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Abstract.  Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or
minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and
conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional
random process is represented as a linear combination of one-variate and one-dimensional uncorrelate
processes. Double modal transformation is the joint application of modal analysis and proper orthogonal
decomposition applied to the loading process. By adopting this method the structural response is expressed as
double series expansion in which structural and loading mode contributions are superimposed. The
simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal
orthogonality property leads to efficient solutions that take into account only a few structural and loading
modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Key words: double modal transformation; modal analysis; proper orthogonal decomposition; structural
dynamics; wind engineering.

1. Introduction

The dynamic response of linear structural systems is usually evaluated by transforming the
equations of motion from the initial Lagrangian space into a space characterized by suitable
properties. Using Classical Modal Analysis (CMA) (Hurty and Rubinstain 1964) the problem is
solved in the principal space where, under caoos depending on dampir{@aughey and O'Kelly
1965), the equations of motion are de-coupled. Re-writing the equations of motion in state space, &
complex transformation exists whicle-douples the equations of motion independently of damping
properties (Foss 1958, Veletsos and Ventura 1986, Argyris and Mlejnek 1991). The new equations
of motion, of the first order instead of the second, are complex. In both cases, the solution of a
limited number of modal equations is usually enough to express the structural response. The substructur
synthesis regards the structure as an assemblage of sub-structures whose motion is represented by
linear combination of admissible shapes: component-mode synthesis, branch-mode analysis anc
component-mode substitution (Meirovitch 1980) are special synthesis techniques which give up the
de-coupling of the equations of motion by pursuing the aim of minimizing the number of equations
to be solved. All the above methods apply tramsédion rules based on structural modal shapes.
External forces passively follow these transformations assuming, in the new space, a purely

1 Professor and Head
1 Ph.D. Student



222 Giovanni Solari and Luigi Carassale

mathematical meaning lacking in physical properties.

Karhunen-Loeve expansion (Loeve 1955, Papoulis 1965), also known as the Proper Orthogonal
Decomposition (POD), provides mathatical and conceptual tools to extend many concepts
traditionally used in the mechanical sector to random processes. Proposed around the mid 40’s by
several independent sources (Kosambi 1943, Loeve 1945, Karhunen 1946, Kac and Siegert 1947), POI
expresses a generalized multi-variate/multi-dimensional stochastic process by a setieenairrogl
vectors/functions, the eigenvectors/eigenfunctions of the covariance matrix/function, whose coefficients
are reciprocally uncorrelated. It owes its popularity to the attractive properties that only few terms of
the series are usually needed to reproduce the actual process and a link often existsebetween
dominant term of the series and the different main mechanisms thaibeentto the oerall
physical phenomenon.

POD was first applied in meteorology (Lorenz 1959, Holmstrom 1963, Freiberger and Grenander
1967), where is also known as the Empirical Orthogonal Function (EOF) expansion (Obukhov 1960),
for mapping meteorological fields (Obled and Creutin 1986). Lumley (1967, 1970) introduced POD
in fluid mechanics to extract flow organized structures, such as dominant eddies, from th&istocha
turbulent field, and represent these byedeinistic functions; initily restrained by the lack of the
necessary experimental data (Bakewell and Lumley 19&7)se has become ever more usual
(Aubry et al. 1988, Moin and Moser 1989, Berkoer al. 1993, Holmeset al. 1996) in recent years.

Armitt (1968) pioneered the application of POD in bluff body aerodynamics by analyzing the wind
pressure field on a cooling tower; in subsequent years many researchers (Lee 1975, Best an
Holmes 1983, Kareem and Cermak 1984, Karesnal 1989, Holmes 1990, MacDona&t al.

1990, Letchford and Mehta 1993, Bienkiewetizal 1993, 1995, Tamurat al 1997, Kikuchiet al

1997, Holmeset al 1997, Uematsiet al 1997, Kareem and Cheng 1999, Tamataal 1999,

Baker 2000) followed his example by using POD to represent and understand wind tunnel and full-
scale pressure measurements on a great variety of buildings. Analogous methods have been applie
by Tumeret al (2000) to represent hydrodynamic actions on slender cylinders in oscillating flows.
Applications of POD in data compaction and reduction and in pattern recognition and image processing
are reported by Ahmed and Rao (1975) and Devijver and Kittler (1982), respectively. POD has been
also applied to formulate a spectral stochasticefialement technique (Spanos and Ghanem 1989,
Ghanem and Spanos 1990, 1991a, 1991b, Ghanem and Brzakala 1996). Ghanem and Spanos (19€
applied POD in the solution of nonlinear vibration problems for representing the stochastic loading
term; in this context, POD was also applied as a tool for investigating the motion of nonlinear
mechanical systems simulated by numerical (Kreuzerkarsl 1996, Fenni and Kappugantu 1998,
Georgiou and Schwartz 1999) and physical models (Benedettini and Rega 1997, Alaggio and Rege
2000), pointing out bifurcation conditions and transition to chaos. The use of POD as a spectral
decomposition (Lumley 1970) embedded in a Monte Carlo simulation procedure was proposed by
Li and Kareem (1989, 1991); methods for the simulation of wind, wave and earthquake fields have
been developed by Li and Kareem (1991, 1993), Caddemi and Di Paola (1994), Di Paola and Pisanc
(1996), Di Paola (1998) and Carassale and Solari (2000a,b). Spectral modes have been recentl
applied to determine the wind-excited response of structures (Guld 1998, Benfratellet al

