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Dynamic response of a bridge deck with one torsional
degree of freedom under turbulent wind

Dora Foti" and Pietro Monaco*

Department of Structural Engineering, Technical University of Bari, Via Orabona 4, 70125 Batri, Italy

Abstract. Under special conditions of turbulent wind, suspension and cable-stayed bridges could reach
instability conditions. In various instances the bridge deck, as like a bluff body, could exhibit single-
degree torsional instability. In the present study the turbulent component of flow has been considered as ¢
solution of a differential stochastic linear equation. The input process is represented by a Gaussian zero-
mean white noise. In this paper the analytical solution of the dynamic response of the bridge has been
determined. The solution has been obtained with a technique of closing on the order of the moments.
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1. Introduction

The aeroelastic behaviour of the deck in the suspension and cable-stayed bridges is one of the
most complex and relevant aspects for the security of the structure. In fact the wind action could
cause the collapse of the bridge due to instability phenomena. Meclyanical models are adopted
to describe the dynamic behaviour of long-span decks. The most utilised one is the section model
with two degrees of freedom. This model has visco-elastic restraints that reproduce, dynamically,
the characteristics of the whole structural system. Most complex models consider the whole 3-D
structure of the bridge under wind forces taking into account both the tridimensional behaviour of the
structure and the spatial distribution of the wind.

Recently, a model with four degree of freedom has been proposedsiitigidn of the classical
section model. It is a non-linear model able to analyse the global vibrational modes of the structure
and the modes relative to the cables and the deck. The preliminary study of the dynamic behaviour
of a long span bridge subjected to a turbulent wind action is usually developed with a section-model
of the deck. If the analysis is performed referring to the instantaneous velocity, uhensof the
problem is more complex. In fact the presence of time-depending excitations is described with
stochastic models; moreover under special conditions of motion, these sections eamhd r
instability conditions. The classical flutter of bridge decks shows significdetetites compared to
the one relative to the thin airfoil. The centre of the mass is on the symmetry axis of the section and
it is very close to the torsion centre; in this way the inertial coupling is limited and the part of the
aeroelastic moment due to the rotation velocity, always negative on the thin airfoil, could change the
sign for a deck for a unstreamlined section. As a result a reduction and even the inversion of the tota
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damping is obtained.

In this case the dependence of the traslational action induced by the wind oardetegstics of
the torsional motion is negligible. €refore vertical and torsional motions of bridge may be taken
as uncoupled. The aerodynamic coupling is of secondary importance especially in those cases where i
single-degree torsional instability is manifest (Simiu, Scanlan 1986). In this paper thematdhl
dynamic response of a bridge deck with a single torsional degree of freedom under turbulent flow is
determined.

In the following Gaussian processes will be utilise@réfore the proposed solution is good only
for small displacements. As a consequence the dynamic response under high wity weldee
more approximate because it is observed that both mean and standard deviation values are 2 or
orders of magnitude higher with respect to the ones with lower wind velocity. In this case non-
Gaussian character of the response should be adopted. Therefore the evaluation ititahe cr
velocity is beyond the aim of this work. For common sections of bridge decks Scanlan and Tomko
(1986) showed that the contribution of the second derivatives of the displacements of the deck
model is negligible; at the same time they also studied a method to determine thestaeroela
coefficients.

The following hypotheses are assumed for the input forces: the direction of the wind is constant,
the turbulent componeinkt) is exclusively in the direction of mean wind.

In the following the process(t) will be considered as a sion of a differential stochastic linear
equation(equation of Langevin), where the input process is represented by a Gaussian zero-mean
white noise. Starting from the probabilistic description of the force acting on the system, the
problem is to determine the response process, through the temporal moment diagrams. The solutiol
of the equation of motion will be obtained utilising the methods of the Stochastic Differential
Calculus; the differential rule of Ito for writing the differential equations and the breaking method
on the order of the cumulants (the stochastic equation of the motion is non-linear) will be applied.

2. Equations of motion

The model scheme is shown in Fig. 1. It has only one d.o.f., the torsional rdtatialong the
longitudinal axis of the deck. In fact, the influence of the drag and lift displacements along the
direction coincident with the wind one has been neglected. The model is supported by elements
with a stiffness and damping that simulate the real bridge behaviour.

