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Dynamic response of a bridge deck with one torsional 
degree of freedom under turbulent wind

Dora Foti† and Pietro Monaco‡

Department of Structural Engineering, Technical University of Bari, Via Orabona 4, 70125 Bari, Italy

Abstract. Under special conditions of turbulent wind, suspension and cable-stayed bridges could
instability conditions. In various instances the bridge deck, as like a bluff body, could exhibit s
degree torsional instability. In the present study the turbulent component of flow has been consider
solution of a differential stochastic linear equation. The input process is represented by a Gaussia
mean white noise. In this paper the analytical solution of the dynamic response of the bridge ha
determined. The solution has been obtained with a technique of closing on the order of the momen
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1. Introduction

The aeroelastic behaviour of the deck in the suspension and cable-stayed bridges is one
most complex and relevant aspects for the security of the structure. In fact the wind action
cause the collapse of the bridge due to instability phenomena. Many mechanical models are adopte
to describe the dynamic behaviour of long-span decks. The most utilised one is the section
with two degrees of freedom. This model has visco-elastic restraints that reproduce, dynam
the characteristics of the whole structural system. Most complex models consider the who
structure of the bridge under wind forces taking into account both the tridimensional behaviour
structure and the spatial distribution of the wind. 

Recently, a model with four degree of freedom has been proposed in substitution of the classical
section model. It is a non-linear model able to analyse the global vibrational modes of the str
and the modes relative to the cables and the deck. The preliminary study of the dynamic be
of a long span bridge subjected to a turbulent wind action is usually developed with a section-
of the deck. If the analysis is performed referring to the instantaneous velocity, the solution of the
problem is more complex. In fact the presence of time-depending excitations is described
stochastic models; moreover under special conditions of motion, these sections could each
instability conditions. The classical flutter of bridge decks shows significant differences compared to
the one relative to the thin airfoil. The centre of the mass is on the symmetry axis of the secti
it is very close to the torsion centre; in this way the inertial coupling is limited and the part o
aeroelastic moment due to the rotation velocity, always negative on the thin airfoil, could chan
sign for a deck for a unstreamlined section. As a result a reduction and even the inversion of t
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In this case the dependence of the traslational action induced by the wind on the characteristics of

the torsional motion is negligible. Therefore vertical and torsional motions of bridge may be tak
as uncoupled. The aerodynamic coupling is of secondary importance especially in those cases w
single-degree torsional instability is manifest (Simiu, Scanlan 1986). In this paper the mathematical
dynamic response of a bridge deck with a single torsional degree of freedom under turbulent 
determined.

In the following Gaussian processes will be utilised; therefore the proposed solution is good on
for small displacements. As a consequence the dynamic response under high wind velocity will be
more approximate because it is observed that both mean and standard deviation values are
orders of magnitude higher with respect to the ones with lower wind velocity. In this case
Gaussian character of the response should be adopted. Therefore the evaluation of theitical
velocity is beyond the aim of this work. For common sections of bridge decks Scanlan and T
(1986) showed that the contribution of the second derivatives of the displacements of the
model is negligible; at the same time they also studied a method to determine the aerostic
coefficients.

The following hypotheses are assumed for the input forces: the direction of the wind is con
the turbulent component u(t) is exclusively in the direction of mean wind.

In the following the process u(t) will be considered as a solution of a differential stochastic linea
equation (equation of Langevin), where the input process is represented by a Gaussian zero
white noise. Starting from the probabilistic description of the force acting on the system
problem is to determine the response process, through the temporal moment diagrams. The 
of the equation of motion will be obtained utilising the methods of the Stochastic Differe
Calculus; the differential rule of Ito for writing the differential equations and the breaking me
on the order of the cumulants (the stochastic equation of the motion is non-linear) will be appl

2. Equations of motion

The model scheme is shown in Fig. 1. It has only one d.o.f., the torsional rotation (α) along the
longitudinal axis of the deck. In fact, the influence of the drag and lift displacements alon
direction coincident with the wind one has been neglected. The model is supported by ele
with a stiffness and damping that simulate the real bridge behaviour.