1998, Carassalet al 1998, 1999a,b, Kareem 1999, Carassale and Solari 1999, 2000a,b) and the
seismic response of multi-supported structural systems (Carassdl€000, Zingales 2000). Masri

et al (1998) applied POD to represent the nonstationary seismic motion through the eigensolutions
of the covariance function.

The joint expansion of the Lagrangian motion coordinates by CMA and of the loading random
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process by POD using covariance and/or spectral modes is called Double Modal Transformation
(DMT) (Carassalest al 1998, 1999a,b, Carassale and Solari 1999) and provides a vast range of
operative possibilities whose limits are probably still unknown. Through DMT the dynamic response
is expressed by a double linear combination of structural and loading modes weighted by Structural
Principal Coordinates (SPCs) and Loading Principal Components (LPCs), respectively. ipieprinc
each SPC is excited by each LPC. Actually, due to Structural Modal Truncation (SMT), only few
SPCs contribute to the dynamic response. Similarly, due to Loading Modal Truncation (LMT),
only few LPCs contribute to the loading process. Cross-Modal Orthogonality (CMO) properties often
exist which further simplify the solution by making several SPCs unexcited by given LPCs. It
follows that the dynamic response of structures to multi-variate and/or multi-dimensional loading
processes can be generally expressed by retaining only a few structural and loading modes. Th
case in which one structural mode and one loading mode fully represent the dynamic response is
not unusual.

This paper provides a general framework and some critical remarks about CMA and POD. The basic
elements of these methods are used to present and discuss DMT as a new tool to determine th
dynamic response of multi-degree-of-freedom/continuous linear structures excited by multi-variate/
multi-dimensional weakly-stationary Gaussian processes. Attention is focused on the main properties
of the covariance and spectral eigensolutions, on the peculiarities of time domain and frequency
domain approaches, and on the different aspects of discrete and continuous modeling. The conclusion
deal with the application field of these criteria and with their advantages and disadvantages. Some
prospects for future developments are also presented.

2. Classical modal analysis of MDOF linear systems
Consider an M-Degrees-Of-Freedom (MDOF) linear structure whose equation of motion is given by :
Mg (t) + Cq(t) + Kq(t) = Av(t) 1)

whereq(t) = {a.(t) .. qu ()} " is the Lagrangian displacement vecift) F: i\l are the vectors of
the structural velocities and acceleratioht; C and K are the mass, viscous damping and stiffness
matrices of the structuréd;(t) = Av (t) is the Lagrangian loading vector wheré) = {v(t) .. vy ()} '
is a weakly-stationariN-variate nil mean Gaussian process ang anM>< N deterministic matrix.
The hypothesis that(t) is nil mean does notvolve any restriction in the lgar field.

Let w?,..wj be the structural eigenvalues corresponding to the squared natural ¢ismlemcies
sorted in increasing orded, , .. Yy are the corresponding structural eigenvectors. They are the non-
trivial solutions of the homogeneous linear algebraic system :

K-afM)y=0 (j=1,..M) (2)

SinceK andM are real, symmetric and positive definite matrices, their eigenvalues are real and
positive; their eigenvectors are real and enjoy the ortinoaldy conditions :

YMW=1; YKw=Q (3)

where W= [y .. Y] is the MX M non-singular structural modal matrik;is the identity matrix;
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Q=diag{w?, .. w3} is the diagonal matrix of the structural eigenvalues.
Eq. (1) is usually solved by applying the principal transformation rule :

q(t) = ¥p(1) = 5 @R (4)

wherep (t) = {p.(t) .. pu ()} " is the vector of the structural principal coordinates, i.e., the image of
g(t) in the principal space. If the structure has classical vibration modes (Caughey and O'Kelly
1965), the substitution of Eq. (4) into Eq. (Brabuples the equations of motion in the principal space :

Pi(1) + 2§ P (1) + «Ppi(t) = YAV (j=1,..M) ()

¢ being thej-th damping ratio. Structural modal truncation consists in expressing the structural
response (Eq. 4) by considering only a limited nuniMes M of the structural modes.