The equation of motion of the system is:

Ifa(t) + 28 wa(t) + wia(t)] = M(t) 1)
where, for a portion of the deck with a unit length:
- | is the mass polar moment;
- wy is the natural frequency of the system when the non-linearity is neglected;
- &, is the damping coefficient;

- M(t) represents the force applied to the system as effect of the wind.

The structural response is determined with the techniques from the stochastiotdiffeedculus.
In fact the process(t) is obtained from the following linear stochastic differential equation, (Bartoli,
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Fig. 1 Scheme of the bridge deck

Borri 1997):
u(t) = —6,u(t) + Bw(1) (2)

wherew(t) is a Gaussian zero-mean white no&eand 6, “modelise” the spectral density of the input.

In the present case the longitudinal turbulent part of the wind velocity is described with the
Davenport spectrum, together with one rational approximation where the coefficient has been
evaluated by a least-square procedure. In this @aaad 6, are:

0

O = oy, 2:5767

ot 101200

E]] 4.790 )
6,=2m /U :

E] 2 19,1200

U = (R
where: u” = 0.4U10[In DZOD}

U,o is the mean velocity of the wind at 10 m of height from the gromyd;the roughness length.
From the linearity characteristics of the procepit is possible to state that:

- if the input is a zero-mean process, the resporitdave an expected value equal to zero;
- if the input is a Gaussian process, the response will have a Gaussian probability distribution;
- if the input is a stationary process, the output will be stationary too.

The aim of the present paper is to determine the dynamic response of decks which exhibit a
single degree of freedom flutter. This behaviour is present in bluff and unstreamlined bodies which
undergo strongly separated flows. Prominent among these are the decks of suspended-span bridge
they can exhibit single degree torsional instability.

If the turbulent component of the wind is comsil, the buffeting and aeroelastic forfgkt)

applied to the system will be:
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a(t) 2 0% Cu(a)

M(t) = 0.5P[U+u(t)]2(ZB§)[kA§(k)Bd[U + (D] + (KA (K) - cam)a(t) + =5 } (4)

where:

- Ai (K) are the aeroelastic derivative;

- Cu(Q) = Gy + Com@ + Caua? + Cau@° is the buffeting cefficient;

- k=Byw/ U is the reduced frequenay is the actual circular frequency of oscillation;
- By is the chord of the deck;

- p is air density.

In Eq. (4) the aeroelastic coefficieAt does not appear, as it is negligible in case of bridges.
3. Probabilistic determination of the dynamic response

The equation of motion (1) and the differential Eqg. (2), which describes the turbulent component,
represent a non-linear system of differential stochastic equations:

1(d(t) + 2&,w,a(t) + w2a(t)) = 0.5p(U + u(t))*(2B2)

KA ()Bagg a(tt:)(t)]

u(t) = - 6,u(t) + 6,w(1)

+ (KA (K) — co) a(t) + CM(“)} 5)

DDDDDD

System Eq. (5) could be reduced to a system of first order stochastic differential equations through
the introduction of an unknown state vecYor { Yy, Y,, Y3} where:

Yi=at)  Y.=a(t) Ys=u(l) (6)

Introducing the vectoly and neglecting the square of turbulence respect to the product of the
turbulent component and timeean one, the system can be expressed as:

Hdy, = Y,dt
0 dY, = —2&,w,Y,dt — w2 Y,dt

E]] KA;B4UY, + (K°A; — C) UYL + KAB,Y, Y, + 2(K2A; — Ci)U Y, Ya+

PB3 Dc (o o C
r-d 2 2 2
g U PN N e

E]] CimU Y, Y5 + CouUYZYs + CyyUY3Y,

(7)

I o

dY, = — 6,Y,dt + 8,wdt

OoOoOoOooooOooood

_ 3 _ .
We introduce a scalar functio®(Y) = |‘|1Y5} with real values, differentiable respecama with
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mix second partial derivatives of the continue components of the state vectorpwéthd S
(j =1, 2, 3) two set of integer non-negative numbers. The functi¥iYy can be chosen arbitrarily.
Applying many times the derivation rule of Ito to the functi@h@) it is possibly to generate a
system of non-linear ordinary differential equations that includes, as unknown, the moments of order
up to the third of the stochastic process constituting the state vector.
The assumption of the following vector:

®(Y) = { Y5, Yz Ya, Y5, Y5, Y5, V1Y Y1Ys, Yo Y5} (8)

will lead to a system with nine ordinary differential equations.
The equations have been obtained neglecting the following moments (see Appendix I):

E[Ysw]=0, E[Ym]=0, E[Ym]=0.

