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Abstract. Structural dynamics usually applies modal transformation rules aimed at de-coupling a
minimizing the equations of motion. Proper orthogonal decomposition provides mathematica
conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimen
random process is represented as a linear combination of one-variate and one-dimensional unco
processes. Double modal transformation is the joint application of modal analysis and proper orth
decomposition applied to the loading process. By adopting this method the structural response is expres
double series expansion in which structural and loading mode contributions are superimpose
simultaneous use of the structural modal truncation, the loading modal truncation and the cross
orthogonality property leads to efficient solutions that take into account only a few structural and lo
modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Key words: double modal transformation; modal analysis; proper orthogonal decomposition; stru
dynamics; wind engineering.

1. Introduction

The dynamic response of linear structural systems is usually evaluated by transformin
equations of motion from the initial Lagrangian space into a space characterized by su
properties. Using Classical Modal Analysis (CMA) (Hurty and Rubinstain 1964) the proble
solved in the principal space where, under conditions depending on damping (Caughey and O'Kelly
1965), the equations of motion are de-coupled. Re-writing the equations of motion in state sp
complex transformation exists which de-couples the equations of motion independently of damp
properties (Foss 1958, Veletsos and Ventura 1986, Argyris and Mlejnek 1991). The new equ
of motion, of the first order instead of the second, are complex. In both cases, the solutio
limited number of modal equations is usually enough to express the structural response. The subs
synthesis regards the structure as an assemblage of sub-structures whose motion is represe
linear combination of admissible shapes: component-mode synthesis, branch-mode analy
component-mode substitution (Meirovitch 1980) are special synthesis techniques which give 
de-coupling of the equations of motion by pursuing the aim of minimizing the number of equa
to be solved. All the above methods apply transformation rules based on structural modal shap
External forces passively follow these transformations assuming, in the new space, a 
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mathematical meaning lacking in physical properties.
Karhunen-Loeve expansion (Loeve 1955, Papoulis 1965), also known as the Proper Orth

Decomposition (POD), provides mathematical and conceptual tools to extend many conce
traditionally used in the mechanical sector to random processes. Proposed around the mid 
several independent sources (Kosambi 1943, Loeve 1945, Karhunen 1946, Kac and Siegert 194
expresses a generalized multi-variate/multi-dimensional stochastic process by a series of orthonormal
vectors/functions, the eigenvectors/eigenfunctions of the covariance matrix/function, whose coeff
are reciprocally uncorrelated. It owes its popularity to the attractive properties that only few ter
the series are usually needed to reproduce the actual process and a link often exists betweeach
dominant term of the series and the different main mechanisms that contribute to the overall
physical phenomenon.

POD was first applied in meteorology (Lorenz 1959, Holmstrom 1963, Freiberger and Gren
1967), where is also known as the Empirical Orthogonal Function (EOF) expansion (Obukhov 
for mapping meteorological fields (Obled and Creutin 1986). Lumley (1967, 1970) introduced 
in fluid mechanics to extract flow organized structures, such as dominant eddies, from the stostic
turbulent field, and represent these by deterministic functions; initially restrained by the lack of the
necessary experimental data (Bakewell and Lumley 1967), its use has become ever more usu
(Aubry et al. 1988, Moin and Moser 1989, Berkooz et al. 1993, Holmes et al. 1996) in recent years.
Armitt (1968) pioneered the application of POD in bluff body aerodynamics by analyzing the 
pressure field on a cooling tower; in subsequent years many researchers (Lee 1975, Be
Holmes 1983, Kareem and Cermak 1984, Kareem et al. 1989, Holmes 1990, MacDonald et al.
1990, Letchford and Mehta 1993, Bienkiewicz et al. 1993, 1995, Tamura et al. 1997, Kikuchi et al.
1997, Holmes et al. 1997, Uematsu et al. 1997, Kareem and Cheng 1999, Tamura et al. 1999,
Baker 2000) followed his example by using POD to represent and understand wind tunnel an
scale pressure measurements on a great variety of buildings. Analogous methods have been
by Tumer et al. (2000) to represent hydrodynamic actions on slender cylinders in oscillating fl
Applications of POD in data compaction and reduction and in pattern recognition and image proc
are reported by Ahmed and Rao (1975) and Devijver and Kittler (1982), respectively. POD ha
also applied to formulate a spectral stochastic finite-element technique (Spanos and Ghanem 19
Ghanem and Spanos 1990, 1991a, 1991b, Ghanem and Brzakala 1996). Ghanem and Spano
applied POD in the solution of nonlinear vibration problems for representing the stochastic lo
term; in this context, POD was also applied as a tool for investigating the motion of non
mechanical systems simulated by numerical (Kreuzer and Kust 1996, Fenni and Kappugantu 1998
Georgiou and Schwartz 1999) and physical models (Benedettini and Rega 1997, Alaggio an
2000), pointing out bifurcation conditions and transition to chaos. The use of POD as a sp
decomposition (Lumley 1970) embedded in a Monte Carlo simulation procedure was propos
Li and Kareem (1989, 1991); methods for the simulation of wind, wave and earthquake fields
been developed by Li and Kareem (1991, 1993), Caddemi and Di Paola (1994), Di Paola and
(1996), Di Paola (1998) and Carassale and Solari (2000a,b). Spectral modes have been 
applied to determine the wind-excited response of structures (Gullo et al. 1998, Benfratello et al.
1998, Carassale et al. 1998, 1999a,b, Kareem 1999, Carassale and Solari 1999, 2000a,b) an
seismic response of multi-supported structural systems (Carassale et al. 2000, Zingales 2000). Masri
et al. (1998) applied POD to represent the nonstationary seismic motion through the eigenso
of the covariance function.

