, 2019a, 2019b, Ji et al. 

2019). For a fixed cylinder (=0) near a plane boundary, 

Bearman and Zdravkovich (1978) and Lei et al. (1999) 

reported that the vortex shedding was suppressed for 0.2 < 

G/D < 0.3 irrespective of G/D = 0.0 - 3.0 examined. At a 

small G/D, the vorticity of the gap-side vortex from the 

cylinder was offset by the reverse vorticity of the boundary 

layer flow; the gap-side shear layer of the cylinder thus lost 

the strength of shedding vortices. Based on the wake 

patterns at different G/D in Wang and Tan (2008a, 2008b) 

and He et al. (2017), four flow regimes were recognized, 

i.e., (i) 0 ≤ G/D < 0.3, the gap-side vortex-shedding of the 

cylinder was weak or completely suppressed; (ii) 0.3 < G/D 

< 1.0, the cylinder gap-side shear layer and the wall 

boundary layer detached from the wall formed 

counterclockwise and clockwise vortices, respectively. 

Strong interactions existed between the vortices and the 

freestream-side vortex of the cylinder; (iii) 1.0< G/D ≤ 2.0, 

periodic vortex shedding appeared on both sides of the 

cylinder while the recirculation length of the boundary layer 

decreased owing to the weakening interaction with the gap-

side vortices; and (iv) G/D >2.0, the wake of the cylinder 

was similar to that of an isolated one. Similar results were 
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Abstract.  Vortex-induced vibrations of a yawed flexible cylinder near a plane boundary are numerically investigated at a 

Reynolds number Ren = 500 based on normal component of freestream velocity. Free to oscillate in the in-line and cross-flow 

directions, the cylinder with an aspect ratio of 25 is pinned-pinned at both ends at a fixed wall-cylinder gap ratio G/D = 0.8, 

where D is the cylinder diameter. The cylinder yaw angle () is varied from 0 to 60 with an increment of 15. The main focus 

is given on the influence of  on structural vibrations, flow patterns, hydrodynamic forces, and IP (Independence Principle) 

validity. The vortex shedding pattern, contingent on , is parallel at =0, negatively-yawed at   15 and positively-yawed at 

  30. In the negatively- and positively-yawed vortex shedding patterns, the inclination direction of the spanwise vortex rows 

is in the opposite and same directions of , respectively. Both in-line and cross-flow vibration amplitudes are symmetric to the 

midspan, regardless of . The RMS lift coefficient CL,rms exhibits asymmetry along the span when   0, maximum CL,rms 

occurring on the lower and upper halves of the cylinder for negatively- and positively-yawed vortex shedding patterns, 

respectively. The IP is well followed in predicting the vibration amplitudes and drag forces for α ≤ 45° while invalid in 

predicting lift forces for α ≥ 30°. The vortex-shedding frequency and the vibration frequency are well predicted for  = 0 - 60 

examined. 
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also found in the numerical simulations of flows around a 

circular cylinder at different Ren and G/D in Sarkar and 

Sarkar (2010) and Yoon et al. (2010). Lei and Cheng (2000) 

studied fluid forces on a near-wall cylinder at Re = 80 ~ 

1000 and showed that the maximum and RMS (root-mean-

square) of the lift coefficient and vortex intensity decreased 

with decreasing G/D and Re. 

For the VIV of a near-wall elastically supported rigid 

cylinder with  = 0, Tham et al. (2015) and Li et al. (2016) 

showed that both in-line and crossflow vibrations were 

significantly influenced by the wall. For 1-DOF (degree-of-

freedom) VIV, both vibration amplitude and lift force were 

increased compared with those of an isolated cylinder. For 

2-DOF VIV, the in-line vibration amplitude increased, 

whereas the vibration frequency decreased, with obvious 

beating responses when the cylinder response entering and 

leaving the lock-in region. However, the wall proximity did 

not significantly alter the cross-flow response. Hsieh et al. 

(2016) performed an experimental study on the VIV of a 

near-wall cylinder at G/D = 0.8. The vibration and vortex-

shedding frequencies were identical in the lock-in region, 

and the corresponding vortex shedding pattern was 2S (two 

single vortices shed in one oscillation cycle). Wang et al. 

