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1. Introduction 
 

For structural wind engineering, previous studies mainly 

focused on atmospheric boundary layer wind. However, A 

large number of wind disasters show that extreme wind is 

the main cause of structural damage (Letchford et al. 2002, 

Yang et al. 2018). Studies have shown that in many non-

typhoon areas, downburst is the primary source of extreme 

wind and responsible for the design wind speed (Chay and 

Letchford 2002). The downburst is the local strong wind 

event that frequently occurs during the thunderstorm 

weather. Fujita (1985) defined it as “a strong downdraft 

which induces an outburst of damaging winds on or near the 

ground”. Due to the different formation mechanisms, the 

wind field characteristics of the downburst are quite 

different from those of the atmospheric boundary layer 

(ABL). The typical velocity profile of downburst is nose-

shaped, and it would lead to a higher near-ground wind 

speed than that in ABL (e.g., Peng et al. 2018). The 

corresponding wind load and its potential tremendous 

damage to structures have attracted more and more attention 

(e.g., Holmes and Oliver 2000, Damatty and Huang 2018). 

Compared with most engineering structures, high-rise 

building is more sensitive to wind loads due to their light 

weight, large flexibility, low damping ratio, and low 

fundamental frequencies. In addition, the glass curtain wall 

used in high-rise building is also facing the threat of 

extreme winds. Neglecting or incorrectly predicting the 

wind loads of high-rise buildings under extreme winds will 

result in huge hidden dangers to the structural safety and  
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will greatly increase the maintenance cost of the envelope 

structure. Therefore, it is of great significance to study the 

characteristics of downburst-induced wind loads on high-

rise buildings. 

At present, there are mainly two ways to study wind 

loads. The first method is to conduct wind tunnel tests, and 

it is considered to be the accurate method to study the wind 

pressure on surfaces of a building. However, it is expensive 

and difficult to take into account all possible wind load 

conditions. Furthermore, if building shape is complex, it 

will be hard to avoid arranging too many pressure taps with 

the purpose of obtaining the detailed wind load 

characteristics. In addition, most of the existing wind 

tunnels are mainly used to simulate atmospheric boundary 

layer wind, and only a few wind tunnels have the conditions 

for downburst test, which also brings some obstacles to 

downburst experimental research. Another method is 

numerical simulation, which is based on Computational 

Fluid Dynamics (CFD). With the development of computer 

technology, numerical simulation methods have made rapid 

progress in recent years. Nevertheless, its results are still 

greatly influenced by grid quality, boundary conditions, 

solving methods, and turbulence models, etc. The wind 

pressure distribution on the surface of the bluff body 

obtained by CFD is still very difficult to be highly 

consistent with the test results. Therefore, it is necessary to 

establish a computational modeling approach which can 

satisfactorily predict the mean and fluctuating wind 

pressure coefficients induced by downburst on high-rise 

building surfaces.  

To develop a forecasting model for the problem of 

multiple independent variables, the multiple regression 

analysis is commonly used, mainly including multiple linear 

regression and polynomial regression. Multiple linear 

regression is simple and practical, but it is not well adaptive 

to study the complicated problem. Polynomial regression 
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can be used to fit non-linear problems, but it will be very 

difficult to solve the problem involving a large number of 

parameters. For the current problem, the influential 

parameters may include the location of the building, 

coordinates of pressure taps, the orientation of each surface. 

These factors may make the modeling process very 

complicated and it is hard to obtain an ideal regression 

equation. Artificial neural networks (ANN) developed in 

recent years provide us with a new choice. ANN is a 

computing model that simulates the structure of biological 

neural networks. It is a data-driven statistical method which 

calculated by many neuron connections. ANN can 

continuously adjust the internal structure based on the error 

between the predicted value and the target value, and finally 

obtains a neural network structure which can accurately 

predict the experimental value. This method has a strong 

self-adaptive ability and well robustness, which make it 

easy to be used to solve the complex nonlinear problems. 

Since Back-propagation (BP) algorithm was developed 

(Rumelhart 1988), artificial neural networks have been 

widely used in civil engineering applications (Benardos and 

Kaliampakos 2004, Kim and Kim 2008, Goh and Zhang 

2012, Zhang and Goh 2013, Huang, He et al. 2015, 

Kordnaeij Kalantary et al. 2015, Zhang and Goh 2016, 

Nejad and Jaksa 2017). In the field of structural wind 

engineering, this method has also achieved good 

applications, including investigation of interference effects 

between adjacent high-rise buildings (Khanduri, Bédard et 

al. 1997, English and Fricke 1999), prediction of wind 

pressure coefficients and even pressure time series on 

building surface (Chen, Kopp et al. 2003, Fu, Liang et al. 