The joint expansion of the Lagrangian motion coordinates by CMA and of the loading ran
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process by POD using covariance and/or spectral modes is called Double Modal Transfor
(DMT) (Carassale et al. 1998, 1999a,b, Carassale and Solari 1999) and provides a vast ran
operative possibilities whose limits are probably still unknown. Through DMT the dynamic resp
is expressed by a double linear combination of structural and loading modes weighted by Str
Principal Coordinates (SPCs) and Loading Principal Components (LPCs), respectively. In priniple,
each SPC is excited by each LPC. Actually, due to Structural Modal Truncation (SMT), only
SPCs contribute to the dynamic response. Similarly, due to Loading Modal Truncation (L
only few LPCs contribute to the loading process. Cross-Modal Orthogonality (CMO) properties
exist which further simplify the solution by making several SPCs unexcited by given LPC
follows that the dynamic response of structures to multi-variate and/or multi-dimensional lo
processes can be generally expressed by retaining only a few structural and loading mod
case in which one structural mode and one loading mode fully represent the dynamic resp
not unusual.

This paper provides a general framework and some critical remarks about CMA and POD. Th
elements of these methods are used to present and discuss DMT as a new tool to determ
dynamic response of multi-degree-of-freedom/continuous linear structures excited by multi-va
multi-dimensional weakly-stationary Gaussian processes. Attention is focused on the main pro
of the covariance and spectral eigensolutions, on the peculiarities of time domain and freq
domain approaches, and on the different aspects of discrete and continuous modeling. The con
deal with the application field of these criteria and with their advantages and disadvantages.
prospects for future developments are also presented.

2. Classical modal analysis of MDOF linear systems

Consider an M-Degrees-Of-Freedom (MDOF) linear structure whose equation of motion is given

(1)

where q(t) = {q1(t) .. qM (t)} T is the Lagrangian displacement vector,  and  are the vector
the structural velocities and accelerations; M, C and K are the mass, viscous damping and stiffne
matrices of the structure; f (t) = Av (t) is the Lagrangian loading vector where v (t) = {v1(t) .. vN (t)} T

is a weakly-stationary N-variate nil mean Gaussian process and A is an M� N deterministic matrix.
The hypothesis that v (t) is nil mean does not involve any restriction in the linear field.

Let ω 1
2 , ..ωM

2 be the structural eigenvalues corresponding to the squared natural circular frequencies
sorted in increasing order; ψψψψ1 , .. ψψψψM are the corresponding structural eigenvectors. They are the 
trivial solutions of the homogeneous linear algebraic system :

(K−ωj
2M)ψψψψj = 0 ( j = 1, .. M) (2)

Since K and M are real, symmetric and positive definite matrices, their eigenvalues are rea
positive; their eigenvectors are real and enjoy the orthonormality conditions :

ΨΨΨΨ TMΨΨΨΨ = I ; ΨΨΨΨ TKΨΨΨΨ = ΩΩΩΩ (3)

where ΨΨΨΨ = [ψψψψ1 .. ψψψψM] is the M� M non-singular structural modal matrix; I  is the identity matrix;

Mq·· t( ) Cq· t( ) Kq t( ) Av t( )=++

q· t( ) q·· t( )
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ΩΩΩΩ = diag { ω 1
2 , .. ωM

2 } is the diagonal matrix of the structural eigenvalues.
Eq. (1) is usually solved by applying the principal transformation rule :

(4)

where p (t) = {p1(t) .. pM (t)} T is the vector of the structural principal coordinates, i.e., the image
q(t) in the principal space. If the structure has classical vibration modes (Caughey and O
1965), the substitution of Eq. (4) into Eq. (1) de-couples the equations of motion in the principal spac

(5)

ξj being the j-th damping ratio. Structural modal truncation consists in expressing the struc
response (Eq. 4) by considering only a limited number Mt < M of the structural modes.

3. Discrete proper orthogonal decomposition

Discrete POD is the expansion of a multi-variate random process into a series of ortho
vectors whose coefficients are mono-variate uncorrelated random processes. It is called Cov
Proper Transformation (CPT) or Spectral Proper Transformation (SPT) according to wheth
orthogonal vectors are the eigenvectors of the covariance matrix or of the spectral density ma
the process. CPT and SPT are linked by noteworthy relationships.