(2013) stated that the cylinder still vibrated even at a very 

small G/D (= 0.05) while periodic vortex shedding was 

found only at the freestream side of the cylinder, forming a 

single vortex street in the wake. Different from the fixed 

cylinder counterpart, the three regimes of G/D were 

identified for a near-wall vibrating cylinder, i.e., (i) the 

vortex-shedding-suppression regime (G/D < 0.3), where 

vortices periodically shed from the freestream side, forming 

a one-sided vortex street in the wake; (ii) the intermediate 

regime (0.3 ≤ G/D <1.0), where the wall effect was 

significant, resulting in an asymmetric vortex-shedding; and 

(iii) the wall-effect-free regime (G/D ≥1.0), where the wake 

resembled that of an isolated cylinder. 

The influence of  on the flow around a cylinder, either 

stationary or vibrating, was documented in the literature 

(e.g., Alam and Zhou 2007, Zhou et al. 2010, Franzini et al. 

2013, and Zhao et al. 2013). For a stationary cylinder with a 

large , the spanwise vortex rows were yawed with respect 

to the cylinder axis, and the vortex-shedding yaw angle was 

smaller than the cylinder yaw angle. However, for a 

vibrating rigid cylinder, the yaw angle of the spanwise 

vortex rows was smaller than that for the stationary 

cylinder. Moreover, the vortex rows in the wake were 

parallel to the cylinder axis approximately when the 

vibration amplitude was large enough.  
To predict the hydrodynamics of an inclined cylinder, 

the IP (Independent Principle) is widely applied. It assumes 
that the hydrodynamics is only driven by the normal 
component Un of U while the tangential component aligned 
with the cylinder axis has a negligible effect. According to 
the criteria suggested by Zhou et al. (2010), Franzini et al. 
(2013), and Zhao et al. (2013), the IP is valid when the 
relative difference of the hydrodynamics is smaller than 
15% between an inclined cylinder (reference velocity Un) 
and a normal cylinder. Although no consensus exists 
regarding the range of the IP validity, it is generally 
accepted that the IP can provide accurate predictions of the 
fluid forces at α < 45° for an isolated cylinder, and the 

relative error increases with the increasing α (Alam and 
Zhou 2007, Zhou et al. 2010, Franzini et al. 2013, Zhao et 
al. 2013). Bourguet et al. (2015) numerically investigated 
the VIV of a flexible cylinder at α = 60° and Re=500. In the 
case of a high-tension configuration where the in-line 
bending of the cylinder was small, the IP at this large α is 
still valid in predicting the vibration responses and fluid 
forces. However, in the lower-tension case corresponding to 
a large in-line bending, unacceptable errors existed in the IP 
prediction. A similar study at α = 80° (Bourguet and 
Triantafyllou 2014) showed that the structural vibrations 
and hydrodynamic forces were asymmetric in the spanwise 
direction, making the IP invalid. 

Zhao et al. (2009) and Thapa et al. (2014) reported a 
much more complex flow-cylinder interaction with the 
proximity of a wall. The three-dimensionality of the wake 
was undermined with an increase in α while the degree of 
vortex shedding suppression was increased. However, in the 
numerical study of Ji et al. (2019), the wake three-
dimensionality was intensified with increasing α. The IP 
was valid in predicting the hydrodynamic forces and wake 
patterns when α ≤ 15°, producing unacceptable errors when 
α ≥ 30°. In the experimental studies on VIV of a flexible 
cylinder at Re=800-16000, Han et al. (2017) and Xu et al. 
(2018) found that the IP was valid for predicting the multi-
mode responses when α ≤ 30°. Zang and Zhou (2017) 
experimentally studied the transverse VIV of an elastically 
mounted rigid cylinder near a plane boundary at different α 
and G/D. The results showed that both vibration amplitude 
and frequency increased with decreasing G/D, and the IP is 
valid at α ≤ 30° and G/D ≥ 0.8. 

To the best of the authors’ knowledge, studies on the 
VIV of a flexible cylinder near a flat wall at different yaw 
angles are scarce. In the present study, the 2-DOF VIV of a 
yawed flexible cylinder close to a plane boundary is 
investigated by performing three-dimensional direct 
numerical simulations (DNS) at G/D = 0.8 and 0° ≤ α ≤ 60°. 
The normal Reynolds number Ren (reference velocity Un) is 
kept constant at 500. The vibration responses, wake 
patterns, fluid forces and the validity of the IP are analyzed 
and presented. 