2007, Chen, Wu et al. 2008, Huang He et al. 2017, Bre, 

Gimenez et al. 2018). These studies have successfully 

applied the ANN method to the engineering field and 

achieved good results. But as far as I know, the ANN 

method has not been applied in the field of downburst wind 

load so far. 

Downburst-modeling methods mainly include 

impinging jet modeling, wall jet modeling and ring-vortex 

modeling, etc. Among them, the impinging jet model has 

been widely used by many scientific researchers (Holmes 

and Oliver 2000, Choi 2004, Mason Letchford et al. 2005) 

due to its simplicity and ability to simulate downburst wind 

field reasonably. In this paper, using the experimental 

equipment based on the impinging-jet-model, the pressure 

test of the high-rise building model at different locations 

was conducted in the laboratory, and the measured pressure 

data was used as the database to develop artificial neural 

networks models. The Back propagation neural network 

(BPNN) method was used to modeling the mean and 

fluctuating wind pressure coefficients of the building 

surfaces, and the prediction accuracy of models were 

quantitatively analysed.  

 

 

2. Wind tunnel experiments 
 

2.1 Experimental setup 
 

Experiments were conducted by using the impinging- 

 

Fig. 1 The photo of test facility 

 

 

(a) 

 

(b) 

Fig. 2 Schematic arrangements of measuring pressure test 

of high-rise building model 

 

 

jet-based downburst generator at Zhejiang University, 

China. The test facility is mainly composed of jet nozzle, 

flat plate and measurement system. As shown in Fig. 1, the 

distance between flat plate and jet nozzle is 1.2 m (i.e., 

Hjet=1.2 m). The diameter of jet nozzle is 0.6 m (i.e., 

Djet=0.6 m). The velocity at the nozzle exit was set to 12 

m/s (i.e., Vjet=12 m/s). 

Fig. 2 shows the schematic of the flow circuit and high-

rise building model used in current study. As shown in Fig. 

2(a), the jet nozzle generate a downdraft flow which 

impacts on the flat plate and spread from center to 

periphery. With the increase of airflow spread distance, the  

Jet Nozzle

Flat Plate

Djet=0.6m

Hjet=1.2m
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Fig. 3 Comparison of measured radial wind profile with 

published data 

 

 
characteristics of near-surface wind field will change 
significantly, which will affect the wind pressure 
distribution on the surface of high-rise building model. 
Therefore, the radial distance from the building model to 
the center of the downdraft flow (r) is taken into account as 
an important influence parameter. In this study, the high-
rise building model was measured at r/Djet=1.0, 1.25, 1.5, 
1.75, 2.0, 2.25, 2.5 and 3.0. The geometric scale ratio of test 
is 1:1000, so the model with the dimension of 50 mm× 50 
mm× 100 mm would represent high-rise building with 50 
m× 50 m in plan and 100 m in height, and the 
corresponding actual diameter of downburst is 600 m. As 
shown in Fig. 2(b), the windward surface is marked as face-
A, the leeward surface as face-C, two side surface as face-B 
and face-D respectively, and the roof surface as face-S. 
Each of the face A/B/C/D was equipped with 24 pressure 
taps, and face S was equipped with 9 pressure taps. During 
the test, the sampling frequency of the measuring data is 
312.5 Hz and the sampling time is 32s.  

 

2.2 Wind flow characteristics 
 

In the present study, the wind field characteristics were 

measured at eight radial locations (i.e., r/Djet= 0.6, 0.8, 1.0, 

1.25, 1.5, 2.0, 2.5, 3.0) by using a hot wire probe within a 

height range of 0~180 mm upon the ground. Fig. 3 shows 

the quantitative comparisons of the measured u velocity 

(normalized by the maximum radial velocity, umax,r, and 

plotted aginst a vertical position ordinate normalized by the 

height where the maximum radial velocity occurred, zmax,r) 

at three typical radial locations (r=1.0, 1.5, 2.0Djet) of the 

present study with JAWS field measurement data 

(Hjelmfelt 1988) and other previous published studies 

(Letchford 1999, Wood et al. 2001). As shown in Fig. 3, 

even though the details of flow features vary from case to 

case, their overall trend are similar, and the velocity profiles 

in present study are in good agreement with the JAWS field 

data and previous published data. 