3. Discrete proper orthogonal decomposition

Discrete POD is the expansion of a multi-variate random process into a series of orthogonal
vectors whose coefficients are mono-variate uncorrelated random processes. It is called Covariance
Proper Transformation (CPT) or Spectral Proper Transformation (SPT) according to whether the
orthogonal vectors are the eigenvectors of the covariance matrix or of the spectral density matrix of
the process. CPT and SPT are linked by noteworthy relationships.

3.1. Covariance proper transformation

Let C,= E[v(t) V' (t)] be the covariance matrix of(t) at the zero time lag, whefg[e ] is the
statistic average operator. L&t, .. Ay be the eigenvalues df,, called covariance eigenvalues;
@, .. @ are the corresponding covariance eigenvectors. They are the non-trivial solutions of the
linear homogeneous algebraic system :

Co- M) @=0 (k=1,..N) (6)

SinceC, is a real, symmetric and positive definite matrix, its eigenvalues are real and positive; its
eigenvectors are real andjey the orthonomality condtions :

dP=1;: PCP=A (7)

where @=[@ .. @] is the N> N non-singular covariance modal matri&;=diag {A;, .. A\} is the
diagonal matrix of the covariance eigenvalues. Due to EqC(fips the spectral decomposition :
N

C, = PAD' = T @A 8)

1

Using KarhunenLoeve expansion (Loeve 1955), the Covariance Proper Transformation (CPT) is
defined by :

v =ox (=5 «@x(l) 9)
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where X(t) = {xy(t) .. xy(t)} " is the N-variate random process representing the image(®fin the
covariance principal spacg(t) is thek-th covariance principal component. The joint application of
Egs. (8) and (9) provides :

Ci=A (10)

where C, = E [x(t)x(t)] is the covariance matrix of(t) at the zero time lag. Sinc# is diagonal,
then x(t) is a vector ofN processes uncorrelated at the zero time lag. Their variances are the
covariance eigenvalues.

CPT admits modal truncation rules similar to CMA. By sorting covariance eigenvalues in decreasing
order,v(t) may be usually approximated by a limited numlgx N of covariance modes. Evidence
of this fact in wind engieering was pointed out by simulating measured pressure fields on cooling
towers (Armitt 1968), square cylinders in two-dimensional flows (Lee 1975), low-rise buildings
(Best and Holmes 1983, Holmes 1990, Letchford and Mehta 1993, Bienkieivatz1993, 1995,
Tamuraet al. 1997, Holmeset al 1997), circular storage bins, silos and tanks (MacDoagtldl
1990), circular cylinders of finite height (Kareeat al 1989, Kareem and Cheng 1999), tall
buildings (Kareem and Cermak 1984, Kikuetial 1997, Tamuraet al 1999) and latticed domes
(Uematsuet al 1997). Analogous properties apply to turbulence and vortex wake representations by
theoretical models (Carassaeal 1998, 1999a).

It is also worthy to note that CPT often establishes links between different covariance modes and
different physical phenomena (Holmes al 1997, Baker 2000). Main covariance modes of the
wind pressure field on low-rise buildings, for instance, tendentially correspond to the separate
contributions of longitudinal, lateral and vertical turbulent fluctuations (Holmes 1990, Tanhata
1997). Similarly, alongwind forces, crosswind forces and torsional moments on tall buildings may
be associated to different modes each dominated by the distinct effects of atmospheleader
and vortex shedding (Kareem and Cermak 1984, Kikathil 1997).

3.2. Spectral proper transformation

Consider the power spectral density matrix (ps@&ntyv) of v(t), w being the circular frequency. It
is normalized by the relationship :

C, = }S\,(w)dw (11)

Let y1(w), .. W (w) be the eigenvalues &, (w), called spectral eigenvalue@ycw) , .. By(w) are the
corresponding spectral eigenvectors. They are the non-trivial solutions of the linear homogeneous
algebraic system :

[S(@)- )k (@ 1]6(@)=0  (k=1, ..N) (12)

Since S, is Hermitian and semi-positive definite, its eigenvalues are real and non-negative; its
eigenvectors are in general complex and enjoy the ortholigrmenditions :

O (WO(W=1; O*(IS(WOW =T () (13)

where O (w) = [0, (w) .. By (w)] is the N> N non-singular spectral modal matrix® () is the
complex conjugate oB(w); I (w) = diag { yi(w), .. w(w)} is the diagonal matrix of the spectral
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eigenvalues. Due to Eq. (18)(w) has the spectral decompaosition :
N

S/(@) = O (WM (WO () =y «B(w) B’ () n(w) (14)

Together with Cholesky’s decompositigMeirovitch 1980), Eq. (14) belongs to the class of the
infinite possible decompositions of spectral matrices (Li aade&m 1995, Di Paola 1998, Kareem
1999).