3.1. Covariance proper transformation

Let Cv = E [v(t) vT (t)] be the covariance matrix of v (t) at the zero time lag, where E[ � ] is the
statistic average operator. Let λ1 , .. λN be the eigenvalues of Cv, called covariance eigenvalues
φφφφ1 , .. φφφφN are the corresponding covariance eigenvectors. They are the non-trivial solutions 
linear homogeneous algebraic system :

(Cv − λk I ) φφφφk = 0 (k = 1, ..N ) (6)

Since Cv is a real, symmetric and positive definite matrix, its eigenvalues are real and positiv
eigenvectors are real and enjoy the orthonormality conditions :

ΦΦΦΦTΦΦΦΦ = I ; ΦΦΦΦTCvΦΦΦΦ = ΛΛΛΛ (7)

where ΦΦΦΦ = [φφφφ1 .. φφφφN] is the N� N non-singular covariance modal matrix; ΛΛΛΛ = diag { λ1 , .. λN} is the
diagonal matrix of the covariance eigenvalues. Due to Eq. (7) Cv has the spectral decomposition :

(8)

Using Karhunen−Loeve expansion (Loeve 1955), the Covariance Proper Transformation (CP
defined by :

v (t) = ΦΦΦΦx (t) = (9)

q t( ) ΨΨΨΨp t( ) j ψψψψ jpj t( )
1

M

∑= =

p··j t( ) 2ξjω jp
·

j t( ) ω j
2pj t( )+ + ψψψψ j

TAv t( ) j 1 ..M,=( )=

Cv ΦΦΦΦΛΛΛΛΦΦΦΦT
kφφφφkφφφφk

Tλk

1

N

∑= =

kφφφφkxk t( )
1

N

∑
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where x(t) = {x1(t) .. xN(t)} T is the N-variate random process representing the image of v (t) in the
covariance principal space; xk(t) is the k-th covariance principal component. The joint application 
Eqs. (8) and (9) provides :

Cx = ΛΛΛΛ (10)

where Cx = E [x(t)xT(t)] is the covariance matrix of x (t) at the zero time lag. Since ΛΛΛΛ is diagonal,
then x(t) is a vector of N processes uncorrelated at the zero time lag. Their variances are
covariance eigenvalues.

CPT admits modal truncation rules similar to CMA. By sorting covariance eigenvalues in decre
order, v(t) may be usually approximated by a limited number Nc < N of covariance modes. Evidenc
of this fact in wind engineering was pointed out by simulating measured pressure fields on co
towers (Armitt 1968), square cylinders in two-dimensional flows (Lee 1975), low-rise build
(Best and Holmes 1983, Holmes 1990, Letchford and Mehta 1993, Bienkiewicz et al. 1993, 1995,
Tamura et al. 1997, Holmes et al. 1997), circular storage bins, silos and tanks (MacDonald et al.
1990), circular cylinders of finite height (Kareem et al. 1989, Kareem and Cheng 1999), ta
buildings (Kareem and Cermak 1984, Kikuchi et al. 1997, Tamura et al. 1999) and latticed domes
(Uematsu et al. 1997). Analogous properties apply to turbulence and vortex wake representatio
theoretical models (Carassale et al. 1998, 1999a). 

It is also worthy to note that CPT often establishes links between different covariance mod
different physical phenomena (Holmes et al. 1997, Baker 2000). Main covariance modes of t
wind pressure field on low-rise buildings, for instance, tendentially correspond to the sep
contributions of longitudinal, lateral and vertical turbulent fluctuations (Holmes 1990, Tamura et al.
1997). Similarly, alongwind forces, crosswind forces and torsional moments on tall buildings
be associated to different modes each dominated by the distinct effects of atmospheric turbulence
and vortex shedding (Kareem and Cermak 1984, Kikuchi et al. 1997).

3.2. Spectral proper transformation

Consider the power spectral density matrix (psdm) Sv (ω) of v(t), ω being the circular frequency. It
is normalized by the relationship :

(11)

Let γ1 (ω), .. γN (ω) be the eigenvalues of Sv (ω), called spectral eigenvalues; θθθθ1(ω) , .. θθθθN (ω) are the
corresponding spectral eigenvectors. They are the non-trivial solutions of the linear homoge
algebraic system :

[Sv (ω) − γγγγk (ω) I ]θθθθk (ω) = 0 (k = 1, .. N) (12)

Since Sv is Hermitian and semi-positive definite, its eigenvalues are real and non-negativ
eigenvectors are in general complex and enjoy the orthonormality conditions :

ΘΘΘΘ *T (ω)Θ (ω) = I ; ΘΘΘΘ *T(ω)Sv (ω)ΘΘΘΘ(ω) = ΓΓΓΓ (ω) (13)

where ΘΘΘΘ (ω) = [θθθθ1 (ω) .. θθθθN (ω)] is the N� N non-singular spectral modal matrix ; ΘΘΘΘ *(ω) is the
complex conjugate of ΘΘΘΘ (ω); ΓΓΓΓ (ω) = diag { γ1(ω), .. γN (ω)} is the diagonal matrix of the spectra

Cv Sv ω( )dω
∞–

∞

∫=
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eigenvalues. Due to Eq. (13) Sv (ω) has the spectral decomposition :

Sv (ω) = ΘΘΘΘ (ω)ΓΓΓΓ (ω)ΘΘΘΘ *T (ω) = (14)

Together with Cholesky’s decomposition (Meirovitch 1980), Eq. (14) belongs to the class of th
infinite possible decompositions of spectral matrices (Li and Kareem 1995, Di Paola 1998, Kareem
1999).