Fig. 4 gives the measured radial wind velocity as well as 

turbulence intensity profiles at eight radial locations, as 

mentioned above. It can be seen clearly that the velocity 

and turbulence intensity has changed a lot with the 

increasing of radial distance from the center of the 

downdraft. As shown in Fig. 4(a), the maximum radial 

velocity occurred at r=1.0~1.25Djet, and radial velocity and  

 

(a) radial velocity profiles 

 

(b) turbulence intensity profiles 

Fig. 4 Measured mean velocity and turbulence intensity 

profiles at eight typical radial locations 

 

 

turbulence intensity at r<1.0Djet are relatively small. So, in 

present study, only r>1.0Djet are taken into account for the 

pressure test of high-rise building model. 

 

2.3 Pressure data analysis 
 

Wind pressure coefficients are used to describe the wind 

pressure characteristics of building surface, and which is 

generally defined as 

250 ρV.

pp
C

ref

p


  (1) 

Where p is the absolute pressure, pref is a reference pressure, 

ρ is the air d ensity, and V is the reference wind speed 

utilized to compute a reference dynamic pressure for 

normalization. For the downburst, the velocity at nozzle exit 

(Vjet) is generally used as V. 

Figs. 5 and 6 show the mean and RMS wind pressure 

coefficients of the building surfaces respectively. It can be 

found obviously, corresponding to the wind field 

characteristics shown in Fig.4, the mean and RMS pressure 

coefficients distributed regularly with the increase of radical 

distance (r). The mean wind pressure coefficients on 

building surfaces is larger at r=1.0Djet, while the fluctuating 

wind pressure coefficients is larger at r=2.0Djet. Thus, as for 

the downburst wind field, the pressure coefficients were 

significantly affected by the radial distance from the high-

rise building to the center of downdraft. 
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3. Back propagation neural network  

 

Artificial neural network can be roughly divided into  

 

 

 

supervised learning network and unsupervised learning 

network according to learning strategies. In the process of 

supervised learning, the training data is added to the input  

  
(a) r=1.0Djet (b) r=1.5Djet 

  
(c) r=2.0Djet (d) r=3.0Djet 

Fig. 5 Contours of measured Cp-mean on model surfaces at four typical radical locations 

  
(a) r=1.0Djet (b) r=1.5Djet 

  
(c) r=2.0Djet (d) r=3.0Djet 

Fig. 6 Contours of measured Cp-rms on model surfaces at four typical radical locations 
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Fig. 7 Structure of Back-propagation neural network used in 

this study (BPNN m-l-n) 

 

 

Fig. 8 Structure of Back-propagation neural network used in 

this study 

 

 

of the neural network, and the corresponding expected 

output is compared with the network output to get the error 

signal. The connection strength of the weight value is 

adjusted by the error signal. After many trainings, it 

converges to a certain weight value. And once the sample 

changes, the weights will be automatically modified to 

adapt to the new situation. In unsupervised learning, the 

network is directly placed in the environment without a 

standard sample in advance, and the learning phase and the 

working phase are integrated. At this moment, the change of 

learning law obeys the evolution equation of connecting 

weights. The main purpose of this paper is to establish a 

mathematical model which can accurately predict the wind 

pressure on the surface of high-rise building under 

downburst by using the neural network method based on the 

existing experimental data, so supervised learning is more 

suitable for this study. In supervised learning, the BPNN 

model is most widely used, and its strong self-adaptive 

ability enables it to perform non-linear fitting, optimization, 

and nonlinear mapping. Based on the above points, in this 

paper, a neural network based on backpropagation 

algorithm is used to establish a three-layer feedforward 

neural network model for predicting the surface pressure 

coefficients of high-rise building due to the downburst 

wind. The topology structure is shown in Fig.7. The symbol 

BPNN m-l-n is used as a label for the network, which 

contains m input variables, l hidden neurons and n output 

variables. 

The training process of backpropagation algorithm can 

be divided into two phases, including feed-forward as well 

as error back propagation. As shown in Fig. 8, in the first 

phase, the input of neurons J in the hidden layer is the sum 

of weighted inputs and bias. Then, the summation is  

 
(a) f=logsig(n) 

 
(b) f=tanh(n) 

 
(c) f=purelin(n) 

Fig. 9 Transfer function 

 

 

transformed by the non-linear transfer function f (·) to 

generate the output signal of the neuron j, which can be 

expressed as 









 



m

i

jijij bxWfy
1

 (2) 

where Wji is the weight which connects the ith neuron to the 

jth neuron); xi denotes the ith input variable; bj is the bias 

that associated with the jth neuron; f (·) means the transfer 

function, and it most frequently used in BPNN mainly 

include three types: linear function, logarithmic function, 

and hyperbolic tangent function. The graph of common 

expressions of these three type transfer functions are 

presented as Fig. 9.  