 

 

2. Numerical methodology 
 
2.1 Numerical method and validation 
 

The fluid-structure interaction (FSI) is simulated by 

using the immersed boundary (IB) method. An extra body 

force is added into the momentum equation to manifest the 

interaction between fluid and structure. The conservative 

form of the second-order Adams-Bashforth temporal-

discretized governing equations of incompressible fluid 

flow using the IB method are 

 
1
21 1 13 31 1

2 2 2 2

nn n n n n nδt p p δt
         u u h h f  (1) 

1 0n u  (2) 

where, u is the velocity, p is the pressure, h= 
∇∙(-uu + v(∇u+∇uT))  comprises of the convective and 

diffusive terms, ∇ denotes gradient operator, v is the 
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kinematic viscosity of the fluid, superscript T is matrix 

transposition, and superscript n+1, n+1/2, n, n-1 indicate the 

time step. f denotes the extra body force and is calculated as 

 
   

1 1
2 2

1 1 13 31 1

2 2 2 2

n n

n n n n n n

δt D δt

D I δt p p

 

  

 

      

f F

V u h h

 (3) 

where, F is the extra body force on the IB points, V is the 

desired velocity of the IB points obtained by solving the 

governing equation of cylinder motion, I(φ, Xi)  and 

D(Φ,x)  are the interpolation and distribution functions 

suggested by Peskin (1972), respectively.  

The two-step predictor-corrector procedure is adopted 

for the decoupling of the flow governing equations (Eqs. (1) 

- (3)). The resultant pressure Poisson equation is solved by 

using the biconjugate gradient stabilized method, 

preconditioned by using the geometric multi-grid method. 

For the sake of conciseness, details of the methodology are 

not presented here and readers can refer to our previous 

work (Chen et al. 2019a, 2019b, Ji et al. 2012, 2019a, 

2019b) for further information. 

The flexible cylinder is modeled as a pinned-pinned 

Euler-Bernoulli beam, mimicking the submarine pipeline in 

reality, and free to oscillate in the in-line (x-axis) and cross-

flow (y-axis) directions, as shown in Fig. 1. The aspect ratio 

of the cylinder is L/D =25, where L denotes the spanwise 

length. The cylinder mass ratio is m* = 4m̅/(fD2) = 8.9, 

where m̅ is the cylinder mass per unit length and f is the 

fluid density. The non-dimensional governing equation for 

the structural dynamics can be expressed as follows 

     
4

, , ,x y x y x y
mζ EIζ F   (4) 

where the superscripts ‘’ and ‘4’ denote the second 

temporal and fourth-order spatial derivatives, respectively. 

The ζ
(x,y)

 is the displacement, F(x,y) is the hydrodynamic 

force, and EI is the bending stiffness. The structural 

damping is set to zero to enhance vibration amplitude. 

To verify the accuracy of the numerical methodology, 

the flow around an isolated cylinder at Re = 500 is 

simulated. Table 1 compares the time-mean drag 

coefficientCD, fluctuating (r.m.s.) lift coefficient CL,rms, 

Strouhal number St, base pressure coefficient Cpb, and the 

normalized spanwise vortex wavelength λz/D between the 

present and published results. A good agreement is 

achieved, suggesting that the accuracy of the numerical 

methodology is acceptable. 
 

2.2 Simulation parameters 
 

In present study, the normal Reynolds number, defined 

as Ren = UnD/v, is set to 500. The reduced velocity is set to 

as Ur = Un/f1D = 4.9, where f1 = 
1

2π
(

iπ

L
)
2

√
EI

m̅
 (i = 1) is the 1st 

mode natural frequency of the cylinder and Un is the normal 

inflow velocity at 1D above the plane boundary. The gap 

between the cylinder and wall is fixed at G/D = 0.8 lying 

the intermediate regime (0.3 ≤ G/D <1.0) where the 

proximity of the plane boundary has a significant influence  

 

 

on the wake pattern (Wang et al. 2013). The cylinder is 

horizontally placed above the wall.  

