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1. Introduction 
 

Wind energy production has undergone rapid growth in 

China recently (Chen and Tran 2015). Due to variability and 

uncertainty of wind field in atmospheric boundary layer, 

wind energy, unlike traditional resources, varies 

substantially over both time and space (Lange and Focken 

2006). Therefore, we need accurate forecasts to optimize 

wind power generation (Costa et al. 2008, Burton et al. 

2001, Cheng et al. 2015, Deppe et al. 2013, Dhunny et al. 

2015). 

One of the growing concerns for wind energy 

production is wind ramp events (Gunter et al. 2017, Yang et 

al. 2013), which are rapid changes in wind power output 

due to abrupt changes in wind speed (Freedman et al. 

2008). Wind ramp events can be costly for both wind farms 

and grid operators, and consequently, the ability to forecast 

ramp events is becoming a crucial issue (Francis 2008. 

Bradford et al. 2010). Researchers found that large ramp 

events which cause 50% or greater change of the wind 

power capacity occurred less than 7% of the time within 4 

hours (Greaves et al. 2009) and occurred less than 4% of 

the time within 2 hours (Zack 2007). So ramp events are 

difficult to forecast because of their rareness. 
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For years, there have been few studies of wind forecasts 

at turbine height (about 60 - 100 m). Researchers 

traditionally focused on wind forecasts at 10-m height 

(Delle Monache et al. 2011, Crochet 2004, Muller 2011, 

Zhang et al. 2013), at which official wind observations are 

taken. For wind ramp event forecasts, even fewer studies 

were addressed before (Bradford et al. 2010, Deppe et al. 

2013). 

Studies have demonstrated that numerical weather 

prediction models can have significant systematic and 

random errors for wind speed predictions (Jordan 2007, 

Yim et al. 2007, Deppe et al. 2013, Rife and Davis 2005, 

Hu et al. 2013). One approach to obtain more accurate 

prediction is to use the post-processing bias correction 

approaches based on statistical methods (Glahn and Lowry 

1972, Stensrud and Yussouf 2003, Hacker and Rife 2007, 

Xu et al. 2013, Xu et al. 2014). One of the most successful 

methods is Kalman filter (Kalman 1960, Kalman and Bucy 

1961, Kalnay 2002). The Kalman filter is the statistically 

optimal sequential estimation procedure in which 

observations are recursively combined with recent forecasts 

in order to minimize the corresponding biases, and it needs 

minor computational costs and can easily adapt to any 

alteration of the observation. During the last several years, 

the Kalman filter has been used for improving weather 

forecasts by successfully reducing the bias of forecasting 

continuous variables such as 2 m temperature, 10 m wind 

speed and ozone concentration (Homleid 1995, Crochet 

2004, Muller 2011, Delle Monache et al. 2006, Delle 

Monache et al. 2008, McCollor and Stull 2008, Rincon et 
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al. 2010), mostly focusing on diurnal bias. 

The structure of Kalman filter algorithms of the above 

type is more suitable to describe linear procedures. And 

consequently, the application on variables following 

nonlinear or discontinuous behaviors is always 

questionable. Wind ramp events have rapid variations, 

which mean high non-linearity. Therefore, while the 

application of Kalman filters for improving air temperature 

forecasts seems to be successful in many cases, analogous 

work for wind speed forecasts, especially for real-time wind 

speed forecasts, may lead to poor results (Giebel 2001). 

However, the application of nonlinear functions for 

classical Kalman filter makes it possible for simulating 

nonlinear procedures. Galanis et al. (2006) proposed 

nonlinear polynomial mappings of the Kalman filter to 

better simulate nonlinear problems in numerical weather 

prediction, and the method was successfully applied to 24 

h-72 h wind speed forecasts of 1-h temporal resolution at 

turbine height (Louka et al. 2008). 

However, wind speed forecasts of 15-min temporal 

resolution, which were not referred to in the previous work 

(Louka et al. 2008), are needed for wind power prediction. 