As the original stochastic ddfential system is nolmear, a sequence of coupled equations with an
infinite hierarchy is obtained. Such a system is impossible to solve, unless the hierachy is interrupted.
Therefore the solution is usually obtained with a technique of closing on the order of the cumulants.
Since the Gaussian distribution in the only one completely characterised with the first two cumulants,
the closing technique will consist in neglecting the cumulants of ér@er

The expressions of the third order of moments obtained in function of the moments of lower order
by mean of a Gasian closing on the cumulants to eliminate the infinigrdrchy and the system
are shown in Appendix Il. This system of nine ordinary differential equations is non-linear. The
time evolution of the moments is only obtained with the numerical integrafipproximate
evaluations of the moments can be obtained with a Gaussian closing directly on the moments. With
the closing on the moments it is possible to obtain a system with ordinary differential linear
equations:

E[Y.]

d%E[Yl]
SE[V)] = 26,0,E[ V] - WRE[ Vi)
E]] . 2,012 ComU’ .
0860 KASBUEL Y, + kASU” 20— LE[Y,] + KABGELY,Ys] +

I 2
0 cyvU
E]] +(2K°A5U — o U)E[ Y, Y4 + %

I o

d
d_tE[Yg] = —-6,E[Y;] =0

d
SELYE] = 2E[V,Y,]
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d
GEIYS] = - 48,0, E[¥3] - 262E[ Y,Y,]

0 2 0
c,mU
szE] kA;BLUE[ YZ] + K°A;U7 %%[Ylvzp .
s 0
cyU?
O+ 2—E[Y,] + c;wUE[ Y, Ya] O
0 0
d
GEL Y2l = —26,E[ Y] + 67
d
qiEl V1Yol = E[YZ] —2&,w,E[Y;Y,] — wZE[ Y]]
O . O
pB20 KASBAUEL ;Y] + HPASU° - 2“” EFL[YZH .
—0 0
I 2
O c,uU O
O+ — 1M E[Y,] + c;wUE[ Y, Y] O
0 0
d
qiE[Y1Yal = E[Y2Ya] — 6,E[Y, Y]
d
GiE[Y2Yal = = BiE[Y,Ys] - 28, W,E[ Yo Ya] — WZE[ Y, Y]
B3 EkA;BdUE[Y2Y3]+ El]
I_D U2 C2MU > O ©)
E] % AU [Y1Y5] + cimUE[Ys] E]

In the following the solution of this system is obtained with a mathematical closed form.
4. Mathematical solution of the dynamic response
To simplify the analytical study, the following positioae assumed:
= 28, w, ; B=-w? ;
Bg * . d *
C=pTkAU ;D =prkA;
B3U? c B3U
E=p=—dA-2"5: F=p ‘: (2K°A; —Com)

U B3U
G p 2] C1M ’ L= p I 1M (10)
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Substituting Eqg. (10) in Eg. (9) and considering tHad] = O:

O ey, =4
0 ELY,] = GELY]

m

d
[Y2Y5] = d_tE[YlYa] + 6,E[Y;Y5]

|

N

0

0

0

g
d

0 SE[YE] = 2E[Y,Y,]

0

0

0O dgtE[YZZ] = 2GE[Y,] +2(A+ C)E[Y%] +2(B+ E)E[Y,Y,] +2L [E[Y, Y] (11)

O

L] d 2 2 2

E] d_tE[Yg] = —29,E[Y3] + I3

0

E] dgtE[Yle] = GLE[Yy] + (A+ C)E[Y,Y,] + (B+ E)E[ Y]] + L [E[ ;Y] + E[ Y3]

2 d

 $oELY = (A+ OFEYi] + (B + B) (E[Y\] + D [E[Y;Ys] +F (E[V,Y] + G
t

O

0

0

O

E[Y,Ys] + (2191—A—C)dgtE[Y1Y3] +(92-9,A-B-C3,—-E) [(E[V,Y;] -L[E[Y3] =0

o
—

The solution of the fifth equation of (11) is:
2
E[Y]] = 22 +a, Cexp(-29,) 12)

wherea; is a constant.
Since in the eighth equation results:
A= (29,-A-C)°-4(92-9,A-B-C3,-E) <0,

its general integral is:

_ . L53
E[ Y]_Y3] - ZeXp(alt)[Clcos(ﬁlt) + CZSIn(ﬁlt)] + 2_’91[ 19]2-_ 191(A+ C) _ B _ E]
s— L exp(=29,t) (13)
[91+3:(A+ C)-B-E]
where:
28,—-A-C —
o,=— L 5 y Bi= “/Z_A ¢, andc, are constants.