Details of the computational domain and the boundary 

conditions are presented in Fig. 1(a). The coordinate origin 

is pinpointed on a side wall, 6D downstream the cylinder 

center and 3D above the bottom wall. The cylinder axis is 

parallel to the z-axis, passing through [-6D, -1.7D] on the x-

y plane. The computational domain is a rectangular box Ω = 

[-21D, 39D] × [-3D, 37D] × [0, 25D] discretized by using a 

Cartesian mesh with a resolution of 768×384×256 

(streamwise × transverse × spanwise). A uniform mesh with 

a grid spacing of ∆x = ∆y = D/32 is adopted in a rectangular 

region of [-8D,8D] × [-3D,3D] around the cylinder in the x-

y plane to ensure the high simulation accuracy. Outside this 

region, a stretched mesh is used to keep the total grids 

number within an affordable range. Along the cylinder axis, 

256 planes are adopted with a spanwise grid spacing of ∆z ≈ 

0.1D. The Dirichlet boundary conditions and the Neumann 

boundary conditions are imposed at the inflow and outflow, 

respectively. The top boundary is set as a free-slip wall 

while the bottom boundary and the cylinder surface are set 

as no-slip walls. Periodicity is imposed in the spanwise 

direction. 

A mean velocity profile (Thapa et al. 2014) is adopted at 

the inlet and defined as 

( , , ) ( cos , 0, sin )u v w U α U α  (5) 

where U is the velocity profile given by 

, when 11.63

1 ln(9.0 ), when 11.63

τ τ

τ τ τ

yu yu

ν νU
u yu yu

k ν v




 
 


 (6) 

where y is the height from the bottom wall, u is the friction 

velocity, and k = 0.4 is the von Kármán constant. The 

Table 1 Comparison of hydrodynamic parameters for an 

isolated cylinder at Re = 500 

 CD CL,rms St -Cpb λz/D 

Present 1.162 0.283 0.207 0.928 0.96 

Zhao et al. 

(2013) 
1.225 0.388 0.208 -- -- 

Bourguet and 

Triantafyllou 

(2014) 

1.141 -- 0.208 -- -- 

Jiang and 

Cheng (2017) 
-- -- 0.206 

0.967 

(Re=400) 
-- 

Williamson 

(2003) 
-- -- -- 0.901 0.91 

Williamson 

and Roshko 

(1990) 

-- -- -- 0.902 -- 

Mittal and 

Balachandar 

(1995) 

-- -- -- 0.918 -- 

Wu et al. 

(1994) 
-- -- -- -- 0.85 

Mansy et al. 

(1994) 
-- -- -- -- ≈1.0 
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(a) Computational domain and boundary conditions 

 
(b) Sketch of the physical configuration (plan view) 

Fig. 1 Computational domain, boundary conditions and 

sketch of the physical configuration. The initial position of 

the flexible cylinder is indicated by a dashed black line 

 

 

yu/ = 11.63 refers to the boundary between the viscous 

sublayer and the logarithmic region (Thapa et al. 2014). 
 

 

3. Numerical results and discussion 
 
3.1 Vortex shedding pattern 

 

Fig. 2 shows the instantaneous vortex-shedding pattern 

downstream of the cylinder when the cylinder vibration is 

statistically stable and the wake is fully developed. It can be 

seen that three distinct wake patterns are observed at 

different α, i.e. parallel vortex shedding pattern at α = 0°, 

negatively-yawed vortex shedding pattern at α = 15° and 

positively-yawed vortex shedding pattern at α ≥ 30°. 

At α = 0°, although the spanwise vortex rows 

downstream of the cylinder are significantly distorted due to 

the streamwise vortex filaments, they are essentially parallel 

to the cylinder axis, indicating the synchronized vortex 

shedding at different spanwise positions. As the vortex 

shedding (blue) from the gap side of the cylinder weakens, 

the vortices (red) shed from the freestream side materialize 

in the wake. Note that the spanwise vortex rows appear 

being more twisted and disordered as farther away from the 

cylinder. A large number of streamwise vortex filaments 

appear connecting the adjacent spanwise vortex rows, and 

the mean spanwise distance between the streamwise 

filaments is approximately 1D, signifying the development 

of mode B (Williamson 1996, Bai and Alam 2018).  