Since v(t) is a weakly-stationary random process, the classical Fourier transform cannot be a
(Lin 1967). However, using the theory of generalized functions, the Spectral Proper Transform
(SPT) may be formally defined as (Lumley 1970) :

V(ω) = ΘΘΘΘ(ω)Y(ω) = (15)

where V (ω) is the generalized Fourier transform of v(t) ; Y(ω) = {Y1(ω) ..YN (ω)}T is the generalized
Fourier transform of the N-variate random process y (t) = {y1(t) .. yN (t)} T representing the image o
v (t) in the spectral principal space; yk (t) is the k-th spectral principal component; Yk (ω) is the
generalized Fourier transform of yk (t). The joint application of Eqs. (14) and (15) provides :

Sy (ω) = ΓΓΓΓ (ω) (16)

where Sy (ω) is the psdm of y (t). Since ΓΓΓΓ (ω) is diagonal, y (t) is a vector of N one-variate
independent processes whose power spectral density functions are the spectral eige
Alternative expressions can be used, based on Fourier-Stieltjes integrals and spectral dist
matrices (Priestley 1981).

Calculating the inverse generalized Fourier transform of Eq. (15), SPT can be rewritten b
relationship (Carassale et al. 1999a) :

v (t) = L [y(t)] = (17)

in which L = [l1 .. lN] is a linear matrix operator, l1 , .. lN being linear vector operators such th
(Carassale and Solari 1999) :

L[ � ]= G(t)*[ � ]; lk[ � ] = gk (t)*[ � ] (k = 1, .. N) (18)

where G(t) = [g1 (t) .. gN (t)], G (t) and gk (t) being the inverse Fourier transforms of ΘΘΘΘ (ω) and θθθθk(ω);
symbol * denotes the convolution product. Basic criteria for realizing a system of stochastic differ
equations corresponding to Eq. (17) are discussed by Kailath (1980).

Likewise CPT, also SPT usually allows one to express v(t) by a limited number Ns < N of spectral
modes Eqs. (15) and (17), by sorting spectral eigenvalues in decreasing order. However, diff
from previous case, the ordering of the eigenvalues and the number of modes to be r
generally depend on the frequency; this calls for evaluations to be carried out case by case
of this property have been pointed out by Di Paola (1998) and Carassale and Solari 
simulating digitally multi-variate wind velocity fields and by Carassale et al. (1999a) analyzing
theoretical turbulence and vortex shedding models.

Although no specific analysis has been yet carried out to point out the existence of links be

kθθθθk ω( )θθθθ k
*T ω( )γk ω( )

1

N

∑

kθθθθk ω( )Yk ω( )
1

N

∑

kl k yk t( )[ ]
1

N

∑
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different spectral modes and different physical phenomena, it is to be expected that, wher
links are established by CPT, these are confirmed and clarified by SPT.

3.3. Relationships linking CPT and SPT

Replacing Eqs. (8) and (14) into Eq. (11) provides the following formula linking CPT and 
(Carassale et al. 1999a) :

ΦΦΦΦΛΛΛΛΦΦΦΦT = (19)

The problem considerably simplifies when spectral eigenvectors are independent of frequen
ΘΘΘΘ (ω) = ΘΘΘΘ, G (t) = ΘΘΘΘδ (t), δ (t) being Dirac’s function. In this case covariance eigenvectors 
spectral eigenvectors coincide, while covariance eigenvalues are the frequency integrals of s
eigenvalues (Carassale and Solari 1999) :

ΘΘΘΘ = Φ Φ Φ Φ ; ΛΛΛΛ = (20)

Then SPT (Eq. 15) coincides with CPT Eq. (9) :

y(t) = x(t) ; L[ � ] = ΦΦΦΦ ; lk[ � ] = φφφφk (k = 1, .. N) (21)

which means that CPT makes the covariance principal components uncorrelated for any fre
and any time lag. 

4. Double modal transformation in discrete modeling

DMT is the joint application of structural CMA and loading POD through CPT and SPT. The
of this technique in the time domain (Carassale and Solari 1999) and in the frequency d
(Carassale et al. 1999a) offers a broad view of its most relevant properties.

4.1. Time domain solution

The time domain application of DMT implies the joint solution of Eqs. (5) and (17). They f
an (M + N) system of linear equations whose solution involves the digital simulation of M independent
processes yk (t) (k = 1 , ..N). Under suitable conditions concerning L[ � ], the above system become
differential.

In the case in which the spectral eigenvectors are independent of frequency, the problem dra
simplifies and assumes noteworthy analytical and conceptual properties. In this particular cas
and SPT coincide Eq. (21) and the substitution of Eq. (9) into Eq. (5) provides :

(22)

where Bjk = ψψψψ j
TAφφφφ k quantifies the influence of the k-th loading covariance mode on the j-th

structural mode. It is the j, k-th term of the M� N cross-modal participation covariance matrix :

ΘΘΘΘ ω( )ΓΓΓΓ ω( )ΘΘΘΘ*T ω( )dω
∞–

∞

∫

ΓΓΓΓ ω( )dω
∞–

∞

∫

p··j t( ) 2ξjω jp
·
j t( ) ω j

2pj t( )+ + k

1

N

∑ Bjk xk t( ) j 1 ..M,=( )=
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B = ΨΨΨΨTAΦΦΦΦ (23)

Let us consider the M� N differential equations (Carassale and Solari 1999) :

(24)

whose solutions Zjk (t) are called partial principal coordinates. The global principal coordinates
obtained through the linear combination :

(25)

Replacing Eq. (25) into Eq. (4), the Lagrangian displacement vector is given by a double 
combination of structural modes and loading modes :

(26)

q(jk) (t) = ψψψψjBjkZjk (t) ( j = 1, ..M ; k = 1, ..N) (27)

where q( jk)(t) = {q1
( jk) (t) .. qM

( jk) (t)} T is the j, k-th component term of q (t) due to the j-th structural
mode and the k-th loading mode.