Sincev(t) is a weakly-stationary random process, the classical Fourier transform cannot be applied
(Lin 1967). However, using the theory of generalized functions, the Spectral Proper Transformation
(SPT) may be formally defined as (Lumley 1970) :

V(@) = AW)Y(W) = «B(w) Yi(w) (15)

whereV () is the generalized Fourier transformwdf) ; Y(w) = {Y1(e) .. Yn(w)} " is the generalized
Fourier transform of thé\-variate random procesgt) = {yi(t) .. yn ()} " representing the image of
v(t) in the spectral principal spacg; (t) is the k-th spectral principal componenti(cw) is the
generalized Fourier transform @f(t). The joint application of Egs. (14) and (15) provides :

Sy(w) =T (w) (16)

where S (w) is the psdm ofy (t). Since I (w) is diagonal,y (t) is a vector ofN one-variate
independent processes whose power spectral density functions are the spectral eigenvalues
Alternative expressions can be used, based on Fourier-Stieltjes integrals and spectral distribution
matrices (Priestley 1981).

Calculating the inverse generalized Fourier transform of Eq. (15), SPT can be rewritten by the
relationship (Carassakt al. 1999a) :

N
v =L Iy®OI = ddy(®] 17)

1

in which L =l; ..1y] is a linear matrix operatoly, ..Iy being linear vector operators such that
(Carassale and Solari 1999) :

Lle]=G{t)*[e]; [o]l=ak®)* o] (k=1,..N) (18)

whereG(t) = [g: (1) .. gn (V)], G (t) andgk(t) being the inverse Fourier transforms®{w) and 6,(w);
symbol * denotes the convolution product. Basic criteria for realizing a system of stochastic differential
equations corresponding to Eq. (17) are discussed by Kailath (1980).

Likewise CPT, also SPT usually allows one to expwgshy a limited numbeNs < N of spectral
modes Egs. (15) and (17), by sorting spectral eigenvalues in decreasing order. However, differently
from previous case, the ordering of the eigenvalues and the number of modes to be retainec
generally depend on the frequency; this calls for evaluations to be carried out case by case. Proof
of this property have been pointed out by Di Paola (1998) and Carassale and Solari (1999)
simulating digitally multi-variate wind velocity fields and by Carassatleal. (1999a) analyzing
theoretical turbulence and vortex shedding models.

Although no specific analysis has been yet carried out to point out the existence of links between
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different spectral modes and different physical phenomena, it is to be expected that, where such
links are established by CPT, these are confirmed and clarified by SPT.

3.3. Relationships linking CPT and SPT

Replacing Egs. (8) and (14) into Eq. (11) provides the following formula linking CPT and SPT
(Carassaleet al. 1999a) :

PAD =} O(w)M(w) O (w)dw (19)

The problem considerably simplifies when spectral eigenvectors are independent of frequency, i.e.,
O(w) =06, G(t)=0J(t), d(t) being Dirac’s function. In this case covariance eigenvectors and
spectral eigenvectors coincide, while covariance eigenvalues are the frequency integrals of spectra
eigenvalues (Carassale and Solari 1999) :

O=0; Az}l'(w)dw (20)

Then SPT (Eg. 15) coincides with CPT Eq. (9) :
yt) =x(®); L[e]=@;I{o]=@ (k=1,.N) (21)

which means that CPT makes the covariance principal components uncorrelated for any frequency
and any time lag.

4. Double modal transformation in discrete modeling

DMT is the joint application of structural CMA and loading POD through CPT and SPT. The use
of this technique in the time domain (Carassale and Solari 1999) and in the frequency domain
(Carassaleet al 1999a) offers a broad view of its most relevant properties.

4.1. Time domain solution

The time domain application of DMT implies the joint solution of Egs. (5) and (17). They form
an M + N) system of linear equations whose solution involves the digital simulativhimdependent
processegk(t) (k=1,..N). Under suitable conditions concernibfe ], the above system becomes
differential.

In the case in which the spectral eigenvectors are independent of frequency, the problem drastically
simplifies and assumes noteworthy analytical and conceptual properties. In this particular case CPT
and SPT coincide Eqg. (21) and the substitution of Eqg. (9) into Eq. (5) provides :

P (t) + 28w p;(t) + wpi(t) = z k Bik X (1) =1.M) (22)

where By = ¢'A@¢ quantifies the influence of thé-th loading covariance mode on theh
structural mode. It is thg k-th term of theM>< N cross-modal patrticipation covariance matrix :
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B= YA® (23)

Let us consider th®1>< N differential equations (Carassale and Solari 1999) :
Zik(t) + Zquijk(t) + WP Z (1) = x(t) (j=1,.M; k=1,..N) (24)

whose solutiongZj (t) are called partial principal coordinates. The global principal coordinates are
obtained through the linear combination :

pi(t) = z k BikZjk (1) (1=1,.M) (25)

Replacing Eg. (25) into Eq. (4), the Lagrangian displacement vector is given by a double linear
combination of structural modes and loading modes :

an = ¥ 5 ™ (26)

1 1

a M) = gBZk(®  (j=1,.M;k=1,.N) (27)

whereq ™M) = {g™ (1) .. g/ ®)}7 is thej, k-th component term o (t) due to thg-th structural
mode and thé&-th loading mode.