At α = 15°, the vortex shedding is yawed in the opposite 

direction to the cylinder yaw angle, hence the shedding is 

named as negatively-yawed vortex shedding. The vortex 

shedding is not parallel, i.e., the vortex-shedding along the 

span is not synchronized. At α ≥ 30°, the spanwise vortex 

rows are yawed in the same direction of α, opposite to that 

at α = 15°. We, therefore, refer this pattern as positively-

yawed vortex shedding pattern. For example, at α = 60° 

(Fig. 2(e)), the spanwise vortex row near the cylinder is 

yawed with respect to the cylinder axis, and its orientation 

is the same as that of the oncoming flow. The streamwise 

distance between the spanwise vortex row and cylinder 

increases gradually with the increasing z, which shows that 

the phase of vortex shedding, and thus the lift, varies along 

the span. Compared with the cases of small yaw angles (α ≤ 

15°), the spanwise vortex rows downstream are more 

distorted and the streamwise vortex filaments are denser 

and stronger, leading to a further enhanced three-

dimensionality of the wake. This contradicts the observation 

of Thapa et al. (2014) and Zhao et al. (2013) for a fixed 

cylinder in the vicinity of a wall that the degree of three-

dimensionality of the wake diminishes with the increasing 

α. The discrepancy can be attributed to that in present study 

the normal Reynolds number (Ren = 500) remains 

unchanged with α, whereas in Thapa et al. (2014) and Zhao 

et al. (2013) the Reynolds number based on the resultant 

inflow velocity is unchanged and Ren decreases with the 

increasing α. Therefore, the intensified three-dimensionality 

of the wake is related to the higher Ren in this study. 

The flow past the vibrating cylinder at the yaw angle α = 

15° and 45° is visualized in Fig. 3 by showing the 

instantaneous iso-surfaces of λ2 = -1.0. Results for a 

stationary cylinder at α = 45° are also presented to see how 

the cylinder vibration impacts on the wake structure. It is 

seen from Fig. 3(a), 3(b) that the spanwise vortex rows are 

highly twisted, with vortex splitting and coalescence in the 

wake. The vortex rows exhibit different oblique angles β, 

depending on α, i.e., β  -5° when α = 15° (Fig. 3(a)), and β 

 30° when α = 45° (Fig. 3(b)). However, for the stationary 

cylinder, the spanwise vortex rows appear to be fairly linear, 

with β  -17°. 

The most striking feature shown in Fig. 3(a) - 3(c) is the 

different signs of the orientation angles of the spanwise 

vortex rows shed from the vibrating and stationary 

cylinders. In the stationary case (Fig. 3(c)), the oblique 

direction of the slant vortex rows is opposite to that of the 

oncoming flow, consistent with the observation in Bourguet 

et al. (2015) and Bourguet and Triantafyllou (2014). 

However, in the vibrating case (Fig. 3(a-b)), the oblique 

direction of the vortex rows is opposite to that of the 

cylinder at α = 15°, but is the same as that of the cylinder 

for α ≥ 30°. Moreover, the spanwise vortex rows are 

approximately parallel to each other in the stationary case. 

However, in the vibrating case, the spanwise vortex rows 

wavy and the spacing between two adjacent rows varies 

along the span. This is inconsistent with the observation of 

Ramberg (1983) for a wall-free cylinder that the transverse 

oscillation of a cylinder tends to force parallel vortex 

shedding. All these discrepancies can be attributed to the 

proximity of the flat wall and the induced complex 

cylinder-wake interaction. 
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(a) α=0° (b) α=15° (c) α=30° 

  

(d) α=45° (e) α=60° 

Fig. 2 Dependence of vortex-shedding pattern on . Vortices are visualized by using iso-surfaces of non-dimensional  

λ2 (= -1.0) (Jeong and Hussain 1995) - the second largest eigenvalue of the symmetric tensor S2+Ω2, where S and Ω are the 

symmetric and asymmetric parts of the velocity gradient tensor u, respectively. The color on the iso-surfaces indicates the 

spanwise vorticity. The dashed black lines and the dotted green lines in (a) represent the spanwise vortex rows and 

streamwise vortex filaments, respectively 

   
(a) α=15°, plan view (b) α=45°, plan view (c) α=45°(stationary), plan view 

   
(d) α=15°, front view (e) α=45°, front view (f) α=45°(stationary), front view 

Fig. 3 Instantaneous iso-surfaces of λ2=-1.0 at α=15° and 45°, colored by the spanwise vorticity. The dashed black lines in (a - 

c) and the dashed-dotted green lines in (d - f) represent the spanwise vortex rows and the initial cylinder axis, respectively 
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3.2 Structural responses 

 

The vibration responses of the flexible cylinder at 

different α are plotted in Figs. 4(a) - 4(c). As shown in Fig. 