The equation of motion of the system is:

(1)

where, for a portion of the deck with a unit length:

- I is the mass polar moment;
- ωα is the natural frequency of the system when the non-linearity is neglected;
- ξα is the damping coefficient;
- M(t) represents the force applied to the system as effect of the wind.

The structural response is determined with the techniques from the stochastic differential calculus.
In fact the process u(t) is obtained from the following linear stochastic differential equation, (Bart

I α·· t( ) 2ξαωαα· t( ) ωα
2 α t( )+ +[ ] M t( )=
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where w(t) is a Gaussian zero-mean white noise; θ1 and θ2 “modelise” the spectral density of the input.
In the present case the longitudinal turbulent part of the wind velocity is described with

Davenport spectrum, together with one rational approximation where the coefficient has
evaluated by a least-square procedure. In this case θ1 and θ2 are: 

(3)

where:  

U10 is the mean velocity of the wind at 10 m of height from the ground; z0 is the roughness length.
From the linearity characteristics of the process u(t) it is possible to state that:

- if the input is a zero-mean process, the response will have an expected value equal to zero;
- if the input is a Gaussian process, the response will have a Gaussian probability distributio
- if the input is a stationary process, the output will be stationary too.

The aim of the present paper is to determine the dynamic response of decks which ex
single degree of freedom flutter. This behaviour is present in bluff and unstreamlined bodies 
undergo strongly separated flows. Prominent among these are the decks of suspended-span
they can exhibit single degree torsional instability.

If the turbulent component of the wind is considered, the buffeting and aeroelastic force M(t)
applied to the system will be: 

u· t( ) θ1u t( )– θ2w t( )+=

θ1 2πU10
2.5767
1200

----------------=

θ2 2πu* U10
4.790
1200
-------------=









u* 0.4U10

z10

z0

------ 
 ln

1–

=

Fig. 1 Scheme of the bridge deck
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where:

- Ai
* (k) are the aeroelastic derivative;

- CM(α) = c1M + c2Mα + c3Mα2 + c4Mα3 is the buffeting coefficient;
- k = Bdω / U is the reduced frequency, ω is the actual circular frequency of oscillation;
- Bd is the chord of the deck;
- ρ is air density.

In Eq. (4) the aeroelastic coefficient Al
*  does not appear, as it is negligible in case of bridges.

 
3. Probabilistic determination of the dynamic response 

 
The equation of motion (1) and the differential Eq. (2), which describes the turbulent compo

represent a non-linear system of differential stochastic equations:

(5)

System Eq. (5) could be reduced to a system of first order stochastic differential equations t
the introduction of an unknown state vector Y� { Y1, Y2, Y3} where:

Y1= α(t) Y2 = (t) Y3 = u(t) (6)

Introducing the vector Y and neglecting the square of turbulence respect to the product o
turbulent component and the mean one, the system can be expressed as:

(7) 

We introduce a scalar function with real values, differentiable respect to t and with

M t( ) 0.5ρ U u t( )+[ ]2 2Bd
2( ) kA2

* k( )Bd
α· t( )

U u t( )+[ ]
------------------------- k2A3

* k( ) c2M–( )α t( )
CM α( )

2
----------------+ +=

I α·· t( ) 2ξαωαα· t( ) ωα
2 α t( )+ +( ) 0.5ρ U u t( )+( )2 2Bd

2( )=

kA2
* k( )Bd

α· t( )
U u t( )+[ ]

------------------------- k2A3
* k( ) c2M–( )α t( )

CM α( )
2

----------------+ +

u· t( ) θ1u t( )– θ2w t( )+=







α·

dY1 Y2dt=

dY2 2ξαωαY2dt– ωα
2Y1dt–=

+
ρBd

2

I
---------dt

kA2
* BdUY2 k2A3

* c1M–( )U 2Y1 kA2
* BdY2Y3 2 k2A3

* c1M–( )UY1Y3++ + +

c0M

2
--------U 2 c1M

2
--------U2Y1

c2M

2
--------U2Y1

2 c3M

2
--------U2Y1

3 c0MUY3++ + + +

c1MUY1Y3 c2MUY1
2Y3 c3MUY1

3Y3+ + 
 
 
 