Matrix B contains many coefficients that are negligible or rigorously null. Due to structural modal
truncation, onlyM;< M structural principal coordinates contribute to the response. Due to covariance
modal truncation, onlfN.< N covariance principal components contribute to the excitation. Due to
the reciprocal shape of structural and loading covariance eigenvectors, it often happensj-tmat the
structural mode is weakly influenced by theth loading covariance mode; in this case the
eigenvectors are said to be quasi-orthogonal with respest(Bx= '/A@=0) ; ¢ is said to be
orthogonal tog with respect toA whenBy = 0. It follows that structural response to multi-variate
loading processes can be generally expressed by a double linear combination of few structural
modes and few loading modes.

Fig. 1 illustrates some results of a time-domain application of DMT to determine the dynamic
response of amM =3 DOF system subjected t8=3 loading components (Carassale and Solari
1999). Fig. 1(a) shows the 9 componanirts g™ (j, k=1,2,3), Eq. (27) ofy(t). Fig. 1(b) shows
the composition ofj,(t) (Eq. 26), using all the 9 terms (solid line) and the 3 terms corresponding to
(j=k=1), (j=k=2), (j =2, k=3) (dashed line).

Eqg. (22) has two particular cases of noteworthy importance.

1. Ais anMX M square matrix, i.e., the numbbr of the loading components is equal to the
numberM of the structural coordinates. When, moreoieis diagonal ¢5'Ag = 0 for everyj+ k),

the cross-modal orthogonality property applies, i.e., jttte principal coordinate is the dynamic
response of a single-degree-of-freedom system excited lpythheading component :

i (t) + 2&;c0,05(t) + wjzpj(t) = B;jx(t) (j=1,.M) (28)

The example shown in Fig. 2(a) (Di Paola 1998) is enlightening. The structural flexural mode
(Fig. 2b) is excited by the first wind loading mode (Fig. 2d) which represents an alongwind force
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Fig. 1 (a) Component termgl® of g, ; (b) composition ofy, by all 9 terms (solid line) and by the 3 main
terms (dashed line)

) ®

Fig. 2 (a) 2 DOF system excited by a 2 component wind loading; (b) structural flexural mode; (c) first wind
loading mode; (d) structural torsional mode; (e) second wind loading mode

accounting for the uncorrelation &f andf,. The structural torsional mode (Fig. 2c) is excited by
the second wind loading mode (Fig. 2e) which schematizes the torsional action due to the
uncorrelation off; andf,.

The example shown in Fig. 3(a) points out analogous concepts with reference tdtittseipport
seismic excitation of a single story shear-type building (Carastadé 2000). The first structural
mode (Fig. 3b) denotes a skew-symmetric vibration excited by the first seismic mode (Fig. 3d)
which represents a uniform ground motiam £ u,). The second structural mode (Fig. 3c) is a
symmetric vibration excited by the second seismic mode (Fig. 3e) which involves a motion of
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Fig. 3 (a) Single story shear building; (b) skew-symmetric first structural mode; (c) first seismic loading
mode; (d) symmetric second structural mode; (e) second seismic loading mode

supports such ag = —u,.

2. A=ais a column vector oM components, i.ef(t) = av(t), wherev(t) is a one-variateN=1)
random process. In this caBe= b is a column vector whogeth componenb, = ¢4'a is a classical
modal participation coefficient andy(t) =v(t). DMT thus coincides with CMA and Eq. (22)
becomes:

Pi(0) + 2& @ p (1) + wfpy(t) = byv(t) (j=1..M) (29)
which is the classical modal equation for structures excited by a mono-variate seismic motion.
4.2. Frequency domain solution

In contrast to using DMT in the time domain, the frequency domain approach does not imply any
relevant difference between the cases in which the spectral eigenvectors depend or do not depend ¢
the frequency. The joint use of Egs. (5) and (14) provides the following expression of the psdm of
the principal coordinates :

Sy(@) = H(@)D(&) (@)D (W)H " (w) (30)
whereH (w) = diag {Hi(w) , .. Hu (w)}; H;(w) is the complex frequency response function related to
the j-th principal coordinate :

1

Hj(w) =
: w? — o + 2 & wa

(31)

D(w) is the cross-modal participation spectral matrix :
D(w) = Y'AO (w) (32)
i being imaginary unit. Thereforl® (w) =B for @ (w) = @ (Eq. 23).
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The variance ofy(t) is given by :

0 N
o = [IH(@)*Y D@ W(@d(w)  (j=1,.M) (33)
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Fig. 4 Dynamic alongwind response of a chimney by DMT: (a,b,c) covariance and spectral turbulence
eigenvalues; (d) structural eigenvectors, covariance and spectral turbulence eigenvectors; (&) matrix
() matrix R; (e) root mean square (rms) value of tip displacement
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where Dy (w) = Y[AB («) is thej, k-th term of the matriXD(w). Likewise By, Dy quantifies the
influence of thek-th loading spectral mode on th¢h structural mode.