Moreover, there’re two kinds of wind speed forecasts for 

wind power prediction according to the demands of wind 

energy industry: short-term forecasts with forecast period of 

24 h-72 h, and real-time forecasts with period of 15 min-4 

h. Traditionally, the real-time wind speed forecasts are 

acquired by statistical methods, but we attempt to apply 

numerical model and the bias correction to improve the 

forecast skill. Is the Kalman filter based on polynomial 

function suitable for real-time wind speed forecasts? How 

effectively can the nonlinear Kalman filter improve the 

wind ramp event forecasts? These are the main purposes of 

our work. 

In this paper, firstly, we provide the implementation of a 

nonlinear polynomial Kalman filter bias correction method. 

Section 3 outlines the model configuration and the design of 

the experiment, and section 4 describes the verification 

statistics for evaluating the bias correction performance. 

Thereafter, in section 5 a detailed study of nonlinear 

Kalman filter application to wind speed at turbine height 

obtained at Zhangbei wind farm for two years, is illustrated. 

In this section, we mainly focused on evaluating the 

effectiveness of the optimal filter for improving wind ramp 

event forecasts. Finally, the paper closes with a summary 

and conclusions in section 6. 

 

 

2. Methodology 
 

2.1. The nonlinear Kalman filter bias correction 
method 

 

The basic concept of the general Kalman filter theory 

was presented in Kalman (1960), Kalman and Bucy (1961), 

and Kalnay (2002). In our study, we slightly modified the 

nonlinear Kalman filter proposed by Galanis et al. (2006) 

and the procedure is introduced as follows. First, we 

focused on a special meteorological variable (wind speed at 

turbine height) in time, based on estimating the forecast bias  

 

Fig. 1 Schematic diagram of the NKF (nonlinear Kalman 

filter) procedure 

 

 

of wind speed as a function of the previous forecast bias 

rather than the direct model output in Galanis et al. (2006). 

Specifically, if we denote the forecast bias of the numerical 

model at time t by yt and the previous forecast bias by yt-1, 

then the current forecast bias yt can be composed as a 

polynomial of yt-1 

2 1

0, 1, 1 2, 1 1, 1... 
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where the coefficients (xi,t) are the parameters estimated by 

the filter and vt is the Gaussian non-systematic error. 

Therefore, the state vector is formed by the coefficients 

(xi,t): . On the other hand, the 

observation matrix takes the form 

. Hence the system equation 

and the observation equation correspondingly take the form 

respectively 

t t t t x x w ,   t t t t y H x v  (2) 

The random vectors wt and vt have to follow the normal 

distribution with zero mean and must be independent. The 

time delay denotes the time period of previous step when 

we can use the information of true values, so the time delay 

implies the forecast period. It is 1 h, 2 h, 4 h respectively in 

this paper. 

Kalman filter theory (Kalman 1960) gives a method 

recursively estimating the unknown state vector xt until all 

the values y up to time t. The optimal estimate that we can 

give for the state vector xt and the covariance matrix Pt at 

time t are 

/t t t t t x x
, 

   
/t t t t t t  P P W  (3) 

As soon as the new value yt becomes known, we calculate 

the new value of state vector xt 
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is the most crucial parameter of the filter, the Kalman gain 

matrix. It determines how easily the filter will adjust to any 

possible new conditions. Finally, the new value of the 
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covariance matrix Pt of the unknown state is given by 

/( )t t t t t t P I K H P  (6) 

Eqs. (3) - (6) are known as updating equations, which 

update the Kalman algorithm from time  to t. Note 

that T, -1 denotes the transpose matrix and the inverse 

matrix respectively, while I stands for the identity matrix. 

The schematic diagram of the procedure is shown in Fig. 1. 

The initial values x0, P0 must be defined before running 

the filter, but they do not affect the results seriously, since xt 

and Pt will converge to their true values very soon. 

However, things are different with the covariant matrixes 

Wt of the random vector wt and Vt of vt. The way that they 

are calculated during the process affects the Kalman gain 

and thus crucially affects the final outcome. Many authors 

(Homleid 1995, Delle Monache 2006) consider them to be 

time independent, thereby losing the capability of making 

quicker adjustments to possible external changes. In our 

case, we estimate the system covariance matrix Wt and the 

observation covariance matrix Vt based on the sample of the 

last 7 values of wt = xt - xt-1 and vt = yt - Htxt respectively 

1

1 2

1

1

( )
1

(( ) )
1

n

t j t jn
j

t t i t i

in n

  