 
 
 

dY3 θ1Y3dt– θ2wdt+=
















Φ Y( ) Yα j
β j

j 1=

3

∏=
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( j =1, 2, 3 ) two set of integer non-negative numbers. The functions Φ( ) can be chosen arbitrarily.
Applying many times the derivation rule of Ito to the functions Φ( ) it is possibly to generate a

system of non-linear ordinary differential equations that includes, as unknown, the moments o
up to the third of the stochastic process constituting the state vector.

The assumption of the following vector:

(8)

will lead to a system with nine ordinary differential equations. 
The equations have been obtained neglecting the following moments (see Appendix I):

E [Y3w] = 0, E [Y1w] = 0, E [Y2w] = 0.

As the original stochastic differential system is non-linear, a sequence of coupled equations with 
infinite hierarchy is obtained. Such a system is impossible to solve, unless the hierachy is inter
Therefore the solution is usually obtained with a technique of closing on the order of the cum
Since the Gaussian distribution in the only one completely characterised with the first two cum
the closing technique will consist in neglecting the cumulants of order� 3.

The expressions of the third order of moments obtained in function of the moments of lower
by mean of a Gaussian closing on the cumulants to eliminate the infinity hierarchy and the system
are shown in Appendix II. This system of nine ordinary differential equations is non-linear.
time evolution of the moments is only obtained with the numerical integration. Approximate
evaluations of the moments can be obtained with a Gaussian closing directly on the moment
the closing on the moments it is possible to obtain a system with ordinary differential l
equations:

Y
Y

Φ̃ Y( ) Y1 Y2 Y3 Y1
2 Y2

2 Y3
2 Y1Y2 Y1Y3 Y2Y3, , , , , , , ,{ }=

d
dt
-----E Y1[ ] E Y2[ ]=

d
dt
-----E Y2[ ] 2ξαωαE Y2[ ]– ωα

2 E Y1[ ]–=

+
ρBd

2

I
---------

kA2
* BdUE Y2[ ] k2A3

* U2 c2MU2

2
---------------– 

  E Y1[ ] kA2
* BdE Y2Y3[ ]++ +

+ 2k2A3
* U c2MU–( )E Y1Y3[ ]

c1MU2

2
---------------+

 
 
 
 
 
 
 

d
dt
-----E Y3[ ] θ1E Y3[ ] 0=–=

d
dt
-----E Y1

2[ ] 2E Y1Y2[ ]=
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(9)

In the following the solution of this system is obtained with a mathematical closed form. 

4. Mathematical solution of the dynamic response

To simplify the analytical study, the following positions are assumed:

(10)

d
dt
-----E Y2

2[ ] 4ξαωαE Y2
2[ ]– 2ωα

2E Y1Y2[ ]–=

+ 2
ρBd

2

I
---------

kA2
* BdUE Y2

2[ ] k2A3
* U2 c2MU2

2
---------------– 

  E Y1Y2[ ]++

+
c1MU2

2
---------------E Y2[ ] c1M+ UE Y2Y3[ ]

 
 
 
 
 
 
 

d
dt
-----E Y3

2[ ] 2θ1E Y3
2[ ] θ2

2+–=

d
dt
-----E Y1Y2[ ] E Y2

2[ ] 2ξαωαE Y1Y2[ ]– ωα
2E Y1

2[ ]–=

+
ρBd

2

I
---------

kA2
* BdUE Y1Y2[ ] k2A3

* U2 c2MU2

2
---------------– 

  E Y1
2[ ]++

+
c1MU 2

2
---------------E Y1[ ] c1M+ UE Y1Y3[ ]

 
 
 
 
 
 