4(a), the maximum in-line bending of the cylinder is within 

0.12 - 0.14D, and gradually increases with the increasing α, 

although the normal inflow velocity Un is kept the same. As 

stated in Bourguet and Triantafyllou (2014), the in-line 

bending of the cylinder would change the local normal 

velocity Ucos (α+θ) along the span, which would lead to a 

significant difference in the vibration responses between the 

inclined and normal cases. In the above, θ refers to the 

angle between the z-axis and the deformed cylinder axis, 

and it is positive when 0 < Z/D < 12.5 and negative when 

12.5 < Z/D < 25. Fig. 4(d) shows the spanwise distribution 

of local normal velocity Ucos (α+θ), normalized by Un, at 

different α. The normalized local normal velocity profile at 

α = 60° shows significant variations along the span, from 

cos(α+θ)/cosα  0.97 (Z/D = 0) to 1.03 (Z/D = 25), despite 

the maximum θ is roughly 1° at the two ends of the 

cylinder. However, for α=0°, cos (α+θ)/cosα  1.0 along the 

span with a deviation smaller than 210-4. That is, the local 

normal velocity at α = 0° is almost uniform along the span, 

whereas a non-uniform normal velocity profile which is 

analogous to a shear flow exists in the inclined cases due to 

the in-line bending of the cylinder. Moreover, the shear rate 

fastly increases with the increasing α, which is expected to 

have a significant influence on the flow-structure 

interactions.  
The maximum vibration amplitudes in the in-line and 

cross-flow directions are symmetric about the midspan, 

irrespective of α (Figs. 4(b) - 4(c)). Due to the wall 

proximity,  the in- l ine  and cross - flow vibrat ion 

wavenumbers are identical, which is different from the 

observation in the VIV of a wall-free flexible cylinder that a 

wavenumber ratio of 2 is established between the in-line 

and crossflow vibrations. The in-line vibration amplitude 

increases when α is increased from 0° to 15° but decreases 

with a further increase in α from 15°, being maximum at 

 

 

α = 15° (Fig. 4(b)). This is consistent with the nature of 

vortex shedding patterns, negatively- and positively-yawed 

vortex shedding patterns for α = 15° and  30°, respectively. 

The maximum in-line amplitude Ax,max at the midspan is 

13% larger than that at α=0°. However, Ax,max decreases 

with further increasing α from 15°, being 40% smaller at 

α=60° than at α=0°, suggesting the violation of the IP. The 

crossflow amplitudes have a similar varying tendency with 

its in-line counterparts (Fig. 4(c)), but the difference 

between the yawed and normal cases is less than 12%. 

Therefore, it suggests that the yaw angle has more 

significant effects on the in-line vibrations than on the 

crossflow vibrations. Similar observation was also reported 

in the study of Bourguet and Triantafyllou (2014) that, for 

highly tensioned configurations, the crossflow vibration of a 

yawed (α  0°) cylinder is almost identical to that of a 

normal (α = 0°) cylinder, but the in-line vibrations exhibit 

obvious differences between the yawed and normal cases. 

Due to the in-line bending of the cylinder, the local 

normal velocity Ucos(α+θ) changes along the span, which 

may lead to asymmetric vibration responses of the cylinder. 

As shown in Fig. 4, the distributions of both in-line and 

cross-flow vibration amplitudes are symmetric about the 

midspan of the cylinder, regardless of . However, the drag 

and lift coefficients do show asymmetric distributions in Fig. 5 

when  is not zero. This is because the axial component of the 

flow is not much linked to in-line and cross-flow vibrations, at 

least to the first mode. 
 

3.3 Hydrodynamic force coefficients 
 

Fig. 5(a) shows the time-mean drag coefficientCD along 

the span. It is seen that the CD profile is generally symmetric 

about the midspan for α ≤ 15°, but exhibits obvious asymmetry 

at larger α, despite the in-line bending and the vibration 

responses of the cylinder are symmetric for all cases. 