Substituting Eq. (13) in the second equation of (11):
E[Y,Ys]=2exp(a;t)[(aiC+ F1C1+ B,Cy) COS(Bit) + (a1C,—B1Cr + F1C5) sin(Byt)]

.\ LSZ L Ch, 9,
2[9%-9,(A+C)—B—-E] [9%+3,(A+C)-B-E]

exp(=239;t) (24)
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The seventh equation is of the kind:
2
j—E[Yl] —(A+ C) E[Yl] —(B+ E) CE[Y,]=F [E[Y,Y5]+D [E[Y,Y3]+G (15)

SinceA=(-A -C) —4(—B— D)<0 , the integral of the associated homogenea is:

E[Y1]=csexp(a,t) cos(B,t) +cexp(ast) sin(B,t)
where:

2 C, Bo= %A, c3 andc, are constants.

Since the second member results:

a,=

ifi: 2exp(at){[Fec+(a ¢+ 31C1+ BiCy) D] cog(Bit) + [Fe,+ (a,C—P1 ¢, + 9,C,) D] sin( Byt) }

0 L& O(F-D 9, L92
+ 29,t
%[ 92+ 9,(A+ C)—B—E] expl- )D+ %2[191—19 (A+C)-B—E] QS‘

+ DD+G 0 (16)
O

the solution is obtained by the addition of three integrals.

Assuming :
M=2(Fc,+a,c,D+3,c,D+ f3,c,D); N=2(Fc,+ a,c,D-,¢c,D+ 3,c,D);
2
p= S o I, plrG; Q=— 2 HF-DDB) (17)
2[9°—9,(A+ C)-B—E] [91+ 3, (A+ C)-B-E]

the first integral is:
{E[Y1]} = exp(ast)[c3co8( Byt) +C,sin(Bot)] + exp(a,t)[a,cos(Bit) +assin(Byt)]  (18)
where:
a,= M[ai-B;—a;(A+ C) - (B + E)]-N[2a,8,—B; (A + C)]
[a2-B2—a;(A+ C)~(B + B)]+[2a,8,-By(A + O))°
N[al —B2—a,(A+ C)—(B+ E)]+M[2a,8,—B,(A+ C)]
[aZ-B2—a;(A+ C)~(B + B)]+[2a,8,-By(A+ O)]°

The second integral is:

{E[Y1]},= exp(azt)[cscos(Bot)+Cysin(Bot)] +a,exp(—294t) (19)

where: a,= Q
492+2(A+ C)—(B + E)
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The third integral is:

(E[Y}3= exp(a,t)[cacos( B,0)+c,sin(Bd)] 5 = (20)

Finally the solution of Eq. (15) is:
E[Y1]=3exp(a,t)[c; cos(B,t)+C,sin(B,t)]+ exp(a;t)[a,cos(Bit)+assin(fBit)]

P
+a, exp(-29;t) — B1E (21)

Moreover the solution of the first equation of (11) is :
E[Y2]=3exp(ayt)[(Csa+CaB,) COS(Bot)+ (C 40, — C33,) SIN(Bot) ]
+exp(ayt)[(a a+asB;) cos(Bit) + (aza1—a,B,) sin(Bit) | -2a,8, exp(—2394t) (22)

The last two relations give, in a closed form, the temporal evolution of the first order torsional
rotation moment and the angular rotation: they are the most important moments for the pticbabili
description of the output process. In the same way it is possible to obtain the remaining moments.

5. Application to Tacoma narrows bridge

As example, the dynamic response under turbulent wind of the one d.o.f. model-section of
Tacoma Narrows Bridge will be determined. The time dependent plots associated to the mean anc
to the mean square value of the response process will be determined, as they very well describe th
dynamic response.