 

d
dt
-----E Y1Y3[ ] E Y2Y3[ ] θ1E Y1Y3[ ]–=

d
dt
-----E Y2Y3[ ] θ1E Y2Y3[ ]– 2ξαωαE Y2Y3[ ]– ωα

2E Y1Y3[ ]–=

+
ρBd

2

I
---------

kA2
* BdUE Y2Y3[ ]+

+ k2A3
* U2 c2MU2

2
---------------– 

  E Y1Y3[ ] c1M+ UE Y3
2[ ]

 
 
 
 
 

A 2ξα– ωα ; B ωα
2 ;–==

C ρ=
Bd

3

I
------kA2

* U ; D ρ
Bd

3

I
------kA2

*=

E ρ
Bd

3U2

I
------------ k2A3

*
c2M

2
--------– 

 = ; F ρ
Bd

2U
I

---------- 2k2A3
* c2M–( )= ;

G ρ=
Bd

2U2

2I
------------c1M ; L ρ

Bd
2U
I

----------c1M=
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Substituting Eq. (10) in Eq. (9) and considering that E[Y3] = 0:

The solution of the fifth equation of (11) is:

(12)

where a1 is a constant.
Since in the eighth equation results: 

its general integral is:

(13)

where: 

 c1 and c2 are constants.

Substituting Eq. (13) in the second equation of (11):

(14)

E Y2[ ] d
dt
-----E Y1[ ]=

E Y2Y3[ ] d
dt
-----E Y1Y3[ ] θ1E Y1Y3[ ]+=

d
dt
-----E Y1

2[ ] 2E Y1Y2[ ]=

d
dt
-----E Y2

2[ ] 2GE Y2[ ] 2 A C+( )E Y2
2[ ] 2 B E+( )E Y1Y2[ ] 2L E Y2Y3[ ]⋅+ + +=

d
dt
-----E Y3

2[ ] 2ϑ1E Y3
2[ ] ϑ2

2+–=

d
dt
-----E Y1Y2[ ] G E⋅ Y1[ ] A C+( )E Y1Y2[ ] B E+( )E Y1

2[ ] L E Y1Y3[ ] E Y2
2[ ]+⋅+ + +=

d2

dt2
-------E Y1[ ] A C+( ) d

dt
-----E Y1[ ] B E+( ) E Y1[ ]⋅ D E⋅ Y2Y3[ ] F E Y1Y3[ ] G+⋅+ + +=

d2

dt2
-------E Y1Y3[ ] 2ϑ1 A– C–( ) d

dt
-----E Y1Y3[ ] ϑ1

2 ϑ1A– B– Cϑ1 E––( ) E Y1Y3[ ] L E Y3
2[ ] 0=⋅–⋅++



























(11)

E Y3
2[ ]

ϑ2
2

2ϑ1

--------- a1 2ϑ1t–( )exp⋅+=

∆ 2ϑ1 A– C–( )2 4 ϑ1
2 ϑ1A– B– Cϑ1 E––( ) 0,≤–=

E Y1Y3[ ] 2 α1t( )exp c1 β1t( )cos c2 β1t( )sin+[ ]
Lϑ2

2

2ϑ1 ϑ1
2 ϑ1 A C+( )– B– E–[ ]

-----------------------------------------------------------------------+=

+
L a1⋅

ϑ1
2+ ϑ1 A C+( ) B E––[ ]

------------------------------------------------------------ 2ϑ1t–( )exp

α1=
2ϑ1 A– C–

2
--------------------------– , β1= ∆–

2
-----------,

E Y2Y3[ ]= 2 α1t( )exp α1c1+ ϑ1c1+ β1c2( ) β1t( )cos + α1c2 β1– c1+ ϑ1c2( ) β1t( )sin[ ]

+
Lϑ2

2

2 ϑ1
2 ϑ1– A C+( ) B– E–[ ]

--------------------------------------------------------------
L a1 ϑ1⋅ ⋅

ϑ1
2+ ϑ1 A C+( ) B– E–[ ]

------------------------------------------------------------– 2ϑ1t–( )exp
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The seventh equation is of the kind:

(15)

Since , the integral of the associated homogenea is:

where:

 c3 and c4 are constants.