Matrix B contains many coefficients that are negligible or rigorously null. Due to structural m
truncation, only Mt < M structural principal coordinates contribute to the response. Due to covar
modal truncation, only Nc < N covariance principal components contribute to the excitation. Due
the reciprocal shape of structural and loading covariance eigenvectors, it often happens that j-th
structural mode is weakly influenced by the k-th loading covariance mode; in this case th
eigenvectors are said to be quasi-orthogonal with respect to A (Bjk = ψψψψj

TAφφφφk −~ 0) ; ψψψψj is said to be
orthogonal to φφφφk with respect to A when Bjk = 0. It follows that structural response to multi-varia
loading processes can be generally expressed by a double linear combination of few str
modes and few loading modes.

Fig. 1 illustrates some results of a time-domain application of DMT to determine the dyn
response of an M = 3 DOF system subjected to N=3 loading components (Carassale and Sol
1999). Fig. 1(a) shows the 9 component terms q2

( jk) ( j, k = 1,2,3), Eq. (27) of q2(t). Fig. 1(b) shows
the composition of q2(t) (Eq. 26), using all the 9 terms (solid line) and the 3 terms correspondin
( j = k = 1), ( j = k = 2), ( j = 2, k = 3) (dashed line).

Eq. (22) has two particular cases of noteworthy importance.

1. A is an M� M square matrix, i.e., the number N of the loading components is equal to th
number M of the structural coordinates. When, moreover, B is diagonal (ψψψψ j

TAφφφφk = 0 for every j� k),
the cross-modal orthogonality property applies, i.e., the j-th principal coordinate is the dynamic
response of a single-degree-of-freedom system excited by the j-th loading component :

(28)

The example shown in Fig. 2(a) (Di Paola 1998) is enlightening. The structural flexural m
(Fig. 2b) is excited by the first wind loading mode (Fig. 2d) which represents an alongwind 

Z
··

jk t( ) 2ξjω jZ
·

jk t( ) ω j
2Zjk t( )+ + xk t( ) j 1,..M; k 1= ,..N=( )=

pj t( ) k

1

N

∑ BjkZjk t( ) j 1,..M=( )=

q t( ) j kq
jk( ) t( )

1

M

∑
1

M

∑=

p··j t( ) 2ξ jω jp
·

j t( ) ω j
2pj t( )+ + Bjj xj t( ) j 1,..M=( )=
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accounting for the uncorrelation of f1 and f2. The structural torsional mode (Fig. 2c) is excited 
the second wind loading mode (Fig. 2e) which schematizes the torsional action due 
uncorrelation of f1 and f2.

The example shown in Fig. 3(a) points out analogous concepts with reference to the multi-support
seismic excitation of a single story shear-type building (Carassale et al. 2000). The first structural
mode (Fig. 3b) denotes a skew-symmetric vibration excited by the first seismic mode (Fig
which represents a uniform ground motion (u1 = u2). The second structural mode (Fig. 3c) is 
symmetric vibration excited by the second seismic mode (Fig. 3e) which involves a motio

Fig. 1 (a) Component terms q2
(jk)  of q2 ; (b) composition of q2 by all 9 terms (solid line) and by the 3 mai

terms (dashed line)

Fig. 2 (a) 2 DOF system excited by a 2 component wind loading; (b) structural flexural mode; (c) first
loading mode; (d) structural torsional mode; (e) second wind loading mode
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supports such as u1 = −u2.

2. A = a is a column vector of M components, i.e., f(t) = av(t), where v(t) is a one-variate (N=1)
random process. In this case B = b is a column vector whose j-th component bj = ψψψψj

Ta is a classical
modal participation coefficient and x1(t) = v(t). DMT thus coincides with CMA and Eq. (22
becomes:

(29)

which is the classical modal equation for structures excited by a mono-variate seismic motion.

4.2. Frequency domain solution

In contrast to using DMT in the time domain, the frequency domain approach does not imp
relevant difference between the cases in which the spectral eigenvectors depend or do not de
the frequency. The joint use of Eqs. (5) and (14) provides the following expression of the ps
the principal coordinates :

Sp(ω) = H(ω)D(ω)ΓΓΓΓ(ω)D*T(ω)H*(ω) (30)

where H (ω) = diag {H1(ω) , .. HM (ω)}; Hj (ω) is the complex frequency response function related
the j-th principal coordinate : 

(31)

D(ω) is the cross-modal participation spectral matrix :

D(ω) = ΨΨΨΨ TAΘΘΘΘ (ω) (32)

i being imaginary unit. Therefore D (ω) = B for ΘΘΘΘ (ω) = Φ (Eq. 23).