The solution of Eqg. (33) can be simplified by examining loading processes with particular
harmonic contents. Two special cases exist :

1. The loading process has a spectral content that quickly decreases on increasing the frequenc
as is typical of turbulence excitation. Assuming that structure is lightly damped and fmayuahcies
are well separated, Eg. (33) is suitably approximated by (Caragsalel999a) :

1 XN _
of = Z BiA«+ B@EjZkRjiyk(a%) (j=1,.M) (34)
where:

Rik= D (a) | (3%5)

Ri being theg, k-th term of the matriR.

The first and the second terms on the right hand side of Eq. (34) correspond to the background
and to the resonant parts of the response, respectively. Eq. (34) provides an algebraic solution of Eq
(33) involving only the eigensolutions of structure and loading process. Likewise Eq. (22), also Eq.
(34) simplifies significantly whe® andR are square diagonal matrices :

op = a_%zBﬁA +8afé REy(w)

2. The loading process has a narrow band frequency harmonic content as in the case of vorte
shedding. When the harmonic content is much lower than the fundamental structural frequency, the
response is quasi-static and Eqg. (34) holds neglecting the second term in the right hand side. Wher
otherwise, the excitation is resonant with #h natural frequency, then Eq. (34) usually holds
neglecting the first term in the right hand side and assumfg 0 for j + k.

Fig. 4 summarizes the main results of a frequency domain application of DMT to determine the
dynamic alongwind response of a chimney modele¥lsyN= 36. Figs. 4(a)-(c) show the covariance
and spectral eigenvalues of longitudinal turbulence; Fig. 4(d) points out the deep analogies betweer
the structural eigenvectors and the covariance and spectral turbulence eigenvectors; Figs. 4(e),(f
demonstrate that, at least in this case, the matdcasdR are almost diagonal; Fig. 4(g) confirms
that the structural response is accurately reproduced by few structural and loading modes. Full
details concerning this study and other analyses of the alongwind and crosswind response of slende
structures are given by Carassetel (1999a).

(j=1,.M) (36)

5. Continuous modeling

The discrete use of DMT involves formal and conceptual aspects characterized by great elegance
physical significance and a wide range of applications in structural dynamics and wind engineering.
Nevertheless, DMT computational burden is quite similar to that required by classical solutions. On
one hand it avoids a lot of traditional operations but, on the other, besides the evaluation of
structural eigenvalues and eigenvectors, it also requires the determination of the eigenvalues anc
eigenvectors of external loading. This situation changes significantly when structural and/or loading
eigensolutions ar&nown in closed form. This is typical of several continuous problems governed
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by operators with suitable regularity properties.

The following paragraphs provide a general discussion of this matter referring, for simplicity, to
structural systems and loading fields defined over the same mono-dimensional danidie
generalization to multi-dimensional problems does not imply conceptual advautcesly relevant
formal complications.

5.1. Structural modal analysis

Consider a linear continuous mono-dimensional structure whose motion is governed by the partial
differential equation:

u(2)d(z;t) + C[4(zY] +K[a(zh)] = a(zv(z1) (37)

where z is the coordinate oD ; q(z;t), q(z;t), q(z;t) are the displacement, velocity and
acceleration of structure, respectively (z) denotes the mass distributiol;[®] and K[e ] are
viscous damping and stiffness operatd(g;; t) = a(2)v (z; t) is the external force, wherdz; t) is a
weakly-stationary nil mean Gaussian random field definedasnd a(z) is a given deterministic
function.

Let w?, w3, .. be the structural eigenvalues sorted in increasing omfief2), Y»(2), .. are the
corresponding structural eigenfunctions. They are the non-trivial solutions of the linear homogeneous
Fredholm integral equation of the second kind :

W2 = off n(z 2)u(z) Y (z)dz (1=1,2.) (38)

wheren(z, z') is Green's function related ¥ (Hurty and Rubinstain 1964). It is also known as the
structural kernel.