  





  





x x

W x x  (7) 

1 2

1

( )
1

(( ) )
1

n

t j t j t jn
j

t t i t i t i

in n

  



  





  





y H x

V y H x  (8) 

where n = 7 and n-1 represents unbiased estimation. The 

time period of 7 values has proved to be the optimal choice 

in our study for successful correction and fast adaptability, 

and can be changed for other cases. Here we assume the 

initial value x0 of the state vector to be 0, and the initial 

covariance matrix P0 to be diagonal with the diagonal 

elements having a considerably large value (here we 

propose 4), which indicates that we do not really trust our 

first guess. Above Eqs. (1) - (8) show the procedure of our 

nonlinear Kalman filter algorithm. 

 

2.2. Definition of ramp events 
 

We define a ramp event to exist when the change in 

wind power is 50% or more of capacity over a time interval 

of 4 hours or less (Greaves et al. 2009). The changes for 

wind power can be transformed to the changes for wind 

speed according to the wind turbine power curve (Fig. 2). 

From Fig. 2, we can see that when the wind is equal to or 

less than 5 m s-1 (the cut-in speed) a turbine will not 

generate power output, while once the speed exceeds 12 m 

s-1 (the rated wind speed), the wind turbine begins to 

perform at maximum capability (100% capacity). On the 

other hand, when wind speed approaches 25 m s-1, the 

power output will plummet to 0 caused by the high-speed 

shutdown of turbines. The power curve of wind turbine 

suggests that ramp events occurring between the cut-in 

speed and the rated wind speed are extremely costly for 

wind energy production because they may cause blackouts 

and overload the grid (Francis 2008, Deppe et al. 2013). 

Hence increase or decrease of more than 3.5 m s-1 within 4  

 

Fig. 2 Power curve for the 1.5-MW wind turbines used at 

the Zhangbei wind farm. Cut-in speed is around 5 m s-1 

while the rated wind speed is around 12 m s-1 

 

 

Fig. 3 Zhangbei wind farm is located in Hebei Province, 

China. The red solid triangle denotes the observation station 

and the gray shades denote the three nested domains 

 

 

hours or less for wind speeds within 5-12 m s-1 is 

considered to be a ramp event. 

 

 

3. Model and experiment description 
 

Zhangbebi wind farm is located northwest of Hebei 

Province, China (see Fig. 3). The farm consists of 66 wind 

turbines each with capacity of 1.5MW, and the total 

installed capacity of wind power is about 100MW. The 

wind turbine height is 70 m, and the area of the wind farm 

is approximately 35 km2 which covers complex mountain 

terrain with the altitude ranging from about 1600 to 1800 m. 

The bias correction method described in section 2 is 

applied to 24-h wind speed forecasts (at 10-min increments) 

issued from the WRF model (Skamarock et al. 2008). 

Observation data for this study was obtained from one mast 

sited at Zhangbei wind farm for two years from 1 January 
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2016 to 31 December 2017 (totally 731 days), with the 

latitude 41°03'N, the longitude 114°29'E and the altitude 

1660 m. The average wind speed and direction were 

recorded for every 10-min interval by NRG anemometer.  

The WRF model is run over the northeastern China with 

3 nested domains centered on Zhangbei wind farm using 

two-way nesting, having 27-km, 9-km, and 3-km horizontal 

grid increments respectively (each domain have 98*76 

grids) (see Fig. 3) and 37 vertical levels (12 levels are 

located in the lowest 1 km with sigma values: 1, 0.998, 

0.996, 0.994, 0.992, 0.989, 0.983, 0.97, 0.954, 0.934, 0.909, 

0.88). Initial and boundary conditions were obtained from 

the GFS/NCEP data at a resolution of 0.5 degree. The 

model is initialized at 1800 UTC each day and run for 30 

hours. The first 6 hours are removed as model spin-up, and 

we use the remaining 24 h outputs. The 70-m wind speed 

forecasts within the finest domain, obtained by vertical 

interpolation, were bilinearly interpolated to the observation 

location. 