The Tacoma bridge deck represents a very significant case from a structural point of view;
moreover it is one of the most sensational example of collapse due to the wind action. The principal
charactestics of the bridgere summarised in Table 1. The dynamic parameters necessary to define
the model are listed in Table 2. The expression of the aeroelastic coeffigidrds been obtained
interpolating, with a second order curve, the experimental values of the nodes proposed in Simiu
and Scanlan (1986). In this procedure the minimum square principle has ltised td calculate
the coefficients of the polynomial. The dynamic response has been evaluated for three rough length:

11.90m
Fig. 2 Tacoma bridge deck
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Table 1 Geometric and mechanical characteristics of Tacoma bridge

Span L 854 m
Cable sag f 70m

Deck width By 11.90 m
Total weight of the bridge (per length unity) g 8483 Kg/m
Deck mass (per length unity) m 865 Kgg/im
Moment of polar inertia of the deck (per length unity) | 9490 Kgé/rad

Table 2 Dynamic characteristics of Tacoma bridge and the wind input

Torsional frequency wyl 21 0.167 Hz
Damping coefficient &a 0.01
Buffeting coefficient Cim -0.005
Buffeting coefficient Com -0.559
« 02
A,
0,15 /
0,1 /

/
0 e
p———2 3 4 5

Reduced velocity

-0,05
Fig. 3 Aeroelastic coefficient

Zo=0.01,7,=0.10 andz = 0.80.

Figs. 4, 5, 6 show the time dependent expected value of the torsional rotatidm $08.0 m/s
and Uy = 4.5 m/s respectively for less and high turbulence intensities; in Fig. 7athe diagram
for Ujp=7 m/s and high turbulence intensity is plotted. The Tacoma bridges supposed height from
the ground was calculated at 50 m. In the first three diagrams the tioh&ie moment is
decreasing, which means a stable condition of the motion. In the fourth plot the time dependent
moment is increasing; which characterises an unstablatioond=igs. 8 and 9, respectively, show
the expected values of the standard deviation of the rotation and the angular velocity for high
turbulence intensity.
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EfY1i[rad]

Z0=0.01m, Uy =6m/sec, U so=7.4m/sec

timels]

Fig. 4 Expected value of the angular rotationUigg = 6.0 m/s

xt0 4

_; T j
: J M “ “H J J,:O!n!, Uto=6m/sec, Uso =8m/sec
Fig. 5 Expected value of thetiZ:;]ular rotation Ugg = 6.0 m/s

STITTPTTTT
Rl uuhwwwwu\\\ |

Z,=0.8m, Uy = 4.5m/s, Usg = 7Tm/s

[ 50 100 150 200 250
timels)

Fig. 6 Expected value of the angular rotationUigg = 4.5 m/s
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0.4
03 | Zo = 0.8m, Uso = 7m/s, Usg = 11m/s
02

0.1 ~

E[Yi]irad]

0.2 =

-0.3 -

04 L L L N
[ 50 100 150 200 250

time(s)

Fig. 7 Expected value of the angular rotationUeg= 7 m/s

Dev. Standard [rad]

2,=0.8m,Up=45m/s,Uso=7mls

0 50 100 150 200 250
time[s]

Fig. 8 Expected value of the standard deviation of the angular rotation

07 T T

06 | Zy = 0.8m, Uy = 7m/s, Usg = 11m/s

05

03 | -

Dev. Standard [rad]

02 |- -1

01 -

timel[s]

Fig. 9 Expected value of the standard deviation of the angular velocity
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6. Conclusions

In this paper the closed form of the dynamic response of a system with one torsional degree of
freedom has been determined. The system is represented by the section-model of a suspended
stayed bridge deck under turbulent wind. The analysis is referred to the instantaneous velocity of the
wind (turbulent component).

Due to the stochastic term the torsional motion equation of the section-deck is a stochastic
differential equation. The response process, represented by the time dependent moments, is obtaine
in a probabilistic way. The Gaussian processes has been utilisegfotk the proposed solution is
good only for small displacements. As a consequence the dynamic response under high wind
velocity will be more approximate.

The expressions of the expected values of the deck rotation and angular velocity have been
determined in a closed form. These expressions have been utilised in an example to obtain the
dynamic response of Tacoma bridge. The results practically coincide with those determined in the
numerical analysis.

References

Bartoli, G. and Borri, C. (1997), “On the influence of wind turbulence on bridge decks flutter. Aspect in modern
computational structural analysis”, Meskouris & Wittek. Balkema, Rotterdam.

Bontempi, F. and Malerba, P.G. (1994), “On the aeroelastic behaviour of cable stayes',bAdge of the
International Symposium on Cable Stayed Brid§ésinghai, May 10-13, 290-301.