p··j t( ) 2ξjω jp
·

j t( ) ω j
2pj t( )+ + bjv t( ) j 1,..M=( )=

Hj ω( ) 1

ω j
2 ω2 2i ξjωω j+–

---------------------------------------------=

Fig. 3 (a) Single story shear building; (b) skew-symmetric first structural mode; (c) first seismic loa
mode; (d) symmetric second structural mode; (e) second seismic loading mode
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The variance of pj(t) is given by :

(33)σpj
2 Hj ω( ) 2

∞–

∞

∫ k
1

N

∑ Djk ω( ) 2γk ω( )d ω( ) j 1,..M=( )=

Fig. 4 Dynamic alongwind response of a chimney by DMT: (a,b,c) covariance and spectral turbu
eigenvalues; (d) structural eigenvectors, covariance and spectral turbulence eigenvectors; (e) mB;
(f) matrix R; (e) root mean square (rms) value of tip displacement
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where Djk (ω) = ψψψψ j
TAθθθθk (ω) is the j, k-th term of the matrix D(ω). Likewise Bjk , Djk quantifies the

influence of the k-th loading spectral mode on the j-th structural mode.
The solution of Eq. (33) can be simplified by examining loading processes with parti

harmonic contents. Two special cases exist :

1. The loading process has a spectral content that quickly decreases on increasing the fre
as is typical of turbulence excitation. Assuming that structure is lightly damped and natural frequencies
are well separated, Eq. (33) is suitably approximated by (Carassale et al. 1999a) :

(34)

where:

Rjk = | Djk (ωj) | (35)

Rjk being the j, k-th term of the matrix R.
The first and the second terms on the right hand side of Eq. (34) correspond to the back

and to the resonant parts of the response, respectively. Eq. (34) provides an algebraic solutio
(33) involving only the eigensolutions of structure and loading process. Likewise Eq. (22), als
(34) simplifies significantly when B and R are square diagonal matrices :

(36)

2. The loading process has a narrow band frequency harmonic content as in the case o
shedding. When the harmonic content is much lower than the fundamental structural frequen
response is quasi-static and Eq. (34) holds neglecting the second term in the right hand side
otherwise, the excitation is resonant with the k-th natural frequency, then Eq. (34) usually hold
neglecting the first term in the right hand side and assuming σ 2

pj = 0 for j� k.
Fig. 4 summarizes the main results of a frequency domain application of DMT to determin

dynamic alongwind response of a chimney modeled by M = N= 36. Figs. 4(a)-(c) show the covarianc
and spectral eigenvalues of longitudinal turbulence; Fig. 4(d) points out the deep analogies b
the structural eigenvectors and the covariance and spectral turbulence eigenvectors; Figs. 
demonstrate that, at least in this case, the matrices B and R are almost diagonal; Fig. 4(g) confirm
that the structural response is accurately reproduced by few structural and loading mode
details concerning this study and other analyses of the alongwind and crosswind response of
structures are given by Carassale et al. (1999a).

5. Continuous modeling

The discrete use of DMT involves formal and conceptual aspects characterized by great ele
physical significance and a wide range of applications in structural dynamics and wind engine
Nevertheless, DMT computational burden is quite similar to that required by classical solution
one hand it avoids a lot of traditional operations but, on the other, besides the evaluat
structural eigenvalues and eigenvectors, it also requires the determination of the eigenvalu
eigenvectors of external loading. This situation changes significantly when structural and/or lo
eigensolutions are known in closed form. This is typical of several continuous problems gover

σpj
2 1

ω j
2

------
k

1

N

∑ Bjk
2 λk

1
8ω j

3ξ j

--------------
k

1

N

∑ Rjk
2 γk ω j( ) j 1,..M=( )+=

σpj
2 1

ω j
2

------Bjj
2 λj

1
8ω j

3ξ j

--------------Rjj
2 γj ω j( ) j 1,..M=( )+=
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The following paragraphs provide a general discussion of this matter referring, for simplici

structural systems and loading fields defined over the same mono-dimensional domain D. The
generalization to multi-dimensional problems does not imply conceptual advances but only relevant
formal complications.

5.1. Structural modal analysis

Consider a linear continuous mono-dimensional structure whose motion is governed by the 
differential equation:

(37)

where z is the coordinate of D ; q(z ; t), (z ; t), (z ; t) are the displacement, velocity an
acceleration of structure, respectively ; µ (z) denotes the mass distribution ; C [ � ] and K [ � ] are
viscous damping and stiffness operators; f (z ; t) = a(z)v (z ; t) is the external force, where v(z ; t) is a
weakly-stationary nil mean Gaussian random field defined on D and a(z) is a given deterministic
function.

Let ω1
2 , ω2

2 , .. be the structural eigenvalues sorted in increasing order ; ψ1 (z), ψ2 (z), .. are the
corresponding structural eigenfunctions. They are the non-trivial solutions of the linear homoge
Fredholm integral equation of the second kind :

(38)

where η(z, z') is Green's function related to K (Hurty and Rubinstain 1964). It is also known as th
structural kernel.

Assuming that K is a real, self-adjoint and positive definite operator, then the eigenvalues are
and positive; the eigenfunctions are real, form a complete set and enjoy the following orthonormality
conditions :

 
(39)

where δrs is Kronecker’s delta. Noteworthy closed form expression of ω j
2, ψj (z) ( j = 1, 2, ..) are

available for uniform mass distributions, simple K [ � ] operators and particular constraint condition
(Hurty and Rubinstain 1964, Meirovitch 1967).