Since the second member results:

(16)

the solution is obtained by the addition of three integrals.
Assuming :

(17)

the first integral is:

(18)

where:

The second integral is:

(19)

where: 

d2

dt2
-------E Y1[ ] A C+( )–

d
dt
-----E Y1[ ] B E+( ) E⋅– Y1[ ]=F E⋅ Y1Y3[ ]+D E Y2Y3[ ]+G⋅

∆= A C––( )2 4– B D––( )< 0

E Y1[ ]=c3 α2t( )exp β2t( )cos +c4 α2t( )exp β2t( )sin

α2= A C+
2

--------------, β2=
∆–

2
----------- ,

fi

1

3

∑ = 2 α1t( )exp Fc1+ α1c1+ ϑ1c1+ β1c2( )D[ ] β1t( )cos + Fc2+ α1c2 β1– c1+ ϑ1c2( )D[ ] β1t( )sin{ }

+
L a1 F D– ϑ1⋅( )⋅ ⋅

ϑ1
2+ ϑ1 A C+( ) B E––[ ]

--------------------------------------------------------- 2ϑ1t–( )exp
 
 
 

+
Lϑ2

2

2 ϑ1
2 ϑ1– A C+( ) B E––[ ]

----------------------------------------------------------- F
ϑ1

----- D+ 
  +G

 
 
 

M= 2 Fc1+ α1c1D+ ϑ1c1D+ β1c2D( ); N=2 Fc2+ α1c2D β1– c1D+ ϑ1c2D( );

P=
Lϑ2

2

2 ϑ1
2 ϑ1– A C+( ) B E––[ ]

-----------------------------------------------------------
F
ϑ1

----- D+ 
  +G ; Q=

L a1 F D ϑ1⋅–( )⋅ ⋅
ϑ1

2+ ϑ1 A C+( ) B E––[ ]
--------------------------------------------------------- ,

E Y1[ ]{ }1= α2t( )exp c3 β2t( )cos +c4 β2t( )sin[ ]+ α1t( )exp a2 β1t( )cos +a3 β2t( )sin[ ]

a2=
M α1

2 β1
2– α1 A C+( )– B E+( )–[ ] N– 2α1β1 β1– A C+( )[ ]

α1
2 β1

2– α1 A C+( ) B E+( )––[ ]2
+ 2α1β1 β1– A C+( )[ ]2

-----------------------------------------------------------------------------------------------------------------------------------------

a3=
N α1

2 β1
2– α1 A C+( )– B E+( )–[ ]+M 2α1β1 β1– A C+( )[ ]

α1
2 β1

2– α1 A C+( ) B E+( )––[ ]2
+ 2α1β1 β1– A C+( )[ ]2

------------------------------------------------------------------------------------------------------------------------------------------

E Y1[ ]{ }2= α2t( )exp c3 β2t( )cos +c4 β2t( )sin[ ]+a4 2ϑ1t–( )exp

a4= Q

4ϑ1
2+ 2 A C+( ) B E+( )–

----------------------------------------------------------
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The third integral is:

(20) 

Finally the solution of Eq. (15) is:

 

(21)

Moreover the solution of the first equation of (11) is :

 (22)

The last two relations give, in a closed form, the temporal evolution of the first order tors
rotation moment and the angular rotation: they are the most important moments for the probastic
description of the output process. In the same way it is possible to obtain the remaining mome

5. Application to Tacoma narrows bridge

As example, the dynamic response under turbulent wind of the one d.o.f. model-secti
Tacoma Narrows Bridge will be determined. The time dependent plots associated to the me
to the mean square value of the response process will be determined, as they very well desc
dynamic response.