Citrini, C. (1992).Analisi Matematical, 2. Ed. Bollati Boringhieri. Torino.

lannuzzi, A. and Spinelli, P. (1986), “Effetti del vento sugli impalcati da ponte: comportamento aerodinamico e
simulazione numerica. Parte | e ICpstruzioni Metallichenn. 1, 2.

Ibrahim, R.A., Soundararajan, A. and Heo, H. (1985) “Stochastic response of non linear dynamic systems basec
on a non-Gaussian closurdgurnal of Applied Mechanicd, 51-89.

Lin, Y.K. (1967).Probabilistic Theory of Structural DynamjdglcGraw-Hill Book Company.

Scanlan, R. H. and Tomko, J.J. (1971), “Airfoil and bridge deck flutter derivatd@shal of the Engineering
Mechanics Division December, 1717-1737.

Simiu, E. and Scanlan, R.H. (1988)ind Effects on Structur§econd Edition, John Wiley & Sons, New York.

Solari G. (1987), “Turbulence modelling for gust loadinggurnal Struct. Eng ASCE 113 1550-1569.

Appendix - A

d _
a_tE[Yl]_ E[Yz]
SE[V.)=-26,wE[ V] wEL V)

g

pEi ABUELY] HEA U™ - AU i+ KALBGE Y, Y]+ (2KAU - Cay U)EL VY]
+ d

I

d
e S SRV 0 UE VYol + S2UPE] Y]+ € UE[ Y]
d

I o

ad—tE[Y3]=—61E[Y3]=0
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derom_

SE[vA=2E(Y.Y,]

ad-tE[ Y= —4&, w,E[ Y —2ZE[ Y, Y,]
FkABLUE[ Y]+ KA U? - %MUZ%[YNZ] +KkA;BE[ YYs]
0

B;0
+ Z%g (2KAU — G, U)EL Y, Y, Ya] + C—;”UZE[YZ]+C1MU E[Y,Y,]

O

O %MUZE[ Y2Y,]+CaUE[Y2Y, Y]+ %UZE[YiYZ]me E[YY,Y,]

I o

thE[Y§]=—291E[Y§]+ 6;
SEIV.Y.I=E[Y]-28,0,E[Y.Y.] - GLE[ V]

KA BUELY, Y]+ A U7 - UL Vi +KALBLEL Y, Y, Vi)
O

BiO
+ %m (2K°AsU — CU) E[Y2Y,]+ %MUZE[Y11+ C—;MUZE[ Y]+

O™
OOoOoOooOoOoao

Ot ¢, UE[ Y2, + %”UZE[Y‘IH caUE[Y'YS]
d
Y, Y.I=ELY, ;] -GE[ Y,
dﬂtE[szs] =_0,E[Y,Y;]-2&,w,E[Y,Ys] — LEL[Y,Y,]

KA BUELY, Y1+ kAU - AU Y, Y.+ KA BLEL Y, Y]]
O

B
+ B30 (20U — oy U)EL Y.V e UET Y+ ZEUPE VY]

O™
| o

Dt o UE YY)+ S UPEL VIV, + co UEL YoV

O

Appendix - B

Expressions of the third order of moments obtained in function of the moments of lower order by mean of a
Gaussian closing on the cumulants:

E[Y.Y:]=E[Y.]E[ Y]] E[Y,Y:]=E[Y.]E[ Y]] E[Y:Y:]= 2E[ Y,]E[Y.Y,]
E[ Y2Ys]= 2E[ Y] E[Y,Y:] E[Y.Y,Ys]=E[Y,] E[Y,Y:]+ E[ Y] E[ Y.Ys]

System with nine ordinary differential non-linear equations obtained:

d —
CTtE[ Y1] =E [Yz]
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SEIV.)=-28 W E[ Y] - GIE[ Y,

c,uU’

£ HELY.l+ (2KAU - ca WEL Y. Y] 5

HkABLUELY,]+ KeAsU?
0

+9_‘§.55+ cuU?

oy + U Yi]+ 200, UEL Vi EL V. Yi]+KA;BLEL Y, Y]

I o

0
D SanU2(3E[ Vi) EL Yi]-2E([ Ya))') + 3w UE[ VI E[ YiYa)

d _ —

d _

a_t|5[\(i]-2E[Y1Yz]
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