Eq. (37) is usually solved by applying the principal transformation rule :

(40)

where pj (t) is the j-th principal coordinate. Under suitable conditions on C operator, the substitution
of Eq. (40) into Eq. (37) leads to the following set of infinite independent equations :

(41)

ξj being the j-th damping ratio (j = 1, 2, ..). Likewise for discrete modeling, also in continuo

µ z( )q·· z;t( ) C q· z;t( )[ ] K q z;t( )[ ]+ + a z( )v z;t( )=

q· q··

ψ j z( ) ω j
2

D∫ η z z′,( )µ z′( )ψ j z′( )dz′ j 1 2 .., ,=( )=

D∫ µ z( )ψ r z( )ψs z( )dz δrs; ωr
2

D∫ D∫ η z z′,( )µ z( )µ z′( )ψr z( )ψs z′( )dzdz′ δrs r s, 1 2 .., ,=( )= =

q z t;( ) jψ j z( )pj t( )
1

∞

∑=

p··j t( ) 2ξjω jp
·

j t( ) ω j
2pj t( )+ + D∫ ψ j z( )a z( )v z t;( )dz j 1 2 .., ,=( )=
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modeling the structural response can be usually expressed by a limited number Mt of modal terms .

5.2. Covariance proper transformation

Let Cv(z, z') = E[v(z ; t)v(z' ; t)] be the covariance function of v(z ; t) and v(z' ; t) at the zero time
lag; λ1, λ2, .. are the covariance eigenvalues; φ1(z), φ2(z) , .. are the corresponding covarianc
eigenfunctions. They are the non-trivial solutions of the homogeneous Fredholm integral equa
the second kind :

(42)

The kernel Cv(z, z') of Eq. (42) is bounded, symmetric, real and positive definite. All 
eigenvalues are real and positive while eigenfunctions are real, form a complete set and enjoy the
orthonormality conditions (Kanwal 1971) :

(43)

from which it derives :

(44)

The case in which Cv is a degenerate kernel (Kanwal 1971), i.e., the series of existing eigenv
and eigenfunctions is limited, does not imply relevant conceptual differences. However, it i
considered here for formal simplicity.

Closed formulae of λk, φk (z) (k = 1, 2, ..) are given by Van Trees (1968) and Ghanem and Sp
(1991b) for noteworthy covariance kernels. Preliminary analytical eigensolutions of the covariance
kernel of a theoretical turbulence model have been obtained by Carassale et al. (1999b).

Likewise Eq. (9), the continuous Covariance Proper Transformation (CPT) is defined by :

(45)

where x1(t), x2(t), .. are the so-called covariance principal components. The joint use of Eqs.
and (45) provides :

Cxrxs= λrδrs (r, s= 1, 2, ..) (46)

Cxrxs = E[xr (t)xs(t)] being the covariance of xr(t) and xs(t). Thus, the variance of xr(t), σ2
xr = Cxrxr ,

coincides with the r-th eigenvalue λr . Furthermore, since Cxrxs
= 0 for r� s, xr (t) and xs(t) are

uncorrelated processes at the zero time lag.
Likewise for discrete modeling, also in continuous modeling v (z ; t) can be usually approximated

by a limited number Nc of covariance terms.

5.3. Spectral proper transformation

Consider the cross-power spectral density function (cpsdf) Sv (z, z' ; ω) of v (z ; t) and v (z' ; t). It is

λkφk z( ) D∫ Cv z z′,( )φk z′( )dz′ k 1 2 .., ,=( )=

D∫ φr z( )φs z( )dz δrs; D∫ D∫ Cv z z′,( )φr z( )φs z′( )dzdz′ λrδrs r s, 1 2 .., ,=( )= =

Cv z z′,( ) kφk z( )φk z′( )λk

1

∞

∑=

v z t;( ) kφk z( )xk t( )
1

∞

∑=
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(47)

Let γ1(ω), γ2(ω), .. be the spectral eigenvalues; θ1 (z ; ω), θ 2(z ; ω), .. are the corresponding
spectral eigenfunctions. They are the non-trivial solutions of the homogeneous Fredholm in
equation of the second kind :

(48)

Since Sv (z, z' ; ω) is a bounded, Hermitian and semi-positive definite kernel, all the eigenva
are real and non-negative while the eigenfunctions, in general complex, form a complete s
enjoy the following orthonormality conditions :

(49)

from which it derives :

(50)

Likewise for Cv, also the case in which Sv is a degenerate kernel is not considered here for for
simplicity.

Closed form eigensolutions of the spectral kernel of a theoretical turbulence model have
obtained by Carassale et al. (1999b) and by Carassale and Solari (2000a,b). The use of t
solutions in a Monte Carlo environment aimed at simulating stochastic turbulent fields is demon
and discussed by Carassale and Solari (2000a,b).

Likewise Eq. (17), the continuous Spectral Proper Transformation (SPT) is defined by :

(51)

where y1(t), y2(t), .. are the so-called spectral principal components; L1 [ � ], L2 [ � ], .. are linear
operators such that :

Syrys
(ω) = γr(ω)δrs (r, s = 1, 2, ..) (52)

Syrys
(ω) being the cpsdf of yr (t) and ys (t). Since Syrys

(ω) = 0 for r� s, yr(t) and ys(t) are one-variate
independent processes whose psdf are the spectral eigenvalues.