Assuming thaK is a real, self-adjoint and positive definite operator, then the eigenvalues are real
and positive; the eigenfunctions are real, form a complete set and enjoy the following ramdiiyo
conditions :

[oH@ (D Y(Ddz = &s; Wi[,[pN(z 2)UDM(Z) Y (D Ps(Z)dzdZ = &5 (r,s=1, 2,(--))
39

where Js is Kronecker’s delta. Noteworthy closed form expressionwpf ¢4(2) (j=1,2,.) are
available for uniform mass distributions, simplg e ] operators and particular constraint conditions
(Hurty and Rubinstain 1964, Meirovitch 1967).

Eq. (37) is usually solved by applying the principal trarmefdion rule :

a(zh = 3,u@p0 (40)

wherep; (t) is thej-th principal coordinate. Under suitable conditions@operator, the substitution
of Eq. (40) into Eq. (37) leads to the following set of infinite independent equations :

() + 2§p () + wPpi(t) = [p¥(Da(dv(zhdz  (j=1,2.) (41)

¢ being thej-th damping ratio {=1, 2, ..). Likewise for discrete modeling, also in continuous
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modeling the structural response can be usually expressed by a limited Mynabenodal terms .
5.2. Covariance proper transformation

Let Cy(z z') = E[V(z; t)v(z'; t)] be the covariance function &fz;t) andv(z'; t) at the zero time
lag; A1, A, .. are the covariance eigenvalueg(z), (2 ,.. are the corresponding covariance
eigenfunctions. They are the non-trivial solutions of the homogeneous Fredholm integral equation of
the second kind :

A(2) = [pCUz Z2)a(Z)dZ (k=1,2.) (42)

The kernelCy(z z') of Eq. (42) is bounded, symmetric, real and positive definite. All the
eigenvalues are real and positive while eigenfunctions are real, form a complete sgbwrtbeen
orthonormality conditions (Kanwal 1971):

[o@D Rz = 85[foCulz DDA )dzd2 = A5, (ns=12.)  (43)

from which it derives :

Cuz 2) = Y @D A(Z) A (44)

1

The case in whicl€, is a degenerate kernel (Kanwal 1971), i.e., the series of existing eigenvalues
and eigenfunctions is limited, does not imply relevant conceptual differences. However, it is not
considered here for formal simplicity.

Closed formulae of, & (2 (k=1,2,..) are given by Van Trees (1968) and Ghanem and Spanos
(1991b) for noteworthy covariance kernels. Preliminary analytical eifjgitss of the covariance
kernel of a theoretical turbulence model have been obtained by Cartsshi@999b).

Likewise Eq. (9), the continuous Covariance Proper Transformation (CPT) is defined by :

V(z) = 5 @2)x(1) (45)

1

where x(t), x(t), .. are the so-called covariance principal components. The joint use of Eqgs. (44)
and (45) provides :

Cox=Ads (r,s=1,2,.) (46)

Cuxs = E[X ()X(t)] being the covariance of(t) and x(t). Thus, the variance of(t), oﬁrzcxrxr,
coincides with ther-th eigenvalueA,. Furthermore, sinc€,, =0 for r+ s x(t) and x(t) are
uncorrelated processes at the zero time lag.

Likewise for discrete modeling, also in continuous modelifg; t) can be usually approximated
by a limited numbeN, of covariance terms.

5.3. Spectral proper transformation

Consider the cross-power spectral density function (c|%¢)z'; w) of v(z;t) andv (z';1). It is
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normalized by the relationship :

Cuz 2) = }Sv(z, Z,w)dw (47)

Let y(w), w(w), .. be the spectral eigenvalue8;(z; ), 0,(z; w),.. are the corresponding
spectral eigenfunctions. They are the non-trivial solutions of the homogeneous Fredholm integral
equation of the second kind :

K@) B(z:w) = [pS(z 2:0)6(Z;w)dz (k=12 (48)

Since S, (z z'; w) is a bounded, Hermitian and semi-positive definite kernel, all the eigenvalues
are real and non-negative while the eigenfunctions, in general complex, form a complete set and
enjoy the following orthonmnality conditions :

_[DBI(z;w)BS(z;w)dz = 5rs;_[D_|’DS,(z, Z;0) 6 (z,w) 047 ;w)dzdZ = y,(w)d,s (r,s=1,2.)
(49)

from which it derives :

S(z Z;0) = «0(70) 6(Z;w) (W) (50)

Likewise forC,, also the case in which, is a degenerate kernel is not considered here for formal
simplicity.

Closed form eigensolutions of the spectral kernel of a theoretical turbulence model have been
obtained by Carassalet al (1999b) and by Carassale and Solari (2000a,b). The use of these
solutions in a Monte Carlo environment aimed at simulating stochastic turbulent fields is demonstrated
and discussed by Carassale and Solari (2000a,b).