Interestingly, at α ≥ 30° theCD is larger at the upper half (Z/D 

< 12.5) than at the lower half (Z/D > 12.5) of the cylinder. 

Moreover, the maximum and span-averagedCD generally  

    

(a) Time-mean in-line  

displacement 

(b) Maximum in-line  

displacement 

(c) Maximum cross-flow  

displacement 

(d) Local normal inflow  

velocity 

Fig. 4 Spanwise distributions of time-mean, maximum displacement and the local normal inflow velocity at different α. The 

local normal inflow velocity Ucos(α+θ) in (d) is normalized by Ucosα 
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grows when α is increased from 0° to 15° or 30° to 60°, with a 

drop between α = 15° and 30°. The span-averaged CD is 1.89 

for α = 0° and 2.11 for α = 60°, the difference being less than 

12%. 

Fig. 5(b) shows the spanwise distributions of the RMS lift 

coefficients CL,rms. As expected, despite the significant 

fluctuations, the CL,rms distribution is generally symmetric 

about the midspan (Z/D = 12.5) for α = 0° but asymmetric for 

α  0°. The interesting point here is that the CL,rms for α = 15° is 

larger in the lower half span than in the upper half span (the 

dominant peak appearing on the lower half) while the 

correspondence between the CL,rms peak and half spans is 

opposite for α ≥ 30°, maximum CL,rms occurring in the upper 

side. It can be recalled that negatively-yawed vortex shedding 

was observed for α = 15° while positively-yawed vortex 

shedding prevailed for α ≥ 30°. This explains why CL,rms peak 

appears on the lower side for α=15° but on the upper side for α 

≥ 30°.  

As reported by Bourguet and Triantafyllou (2014), the 

vibration responses and fluid forces are closely related to the 

energy transfer between the fluid and the cylinder, and the 

transfer rate of energy can be quantified by the mean lift 

coefficient in phase with the transverse vibration velocity. 

2

2
L y

vy

y

C A
C

A

  (7) 

where CL refers to the instantaneous lift coefficient and Aẏ is 

the cross-flow velocities of the oscillating cylinder. Positive 

values of the Cvy indicate that the flow provides energy to 

excite the body oscillation, and the negative values mean that 

the structural vibrations are damped by the flow. The spanwise 

distributions of Cvy at different α are presented in Fig. 5(c). At α 

≤ 15°, the Cvy fluctuates near zero, indicating the energy 

transferring is neutral. For α ≥ 30°, with an increase in α, the 

spanwise distribution of Cvy exhibits significant asymmetry by  

 

 

 
(a) Maximum and RMS of the in-line vibration amplitude 

 
(b) Maximum and RMS of the cross-flow vibration 

amplitude 

Fig. 6 Variations of the vibration amplitudes with α 

   

(a) Time-mean drag coefficient (b) RMS lift coefficient 
(c) Time-mean lift coefficient in phase 

with transverse vibration velocity 

Fig. 5 Spanwise distributions of time-mean drag coefficient, RMS lift coefficient and time-mean lift coefficient in phase with 

transverse vibration velocity at different α. 
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showing an increasing larger excitation region in the upper half 

and damping region in the lower half. This spatial distribution 

of Cvy indicates that energy is inputted into the vibrating 

cylinder at the upper half, then transferred to the lower half, 

and finally dissipated to the surrounding fluid at the lower half. 
 

3.4 Independent principle 
 

Fig. 6 shows the maximum and RMS of the in-line and 

cross-flow vibration amplitudes of the cylinder at the midspan 

(Z/D = 12.5). The corresponding shedding patterns are marked 

at the top of the figures. It is seen that the maximum (Ax,max) 

and RMS (Ax,rms) of the in-line vibration amplitude first 

increase and then decrease with the increment of α. 

Interestingly, the negatively-yawed vortex shedding results in 

the maximum Ax,max and Ax,rms. Compared with the α = 0° case, 

the relative difference of Ax,max at α = 15° is 13%, smaller than 

the criteria of 15% as suggested in Zhou et al. (2010), Franzini 

et al. (2013), Zhao et al. (2013). However, at larger α, the 

differences are 16% (α = 30°), 19% (α = 45°) and 40% (α = 

60°), respectively, indicating the violation of the IP. For the 

Ax,rms, the differences between yawed and α = 0° cases are 

smaller than 15%, except for α=60° at which the IP fails to  

 

 

predict the in-line vibration responses. The IP is valid for 

predicting the in-line vibration upto α = 45°. As shown in Fig. 