The Tacoma bridge deck represents a very significant case from a structural point of 
moreover it is one of the most sensational example of collapse due to the wind action. The pr
characteristics of the bridge are summarised in Table 1. The dynamic parameters necessary to d
the model are listed in Table 2. The expression of the aeroelastic coefficient A2

*  has been obtained
interpolating, with a second order curve, the experimental values of the nodes proposed in
and Scanlan (1986). In this procedure the minimum square principle has been utilised to calculate
the coefficients of the polynomial. The dynamic response has been evaluated for three rough 

E Y1[ ]{ }3= α2t( )exp c3 β2t( )cos +c4 β2t( )sin[ ] P
B E+
-------------–

E Y1[ ]= 3 α2t( )exp c3 β2t( )cos +c4 β2t( )sin[ ]+ α1t( )exp a2 β1t( )cos +a3 β1t( )sin[ ]

+a4 2ϑ1t–( ) P
B E+
-------------–exp

E Y2[ ]= 3 α2t( )exp c3α2+c4β2( ) β2t( )cos + c4α2 c3– β2( ) β2t( )sin[ ]

+ α1t( )exp a2α1+a3β1( ) β1t( )cos + a3α1 a2– β1( ) β1t( )sin[ ] 2a4– ϑ1 2ϑ1t–( )exp

Fig. 2 Tacoma bridge deck
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Figs. 4, 5, 6 show the time dependent expected value of the torsional rotation for U10 = 6.0 m/s

and U10 = 4.5 m/s respectively for less and high turbulence intensities; in Fig. 7 the same diagram
for U10 = 7 m/s and high turbulence intensity is plotted. The Tacoma bridges supposed heigh
the ground was calculated at 50 m. In the first three diagrams the time evolution moment is
decreasing, which means a stable condition of the motion. In the fourth plot the time depe
moment is increasing; which characterises an unstable condition. Figs. 8 and 9, respectively, show
the expected values of the standard deviation of the rotation and the angular velocity fo
turbulence intensity. 

Table 1 Geometric and mechanical characteristics of Tacoma bridge

Span L 854 m
Cable sag f 70 m
Deck width Bd 11.90 m
Total weight of the bridge (per length unity) g 8483 Kg/m
Deck mass (per length unity) m 865 Kgs2/m
Moment of polar inertia of the deck (per length unity) I 9490 Kgs2/rad

Table 2 Dynamic characteristics of Tacoma bridge and the wind input

Torsional frequency ωα / 2π 0.167 Hz
Damping coefficient  ξα 0.01
Buffeting coefficient c1M -0.005
Buffeting coefficient c2M -0.559

Fig. 3 Aeroelastic coefficient
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Fig. 4 Expected value of the angular rotation for U10 = 6.0 m/s

Fig. 5 Expected value of the angular rotation for U10 = 6.0 m/s

Fig. 6 Expected value of the angular rotation for U10 = 4.5 m/s
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Fig. 8 Expected value of the standard deviation of the angular rotation

Fig. 9 Expected value of the standard deviation of the angular velocity

Fig. 7 Expected value of the angular rotation for U10 = 7 m/s
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6. Conclusions

In this paper the closed form of the dynamic response of a system with one torsional deg
freedom has been determined. The system is represented by the section-model of a suspe
stayed bridge deck under turbulent wind. The analysis is referred to the instantaneous velocity
wind (turbulent component).

Due to the stochastic term the torsional motion equation of the section-deck is a stoc
differential equation. The response process, represented by the time dependent moments, is 
in a probabilistic way. The Gaussian processes has been utilised; therefore the proposed solution i
good only for small displacements. As a consequence the dynamic response under hig
velocity will be more approximate. 

The expressions of the expected values of the deck rotation and angular velocity have
determined in a closed form. These expressions have been utilised in an example to obt
dynamic response of Tacoma bridge. The results practically coincide with those determined 
numerical analysis.
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Appendix - A 

d
dt
-----E Y1[ ]= E Y2[ ]

d
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2
-------U2– 
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 
 
 
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 
 
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d
dt
-----E Y3[ ]= θ1E– Y3[ ]= 0
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n of a
Appendix - B

Expressions of the third order of moments obtained in function of the moments of lower order by mea
Gaussian closing on the cumulants:

System with nine ordinary differential non-linear equations obtained:

d
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