The parameterization schemes for the experiment are as 

follows: the Mellor-Yamada-Janjic scheme (Mellor and 

Yamada 1982) for the planetary boundary layer, the Noah 

land surface model (Chen and Dudhia 2001) for the land 

surface scheme, the Eta scheme (Janjic 1994) for the 

surface layer, the Purdue Lin microphysics scheme (Lin et 

al. 1983), the Kain-Fritsch scheme (Kain 2004) for the 

convective parameterization (only in the two coarser 

domains), the Rapid Radiation Transfer Model (RRTM) 

scheme (Mlawer et al. 1997) and the Goddard scheme 

(Chou and Suarez 1994) for the longwave and shortwave 

radiation schemes respectively. 

The planetary boundary layer (PBL) turbulence is 

especially influential in the simulation of low level 

atmospheric winds and diffusion of dynamical and 

thermodynamical quantities. The MYJ PBL scheme uses the 

1.5-order turbulence closure of Mellor and Yamada (1982) 

to represent turbulence above the surface layer (Janjic 

1994). The MYJ scheme determines eddy diffusion 

coefficients from prognostically calculated turbulent kinetic 

energy (TKE). The simulation of many processes in 

boundary layer such as thermally induced circulations 

(mountain-valley and sea breezes) and terrain-forced flow, 

of which are characterized properly in the MYJ PBL 

scheme, is very important for the prediction of local wind in 

complex terrain. Low-level jets, which can increase wind 

speeds at turbine heights and also can create large stress on 

the turbines causing fatigue issues, have noticeable 

influences on the wind power industry. Mellor and Yamada 

(1982) argue that the MYJ scheme is appropriate for all 

stable and slightly unstable flows because of the local 

closure with the assumption of small scale eddy. Because 

the observed low-level jets typically occur at night under 

stable conditions, the MYJ scheme is particularly suitable 

for simulation of low-level jets. 

When performing the nonlinear Kalman filter bias 

correction, we first transform the observations and forecasts 

to one-hour averages. Then remove the results for the first 

day (24 time steps when = 1h, 12 time steps when 

= 2h, 6 time steps when = 4h correspondingly) to 

eliminate the effects of filter algorithm’s spin-up, and then 

analyze the results for the remaining 730 days. Finally, we 

transform the one-hour wind speeds back to 10-min wind 

speeds. 

 
 
4. Verification statistics 
 

We applied the following metrics to evaluate the 

performance of the bias correction method 

1

1
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where BIAS denotes the mean error, Oi is the observation 

value at time i, and Fi is the corresponding forecast value. 

Np is the size of sample which means the number of pairs 

(Fi, Oi). Note that the subscripts p denotes prediction. 
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where MAE denotes the mean absolute error. 
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where RMSE denotes the root mean square error. 
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(12) 

where r denotes Pearson correlation coefficient,  and 

 is the mean forecast value and observation value 

respectively. 

For evaluating ramp events, a contingency table was 

used for evaluating accuracy (see Table 1). Our metrics 

include the probability of detection (POD), the false-alarm 

ratio (FAR), the threat score (TS), and the true skill score 

(TSS). These quantities are given as Eqs. (13) - (16). 
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5. Results 
 

5.1. Sensitivity analysis 
 

The method presented in section 2 outlines the 

procedure for applying nonlinear functions for reducing the  

t t
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Table 1 Contingency table definition, where A to D is 

the counts of events in each category, out of N total  

events 

 
Observation 

Yes No 

Forecast 
Yes A B 

No C D 

 

Table 2 The overall performance of the Kalman filter based 

on four metrics (BIAS, MAE, RMSE, correlation 

coefficient) using polynomials of zero to third order against 

the model direct output 

Statistics Raw 0-order 1-order 2-order 3-order 

BIAS (m s-1) 0.31 0.13 0.09 0.03 0.04 

MAE (m s-1) 2.52 1.98 1.79 1.66 1.67 

RMSE (m s-1) 3.26 2.71 2.42 2.21 2.22 

Correlation 

coefficient 
0.58 0.72 0.78 0.82 0.82 

 

Table 3 The overall performance of the Kalman filter based 

on four metrics (BIAS, MAE, RMSE, correlation 

coefficient) with different time delay  against the model 

direct output 

Statistics Raw One hour Two hours Four hours 

BIAS (m s-1) 0.31 0.03 0.08 0.29 

MAE (m s-1) 2.52 1.66 2.09 2.52 

RMSE (m s-1) 3.26 2.21 2.74 3.32 

Correlation 

coefficient 
0.58 0.82 0.73 0.61 

 

 

forecast error in real-time wind speed forecasts. In this 

subsection, polynomials of different orders are applied to 

obtain the optimal order based on the best performance of 

the filter in improving the wind speed forecasts. As to 

different time delay , theoretically, the shorter the time 

delay is, the higher the forecast accuracy is, because we can 

use the information of recent observation data. However, 

longer time delay means extending the forecast period. So 

we also need to examine the sensitivity of the filter with the 

time delay  besides the polynomial order. 