Likewise Eq. (17), the continuous Spectral Proper Transformation (SPT) is defined by :

vz = 3 LdydD)] (51)

where yy(t), yu(t), .. are the so-called spectral principal componehig;c ], Lp[©], .. are linear
operators such that :

Sy(w) = wwos (r,s=1,2,.) (52)

Sy, (@) being the cpsdf of; () andys(t). SinceS,y () =0 forr+ s, y(t) andy(t) are one-variate
independent processes whose psdf are the spectral eigenvalues.

The use of SPT in continuous modeling involves modal truncation rules that are conceptually the
same of the corresponding discrete approach.

5.4. Relationships linking CPT and SPT

By replacing Egs. (44) and (50) into Eq. (47), CPT and SPT are linked by :



236 Giovanni Solari and Luigi Carassale

00 00

ikfp(z)(l&(z’))\k = Y« Jo(z0)0(Z;0)p(w)dw (53)

Again the problem considerably simplifies when spectral eigenfunctions do not depend on
frequency, i.e.Bk (z; w) = 6(2). In this case the covariance and spectral eigenfunctions coincide,
while the covariance eigenvalues are the frequency integrals of the spectral eigenvalues :

6(2) = a2 M= [n(wdw  (k=1,2.) (54)
Then SPT (Eg. 51) coincides with CPT (Eq.45) :
) =x(); Llo]l=a@ (k=1,2.) (55)

which means that CPT makes the covariance principal coordinates uncorrelated for any frequency
and any time lag.

5.5. Double modal transformation

Continuous DMT does not involve significant conceptual differences with respect to the discrete
approach.

Using DMT in the time domain implies the joint solution of Egs. (37) and (51). They form a
linear system whose solution involves the digital simulation of the independent progggses
(k=1, 2,..) (Carassale and Solari 2000).

Fig. 5 shows some results of a time domain application of DMT to determine the dynamic
alongwind response of a cantilever vertical beam (Carassale and Solari 2000a). Figs. 5(a) and (b,
show a Monte Carlo simulation of two longitudinal biulence historiesz(being the height over
ground and the total structural height) by using one to five spectral turbulence modes. Fig. 5(c)
shows the corresponding recomposition of the first principal structural coordinate.

Likewise in the discrete case, the problem simplifies if the spectral eigenfunctions are independent
of frequency. In this case CPT and SPT coincide and the substitution of Eq. (45) into Eq. (41) leads
to Eq. (22), provided tha?l andN are replaced by infinity anB is defined as :

Bi = [pa(9¢(Dd(2)dz  (j k=1,2.) (56)

Also Egs. (28) and (29) can be extended to continuous modeling by a simple analogy with the
discrete solution; all physical concepésain unchanged.

Similarly, the frequency domain application of DMT does not imply relevant differences between
the cases in which the spectral eigenfunctions depend or not on the frequency. The joint use of Egs
(41) and (50) leads to Eq. (33), provided thaandN are replaced by infinity any is defined as :

Di(w) = [ra(dy(2)bdz;w)dz  (j k=1,2.) (57)

Also Egs. (34)~(36) can be extended to continuous modeling by a simple analogy with the
discrete solution; all physical concepésnain unchanged.
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Fig. 5 Dynamic alongwind response of a vertical contilever beam: (a, b) POD recomposition of two
longitudinal turbulence histories at different heights; (c) POD recomposition of the first principal structural
coordinate

Noteworthy applications of this method have been developed by Carassale (1999b) to
determine the gust-excited alongwind response of slender structures. It is shown in particular that
the knowledge of closed form eigensolutions makes the calculation of the dynamic response
integrally analytical.

6. Conclusions

Modal transformation rules in classical structural dynamics are based on structural modal shapes.
External forces passively follow these transformations assuming, in the new space, a purely
mathematical meaning lacking in physical properties. Proper orthogonal decomposition provides
mathematical and conceptual tools to extend most of these rules to stochastic loading processes.

Double modal transformation is the joint expansion of Lagrangian motion coordinates into a series
of normal modes and of loading random process by POD technique using covariance and/or spectra
modes. Using this method the dynamic response can be expressed as a double series in which fe
structural and loading modes are needed. This implies formal and conceptual aspects characterize
by great elegance, physical significance and a wide range of applications. Nevertheless DMT
computational burden is quite similar to that required by classical solutions. On one hand it avoids a
lot of traditional operations but, on the other, besides the evaluation of structural eigensolutions, it
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also requires the determination of loading eigensolutions.

This situation changes significantly when structural and/or loading eigensolutions are known in
closed form. This is typically the case of several continuous problems governed by suitable regularity
properties. The closed form evaluation of the eigensolutions of continuous structural systems is a
well-known field of structural dynamics. The closed form evaluation of the eigensolutions of the
loading processes opens the door to a new research field aimed at defining the load through its
eigensolutions instead of the classical spectral equations.
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