After the first phase, the output values yk obtained from 

the forward process should be compared with the target 

values Yk, and then the errors between yk and Yk are 

backpropagated (i.e., errors are propagated from the output 

layer to the previous layers), and the connection weights 

between them are updated to reduce the errors. The error 

will be reduced to an acceptable range by looping the above 

two steps. The objective of the neural network training is to 

get the optimized weight and bias value that can describe 

the relationship between the input values and the output 

values, and finally achieve the satisfied prediction. The 

determination of the number of hidden neurons is 

performed by a trial and error process, and the number of 

the smallest neurons that can produce ideal results  
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Table 2 Sample training and testing data sets for face-A 

x(mm) y(mm) r(Djet) Cp-mean Cp-rms 

Training data 

41 5 1 0.7661 0.1181 

9 25 1.5 0.6901 0.1913 

41 95 2.5 -0.0506 0.1279 

9 5 2.5 0.1689 0.1468 

25 40 2.5 0.2634 0.1935 

9 75 2.5 0.0763 0.1215 

41 85 1.25 0.115 0.0794 

9 85 1.5 0.1891 0.1539 

25 95 2.25 0.0263 0.1366 

Testing data 

25 25 1.5 0.914 0.2775 

41 25 1.5 0.762 0.2497 

9 95 2.5 -0.0337 0.1095 

 

 

(determination R² of the testing data set as judgement 

index) is usually selected. In this study, based on Matlab 

toolbox, a back-propagation algorithm with the 

Levenberge-Marquardt algorithm (Demuth and Beale 2009) 

was used for neural network modeling. 

 

4. Prediction of pressure coefficients  
 

4.1 Database 
 

As mentioned above, the pressure coefficients are 

significant influenced by radial distance. But it worth to 

note that although the radial location of building has 

changed, the same surface maintains a similar distribution 

of wind pressure coefficients. Therefore, the prediction 

accuracy may be improved by considering the five typical 

faces of buildings separately (i.e., face A/B/C/D/S). At the 

same time, a neural network model through the database 

that contain the overall faces is also established.  

For developing the neural network model about single 

face, the input variables of the database contain the 

positions of measuring points (i.e., x, y) and the radial 

distances (i.e., r). For developing the neural network model 

about overall faces, the input variables include the positions 

of the measuring points (i.e., x, y), the radial distances (i.e., 

r), and the face id (i.e., fn, A-1, B-2, C-3, D-4, S-5). Table 1 

summarizes the network structure, transfer function, and 

number of training data and testing data of each neural 

network model developed in present study. Due to the large 

amount of data, it is essential to simplify the analysis 

process. For each type of analysis model, the corresponding  

 

 

data set is randomly divided into training set and testing set 

according to the ratio of 3:1. Table 2 lists some training data 

and testing data of face-A to further illustrate the data 

partitioning. Training data is used to train neural networks, 

and testing data is used to verify the reliability of trained 

model. Before the training process, input data should be 

normalize to (0-1) to improve the computational efficiency 

by using xnorm=2(xactual-xmin)/(xmax-xmin)-1(Goh and 

Zhang 2012) 

 

4.2 Performance measures  
 
The quality of the neural network model is mainly 

evaluated by the following indicators: 

Coefficient of determination(R2) 




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Coefficient of Correlation(R) 
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Mean square error (MSE) 





N

i

ii )y(Y
N

MSE
1

21
 (5) 

in which Y  is the average of the target values of Yi; y  is 

the average of the predicted yi; N is the number of data 

points in the used set. 

 

4.3 Prediction results  
 
`Table 3 shows the results of various performance 

indicators for each developed BPNN model. For each 
performance parameter, the results of training data and 
testing data are both given. It can be seen that the R² (or R) 
of the training data are better than that of the testing data 
(due to the neural network model is trained based on the  

Table 1 Parameters of BPNN for prediction of Cp-mean and Cp-rms 

Terms Face A/B/C/D 
 

Face S 
 

Overall faces 
 

Inputs x,y,r 
 

x,y,r 
 

x,y,r,fn 
 

Outputs Cp-mean Cp-rms Cp-mean Cp-rms Cp-mean Cp-rms 

BPNN structure 3-12-1 3-16-1 3-5-1 3-5-1 4-15-1 4-18-1 

Transfer function 

Logarithmic S type function 

(hidden layer): f(s)=1/(1+e-s) 

Tangent S type function 

(output layer): f(s)=tanh(s) 

Logarithmic S type function 

(hidden layer): f(s)=1/(1+e-s) 

Tangent S type function 

(output layer): f(s)=tanh(s) 

Logarithmic S type function 

(hidden layer): f(s)=1/(1+e-s) 

Tangent S type function 

(output layer): f(s)=tanh(s) 

No. of training data 144 
 

54 
 

630 
 

No. of testing data 48 
 

18 
 

210 
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Table 3 Performance measures for BPNN 

Data sets  
R² 

 
R 

 
MSE 

 

 
Tr. Te. Tr. Te. Tr. Te. 