First we fix the time delay = 1h to investigate to 

which extent the increase of the polynomial order 

influences the performance of the filter. Table 2 presents the 

overall performance of the Kalman filter based on four 

metrics (BIAS, MAE, RMSE, correlation coefficient) using 

polynomials of zero to third order upon the direct model 

output. The results imply that when the order of the Kalman 

filter gets higher, the improvement of forecasts increases. 

But when the order exceeds two, the improvement becomes 

stable. So the order of two is the optimal choice. For all 

cases BIAS is nearly eliminated to zero indicating that the 

main goal of the Kalman filter is achieved. The significant 

reduction of MAE and RMSE for the Kalman filter of the 

second order confirms that the discrepancy between the 

observations and forecasts has been reduced regardless of 

any type of the errors. The attempt to use higher order 

polynomials does not lead to additional improvements of  

 

Fig. 4 Taylor diagram showing the raw forecasts and the 

bias correction 

 

 

Fig. 5 Counts of the binned wind speed of the observation, 

the raw forecasts and the bias correction 

 

 

the filter. On the contrary, much instability arises in 

predicting the wind speed series, and thus the performance 

of the filter deviates from the optimal value. 

Table 3 gives the overall performance of the Kalman 

filter based on four metrics (BIAS, MAE, RMSE, 

correlation coefficient) with different time delay  

against the model direct output. It is not surprising that the 

filter with one-hour time delay shows the best performance, 

and when the time delay gets longer, the correction 

accuracy becomes worse. The algorithm with two-hour time 

delay also shows fine correction efficiency, while the filter 

with four-hour time delay does not show positive influence 

at all. 

In the present study, we choose the results with the 

second-order polynomial and one-hour time delay to assess 

the global performance and especially the performance for 

ramp event forecasts. 

 

5.2. Global performance and diurnal trend climatology 
 

In this subsection the global performance of the Kalman 

filter bias correction is evaluated with the direct model 

output. First we use the Taylor diagram (Fig. 4) to display 

the extent of the pattern correspondence between prediction 

and observation. In the Taylor diagram the radial distance 

from the origin is the normalized standard deviation (NSD) 

for prediction, the azimuthal position denotes the 

correlation coefficient, and then the distance to the point  
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representing the observation (REF) is proportional to the 

central root mean square error (CRMSE) of the prediction. 

From Fig. 4 we can see that the correction is much closer to 

the observation compared with the raw forecasts. The 

correction has a better NSD, close to the perfect value of 1, 

which means the standard deviation of the forecasts is equal 

to the standard deviation of the observation, while the raw 

forecasts underestimate the standard deviation. Meanwhile, 

the Kalman filter method improves the pattern correlation 

with observation when compared to the raw forecasts, 

moving closer to the REF point with lower CRMSE. 

Table 3 characterizes the ability of improving forecast 

skill for the bias correction quantitatively. The Kalman 

filter has decreased RMSE by 32% from 3.26 m s-1 to 2.21 

m s-1, decreased MAE by 34% from 2.52 m s-1 to 1.66 m s-1, 

reduced BIAS almost to zero, and improved the correlation  

 

 

 

from 0.58 to 0.82. All the metrics show remarkable 

improvements. Fig. 5 gives the wind speed distribution of 

the observation, the raw forecasts and the correction. The 

bias correction improves the forecast skill in almost all 

wind speed intervals. In wind speed intervals 8-12 m s-1, 

included in the area sensitive to wind power prediction, the 

correction shows prominent efficiency. The results show 

that the Kalman filter is especially suitable for wind power 

prediction. In Fig. 6 the bias distribution for the raw 

forecasts and the bias correction is presented. The 

histograms show clearly that the bias-corrected wind speeds 

lead to a sharper distribution of the bias meaning much 

closer to zero, and the distribution is more symmetrical than 

for the raw forecasts. Consequently, the forecasts after bias 

correction present lower uncertainty. 