The use of SPT in continuous modeling involves modal truncation rules that are conceptua
same of the corresponding discrete approach.

5.4. Relationships linking CPT and SPT

By replacing Eqs. (44) and (50) into Eq. (47), CPT and SPT are linked by :

Cv z z′,( ) Sv z z′ ω;,( )dω
∞–

∞

∫=

γk ω( )θk z ω;( ) D∫ Sv z z′ ω;,( )θk z′ ω;( )dz′ k 1 2 .., ,=( )=

D∫ θr
* z ω;( )θs z ω;( )dz δrs; D∫ D∫ Sv z z′ ω;,( )θr

* z ω;( )θs z′ ω;( )dzdz′ γr ω( )δrs r s, 1 2 .., ,=( )= =

Sv z z′, ω;( ) k
1

∞

∑ θk z ω;( )θk
* z′ ω;( )γk ω( )=

v z t;( ) kLk yk t( )[ ]
1

∞

∑=
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Again the problem considerably simplifies when spectral eigenfunctions do not depen
frequency, i.e., θ k (z ; ω) = θk (z). In this case the covariance and spectral eigenfunctions coin
while the covariance eigenvalues are the frequency integrals of the spectral eigenvalues :

(54)

Then SPT (Eq. 51) coincides with CPT (Eq.45) :

yk(t) = xk (t) ; Lk[ � ] = φk (z) (k = 1, 2, ..) (55)

which means that CPT makes the covariance principal coordinates uncorrelated for any fre
and any time lag.

5.5. Double modal transformation

Continuous DMT does not involve significant conceptual differences with respect to the dis
approach.

Using DMT in the time domain implies the joint solution of Eqs. (37) and (51). They for
linear system whose solution involves the digital simulation of the independent processeyk(t)
(k = 1, 2, ..) (Carassale and Solari 2000).

Fig. 5 shows some results of a time domain application of DMT to determine the dyn
alongwind response of a cantilever vertical beam (Carassale and Solari 2000a). Figs. 5(a) 
show a Monte Carlo simulation of two longitudinal turbulence histories (z being the height over
ground and l the total structural height) by using one to five spectral turbulence modes. Fig.
shows the corresponding recomposition of the first principal structural coordinate.

Likewise in the discrete case, the problem simplifies if the spectral eigenfunctions are indep
of frequency. In this case CPT and SPT coincide and the substitution of Eq. (45) into Eq. (41
to Eq. (22), provided that M and N are replaced by infinity and Bjk is defined as :

(56)

Also Eqs. (28) and (29) can be extended to continuous modeling by a simple analogy w
discrete solution; all physical concepts remain unchanged.

Similarly, the frequency domain application of DMT does not imply relevant differences betw
the cases in which the spectral eigenfunctions depend or not on the frequency. The joint use 
(41) and (50) leads to Eq. (33), provided that M and N are replaced by infinity and Djk is defined as :

(57)

Also Eqs. (34)~(36) can be extended to continuous modeling by a simple analogy wit
discrete solution; all physical concepts remain unchanged.

k
1

∞

∑ φ z( )φk z′( )λk k
1

∞

∑ θk
∞–

∞

∫ z ω;( )θk
* z′ ω;( )γk ω( )dω=

θk z( ) φk z( ) λk γk
∞–

∞

∫= ω( )dω k 1 2 .., ,=( );=

Bjk D
a z( )ψ j z( )ϕk z( )dz j k 1 2 .., ,=,( )∫=

Djk ω( ) Da z( )ψ j z( )θk z ω;( )dz j k 1 2 .., ,=,( )∫=
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Noteworthy applications of this method have been developed by Carassale et al. (1999b) to
determine the gust-excited alongwind response of slender structures. It is shown in particul
the knowledge of closed form eigensolutions makes the calculation of the dynamic res
integrally analytical.

6. Conclusions

Modal transformation rules in classical structural dynamics are based on structural modal s
External forces passively follow these transformations assuming, in the new space, a 
mathematical meaning lacking in physical properties. Proper orthogonal decomposition pro
mathematical and conceptual tools to extend most of these rules to stochastic loading process

Double modal transformation is the joint expansion of Lagrangian motion coordinates into a 
of normal modes and of loading random process by POD technique using covariance and/or 
modes. Using this method the dynamic response can be expressed as a double series in w
structural and loading modes are needed. This implies formal and conceptual aspects chara
by great elegance, physical significance and a wide range of applications. Nevertheless
computational burden is quite similar to that required by classical solutions. On one hand it av
lot of traditional operations but, on the other, besides the evaluation of structural eigensoluti

Fig. 5 Dynamic alongwind response of a vertical contilever beam: (a, b) POD recomposition of
longitudinal turbulence histories at different heights; (c) POD recomposition of the first principal stru
coordinate
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also requires the determination of loading eigensolutions.
This situation changes significantly when structural and/or loading eigensolutions are kno

closed form. This is typically the case of several continuous problems governed by suitable reg
properties. The closed form evaluation of the eigensolutions of continuous structural system
well-known field of structural dynamics. The closed form evaluation of the eigensolutions o
loading processes opens the door to a new research field aimed at defining the load thro
eigensolutions instead of the classical spectral equations.
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