A 
Cp-mean 0.997 0.992 0.999 0.996 0.000245360 0.000520680 

Cp-rms 0.988 0.971 0.994 0.985 0.000033389 0.000093725 

B 
Cp-mean 0.993 0.991 0.997 0.995 0.000110750 0.000168180 

Cp-rms 0.995 0.986 0.997 0.993 0.000033640 0.000108970 

C 
Cp-mean 0.995 0.986 0.997 0.993 0.000056146 0.000154310 

Cp-rms 0.997 0.976 0.998 0.988 0.000007443 0.000005967 

D 
Cp-mean 0.996 0.989 0.998 0.994 0.000097565 0.000360090 

Cp-rms 0.994 0.988 0.997 0.994 0.000048006 0.000136170 

S 
Cp-mean 0.995 0.981 0.998 0.990 0.000083416 0.000254970 

Cp-rms 0.977 0.925 0.986 0.961 0.000068687 0.000261530 

Overall faces 
Cp-mean 0.991 0.985 0.995 0.992 0.001376500 0.001857100 

Cp-rms 0.949 0.934 0.974 0.967 0.000353920 0.000396400 

  
(a) face-A-Cp-mean (b) face-A-Cp-rms 

  
(c) face-B-Cp-mean (d) face-B-Cp-rms 

  
(e) face-C-Cp-mean (f) face-C-Cp-rms 

Fig. 10 Continued 
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training data). For the untrained testing data, the 

performance of the model is also ideal enough. The 

majority of the determination coefficient R2 and the 

correlation coefficient R are above 0.98, and the minimum 

value is also above 0.92. The results indicate that the 

established neural network model can predict the measured 

wind pressure with high accuracy. The MSE reflects the 

degree of dispersion of the sample. It can be seen from 

columns 7 and 8 of Table 3 that the BPNN models 

developed by single face database obtain a very low MSE 

value, while the model developed by overall faces getting a 

slightly larger MSE value. It indicates that the predicted 

value getting from BPNN model based on single face 

database is more central around target value, thus it may 

getting a more satisfactory prediction. 

Fig. 10 shows the BPNN estimations vs. the measured  

 

 

values for single face and overall faces models. Using the 

measured values as the abscissa and the predicted values as 

the ordinate, it can be seen clearly that the data points of the 

training data and testing data are basically concentrated in 

100% agreement line (i.e., y=x). Both single model and 

overall faces models can achieve good prediction results. 

In order to illustrate the prediction performance more 

intuitive, the contours of pressure coefficients (both Cp-mean 

and Cp-rms) which generated by experimental test and BPNN 

prediction on building surfaces at r=1.5Djet are shown in 

Fig.11. It can be seen that both prediction models for the single 

face and overall faces can satisfactorily predict the wind 

pressure coefficients on building surfaces. In addition, the wind 

pressure coefficients obtained from single face model is closer 

to the experimental results, and more detailed wind pressure 

characteristics can be captured. 

  
(g) face-D-Cp-mean (h) face-D-Cp-rms 

  
(i) face-S-Cp-mean (j) face-S-Cp-rms 

  
(k) face-Overall-Cp-mean (l) face-Overall-Cp-rms 

Fig. 10 Fitting between the BPNN outputs and the measured targets 
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5. Conclusions  
 

An impinging-jet-based experimental study was 

conducted to assess the pressure coefficients on a high-rise 

building induced by the downburst-like wind. Using the 

back propagation neural network (BPNN) to establish 

prediction models for wind pressure coefficients of high-

rise building under downburst. The accuracy and 

effectiveness of prediction models for single-face and 

overall-faces was validated by the comparison of the 

prediction results and measured data. The prediction model 

for single face has been proved that it could estimate the 

pressure coefficients more accurately and capture more 

detailed wind pressure characteristics. While the accuracy 

of prediction model for overall faces was slightly low, the 

process of establishing model was simpler (only one BPNN  

 

 

model needed to be established), and the network structure 

had a better generality (the model was applicable to wind 

pressure estimating for all surfaces). In a word, this study 

indicated that the back propagation neural network (BPNN) 

method had a good performance to predict wind pressure 

coefficients of high-rise building under downburst wind. 

This method could also be extended to the prediction of 

various buildings in extreme wind field. 
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