Under weather transitions such as front passage,  

  
(a) Raw forecasts (b) Bias correction 

Fig. 6 Bias distribution of the raw forecasts and the bias correction 

 
(a) The forecast absolute error of the raw forecasts and the bias correction as a function of the day-to-day wind speed 

variation 

 
(b) Counts of the binned magnitude of the day-to-day variation of wind speed 

Fig. 7  
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thunderstorm, the changes of wind speeds can be very large. 

In order to evaluate the performance of the bias correction 

method under abrupt weather transition, we investigate the 

forecast skill of the raw forecasts and the bias correction as 

a function of the day-to-day variation of wind speed (|Wday - 

Wday-1|) (see Fig. 7(a)). Wday-1 denotes the wind speed of 

previous day, which means that before 24 hours. Fig. 7(b) 

shows that the day-to-day variation, binned in increments of 

0.5 m s-1, is mainly distributed in 0-6 m s-1, and the 

probability of |Wday - Wday-1| gets smaller as it grows. The 

forecast error starts at 2.4 m s-1 and 1.6 m s-1 for the raw 

forecasts and the bias correction respectively. And the 

forecast error for the raw forecasts keeps about 0.8 m s-1 

larger than that for the bias correction until |Wday - Wday-1| 

bigger than 4 m s-1, and ascends rapidly achieving 4.1 m s-1 

when |Wday - Wday-1| is equal to 10 m s-1; while that for the 

bias correction varies with small amplitude between 1.5-2.1 

m s-1. The results for |Wday - Wday-1| bigger than 10 m s-1 do 

not have statistical meaning because of too few samples. 

The above results suggest that when the day-to-day 

variation is large, the bias correction improve the forecast 

skill effectively, and the nonlinear Kalman filter performs 

well under weather transition. 

To investigate the diurnal characteristics of the forecast 

errors, we compute the four metrics with all the available 

data at a given time, which is each of the 24 forecast hours. 

Fig. 8 shows the temporal evolution of RMSE, MAE, BIAS, 

and correlation, respectively. 
The growth of the planetary boundary layer (PBL) is 

often a challenging process to be predicted (Deppe et al. 

2013), which is reflected by the jump in RMSE value 

before sunrise (04 LST-08 LST) (Fig. 8(a)). Throughout the  

 

 

daytime and early evening, the RMSE value stays constant 

around 3 m s-1. Around sunrise, the raw forecasts show an 

increase in RMSE, given the uncertainty associated with the 

PBL growth. Based on RMSE, the Kalman filter shows 

improvement across all the forecast hours in the range about 

1 m s-1 with respect to the raw, while decreasing RMSE 

around 1.5 m s-1 in 05 LST-08 LST. This is the indication of 

the Kalman filter method’s ability to improve the predictive 

skill. As for MAE (see Fig. 8(b)), the temporal variation is 

similar to RMSE. While for the correlation coefficient (Fig. 

8(d)), the Kalman filter method significantly improves the 

correlation for all the 24 forecast hours, especially for 04 

LST-08 LST providing average improvements of 

correlation around 0.5 with respect to the raw forecasts. 

For BIAS (Fig. 8(c)), the raw forecasts also exhibit a 

strong diurnal cycle with a peak before sunrise when the 

growth of the PBL is occurring, and almost zero throughout 

the daytime and early evening. The Kalman filter method 

drastically reduces the bias of the raw forecasts having 

values close to zero at most time of the day, and nearly 

reduces it by around 0.8 m s-1 constant-in-time in 05 LST-

07 LST. 

 
5.3. Evaluation of ramp event forecasts 
 

In this subsection, we focus on the accuracy of ramp 

event forecasts at turbine height. A contingency table (see 

Table 1) is applied to classify the forecasted and observed 

ramp events into hits, false alarms, misses, and correct nulls. 