6(b), the maximum (Ay,max) and RMS (Ay,rms) of the cross-flow 

vibration amplitude both exhibit a first-increase-then-decrease 

trend, and the largest relative difference between α = 0° and α 

= 60° is less than 15%, which proves the validity of the IP in 

predicting the cross-flow vibration at α ≤ 60°.  

Fig. 7 shows dependence on α of the span- and time-

averaged hydrodynamic force coefficients. It is seen that the 

fluid forces on the vibrating cylinder are significantly larger 

than those on the stationary cylinder in Ji et al. (2019), which is 

also reported in Bourguet et al. (2015). The CD at α  0° is 

larger than that at α = 0°, with a maximum increment of 12% 

at α = 60° (Fig. 7(a)). The RMS drag coefficient (CD,rms) shows 

a similar trend to that of Ax,rms, with a difference larger than 

15% at α = 60° (Fig. 7(b)). The time-mean lift coefficient (CL) 

exhibits large fluctuations with the increasing α, indicating a 

high sensitivity of the CL on the flow conditions. The 

difference between the yawed and normal cases exceeds 15% 

for all α0° cases except α=45° (Fig. 7(c)). In Fig.7(d), a 

notable reduction in the RMS lift coefficient (CL,rms) happens at 

α = 30°, corresponding to the change of the vortex-shedding  

  

(a) Time-mean drag coefficient (b) RMS drag coefficient 

  

(c) Time-mean lift coefficient (d) RMS lift coefficient 

Fig. 7 Variations of the force coefficients with α 
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Fig. 8 Variations of the Strouhal number with α 

 

 

pattern. The difference between α0° and α=0° cases violates 

the criteria when α ≥ 30°. 

In Fig. 8, the Strouhal number (St) marginally increases 

with the increasing α while the maximum difference is smaller 

than 3% for all the yawed cases, proving the validity of the IP 

in the prediction of St at α ≤ 60°. Compared with the stationary 

case in Ji et al. (2019) in which the St increases with α and 

violates the criteria at α = 60°. The St is not much sensitive to 

α. This indicates that the vibrating cylinder has a more stable 

vortex-shedding frequency, thus a more stable vibrating 

frequency, due to the added mass effects. 
 

 

4. Conclusions 
 

Vortex-induced vibrations of a yawed flexible cylinder near 

a plane boundary are numerically investigated by using the 

immersed boundary method. The three-dimensional direct 

numerical simulations are carried out at Ren = 500, G/D = 0.8 

and α = 0°- 60°. The key conclusions are summarized as 

follows. 

• Three distinct vortex shedding patterns are observed at 

different yaw angles, i.e., parallel vortex shedding ( = 0), 

negatively-yawed vortex shedding ( = 15) and 

positively-yawed vortex shedding (α  30). However, the 

orientation of the spanwise vortex rows for α  30 is 

opposite to that for the stationary cylinder. 

• Spanwise symmetry is observed in both in-line and cross-

flow vibration amplitudes for all α examined. The 

difference of in-line amplitude between 0 and =0 

cases is larger than that of the cross-flow amplitude, 

indicating that the in-line vibrations are more sensitive to 

the yaw angle. 

• The RMS lift coefficient CL,rms distribution is 

symmetric about the midspan for parallel vortex 

shedding ( = 0) and asymmetric for 0, with peaks 

in CL,rms occurring on the lower and upper sides for 

negatively- and positively-yawed vortex shedding 

patterns. Energy transfer between the flow and cylinder 

is neutral in the parallel vortex shedding, exhibiting 

increasingly larger in the exciting and damping regions 

for   0. 

• The IP is valid in predicting the in-line vibration (Ax,rms) 

and hydroforces (CD and CD,rms) upto α=45°, and valid in 

predicting the cross-flow vibration (Ay,rms) at α ≤ 60°. 

However, the IP produces unacceptable errors in predicting 

the cross-flow hydroforces (CL, CL,rms) at α ≥ 30°, due to 

the positively-yawed vortex shedding pattern. 
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