A ramp event is considered to be a hit if it occurred 4 h 

before or after the forecast time, that is, if a ramp is 

forecasted at time T, then we consider the forecast a hit if  

  
(a) RMSE (b) MAE 

  
(c) BIAS (d) Correlation 

Fig. 8 Temporal evolution of the metrics for the raw forecasts and the bias correction across the 24h of forecast. The time of 

day is the local standard time (LST) 
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Table 4 Number of ramp events for each ramp type. POD, 

FAR, TS, and TSS scores are calculated for the raw 

forecasts and the bias correction 

Ramp 

type 
Statistics Raw Correction 

Obs. 

total 

events 

Model 

total 

events 

Correction 

total events 

Up-ramp 

POD 0.27 0.39 

360 390 404 

FAR 0.75 0.65 

TS 0.15 0.23 

TSS 0.12 0.26 

Correct 

Null 
1628 1658 

Down-

ramp 

POD 0.26 0.38 

363 349 385 

FAR 0.73 0.64 

TS 0.15 0.23 

TSS 0.13 0.25 

Correct 

Null 
1662 1671 

 

 

there is an observed ramp on the time interval [T-4; T+4]. 

Ramp events are divided into two categories: ramp-up 

events (increase in wind speed within 4 hours) and ramp-

down events (decrease in wind speed within 4 hours) 

(Freedman et al. 2008). Both the observed and forecasted 

ramps are determined using the 10-min data. 

First, we examine the overall performance of the 

Kalman filter bias correction for improving the forecast 

skill of ramp events. From Table 4, we know that for the 

observed 723 ramp events, there are 360 ramp-up events 

and 363 ramp-down events. The bias correction 

overestimates the total events both for up-ramps and down-

ramps, and does not improve this metric compared with 

direct model output. But for metrics based on hits, false 

alarms, misses, and correct nulls, the Kalman filter shows 

noticeable improvements (see Fig. 9 and Table 4). For the 

ramp-up events, it shows that of the 360 events, only 98 are 

correct, indicating that 262 ramp events are missed by the 

model. The bias correction increases the hits from 98 to 

142, and decreases the misses from 262 to 218. And 

meanwhile, it decreases the false alarms from 292 to 262, 

and increases the correct nulls from 1628 to 1658. 

Similarly, for the ramp-down events, the Kalman filter 

increases the hits and correct nulls from 94 to 139 and from 

1662 to 1671 respectively, and decreases the misses and 

false alarms from 269 to 224 and from 255 to 246 

respectively. 

To further assess the ability of the Kalman filter bias 

correction, POD, FAR, TS and TSS scores are calculated 

(Table 4). The values of POD, FAR, TS and TSS range from 

0 to 1 with perfect forecasts having the POD, TS and TSS 

scores near 1, and an FAR score near zero. The most 

important statistics are POD and TSS scores, which 

researchers refer to as the hit rate more commonly (Jolliffe 

and Stephenson 2012). Table 4 indicates that up-ramps have 

slightly higher POD score, suggesting that the model 

predicts up-ramps more accurately compared with down-

ramps. The bias correction increases the POD score from 

0.27 to 0.39, detecting ramp-up events nearly 40% of the 

time. After bias correction, the TSS score is significantly  

 
(a) Ramp-up events 

 
(b) Ramp-down events 

Fig. 9 Hits, false alarms, and misses of the raw forecasts 

and the bias correction for ramp events 

 

 
(a) Ramp-up events 

 
(b) Ramp-down events 

Fig. 10 Monthly climatology of the observation, the raw 

forecasts and the bias correction for ramp events per day 

over a 4-h window 

 

 

promoted from 0.12 to 0.26 for up-ramps and from 0.13 to 

0.25 for down-ramps. 

We investigated the basic climatology of the ramp 

events after bias correction in more detail in Fig. 10. A 

strong bimodal peak cycle exists with maxima in March and  
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(a) Ramp-up events 

 
(b) Ramp-down events 

Fig. 11 Diurnal variation of the observation, the raw 

forecasts and the bias correction for ramp events (total 

number over a 2-yr period centered within 4-h bins) using 

4-h definition of ramps 

 

 

July and decreases between the two peaks with minima in 

May and September for observed ramp-up events. Results 

are similar for observed ramp-down events. Observed up-

ramps show on average the maximum frequency of 1.4  

day-1 during March and the minimum of 0.37 day-1 during 

September. For down-ramps the maximum frequency is 

1.27 day-1 during March-April and the minimum is 0.5 day-1 

during September. The model and the bias correction both 

exhibit the basic climatology pattern, and overestimate the 

rate of events in most of the months for up-ramps and 

down-ramps. However, the Kalman filter improves the 

results in March, May, August, and November for up-ramps, 

and the results in August, September, October, November 

and December for ramp-down events. 

Furthermore, we examined the diurnal variation of the 

ramp events (Fig. 11). We found that observed up-ramps 

mostly happen during 00-04 LST, which perhaps is 

associated with the formation of the low level jet. Observed 

ramp-down events are most common during 00-08 LST, 

almost the whole nighttime. In the daytime, both up-ramps 

(12-16 LST) and down-ramps (16-20 LST) seldom occur. 

The model exhibits general diurnal trend for the up-ramps, 

while during 00-04 LST it overestimates the number of 

events dramatically. The Kalman filter improves the 

forecast skill for up-ramps during almost all hours, 

especially reducing the number from 152 to 136 during 00-

04 LST. For ramp-down events, the Kalman filter improves 

the forecast skill moderately during most of the hours. 

6. Conclusions 
 

The postprocessing method of nonlinear Kalman filter 

was proposed to better simulate nonlinear problems in 

numerical weather prediction. To deal with the high 

nonlinearity of real-time wind speed forecasts and to 

improve the wind ramp event forecasts, the nonlinear 

Kalman filter bias correction method was applied to 24-h 

wind speed forecasts at 70-m height issued from the WRF 

model. And the bias correction was tested with observations 

from Zhangbei wind farm, Hebei Province, China for a two-

year period. Conclusions can be summarized as follows. 

Sensitivity tests of the nonlinear Kalman filter to 

polynomial order and time delay were conducted to obtain 

the optimal filter based on the best forecast performance. 

The results show a second order polynomial Kalman filter 

with one-hour time delay is the optimal one. The bias 

correction has decreased RMSE by 32% from 3.26 m s-1 to 

2.21 m s-1, decreased MAE by 34% from 2.52 m s-1 to 1.66 

m s-1, reduced BIAS almost to zero, and improved 

correlation from 0.58 to 0.82. Moreover, the bias correction 

improves the forecast skill in almost all wind speed 

intervals, especially in intervals sensitive to wind power 

prediction. The fact shows that the Kalman filter is 

especially suitable for wind power prediction. In addition, 

the bias correction is able to produce skillful correction 

upon the raw forecasts, even under abrupt weather 

transition conditions and in time of the day when the model 

exhibits large errors. It demonstrates the robustness of the 

method. 

As to the overall performance of the bias correction for 

ramp event forecasts, the Kalman filter shows noticeable 

improvements, increasing the hits and correct nulls and 

decreasing the misses and false alarms substantially for both 

the ramp-up and ramp-down events. The bias correction 

increases the POD score of up-ramps from 0.27 to 0.39, 

detecting up-ramps nearly 40% of the time. Meanwhile, the 

POD score of down-ramps is increased from 0.26 to 0.38. 

And the TSS score increases from 0.12 to 0.26 for up-ramps 

and from 0.13 to 0.25 for down-ramps. Almost doubled TSS 

score shows the significant promotion for the bias 

correction in ramp event forecasts. In addition, the diurnal 

variation of ramp events shows that observed up-ramps 

usually arise during the early evening, mostly associated 

with the low level jet. The Kalman filter improves the 

forecast skill for up-ramps during almost all hours, 

especially during the period with large forecast errors. 

From above results, we know that the nonlinear Kalman 

filter gives an approach to estimate the forecast error of the 

numerical model, so that effective bias correction can be 

conducted to improve the raw forecasts. Traditionally, the 

real-time wind speed forecasts are directly acquired by 

statistical methods such as ARMA model, artificial neural 

network (ANN), and support vector machine (SVM), but 

combine numerical model and statistical method is a new 

efficient way which can both make use of dynamical and 

statistical information. In the future, we can apply other 

statistical methods to model and thus predict the forecast 

error, and such work may be prospective in real-time wind 

speed forecasts. 
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