Wind and Structures, Vol. 3, No. 1 (2000) 11-21 11
DOI: http://dx.doi.org/10.12989/was.2000.3.1.011

Diffusion of passive contaminant from a line source
in a neutrally stratified turbulent boundary layer
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Abstract.  This paper presents results of modeling of the passive contaminant diffusion from a continuous
line finite-size source located on the underlying surface of a neutral near-ground atmospheric layer
obtained by using the non-local two-parameteric turbulence model and the transport equation of mean
concentration. In the proposed diffusion model the turbulent diffusion coefficient changes not only with

the vertical coordinate but also with the distance downstream from the source according to the
experimental data. The results of the modeling reproduce structural features of the concentration field.
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1. Introduction

The transport equation for an averaged value of the passive contaminant conceGtratiar»

(<---> is statistical averaging) in a turbulent flow can be written in a closed form with the help of
the gradient transport model for the turbulent substance flux velkttepry). In spite of its
limitations usually associated with the locality of the gradient model for the turbulent scalar flux
and with the dependence of the turbulent diffusion coefficient on the time of scalar emission from a
source (Deardorff 1978)K-theory remains an attractive approximation dueitso simplicity and
because it allows to obtain fairly realistic results over a range of applications.

Fackrell and Robins (1982) obtained rather detailed measurement data for the concentration field
of a passive contaminant spreading from finite size sources placed near the ground and elevatet
above the ground in the turbulent boundary layer initiated in the laboratory wind tunnel experiment.
The vertical turbulent flux wc> can be calculated as-BC/dy for the near-ground source with the
turbulent diffusion coefficienK, proportional to the turbulent viscosity coefficiant (v /K, = ot =
const, oy is the turbulent Schmidt nuret). However, this has been demonstrated only for a single
cross-section located at a distance of 2.5 boundary layer thickness downstream from the source. |
has been justified because a typical length scale of eddies causing jet spreading is of the order o
less than a typical jet size. For a finite size source elevated at 0.2 thickness of the boundary layel
above the ground the measurements data show rough correspondence of locations where values ¢
<vc> and dCloy are maximum or zero. Therefore, the gradient transport model will also be
appropriate for this case. Vertical profiles of the coeffickgnbbtained from the measurements data
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(for distances from one to five thickness of the boundary layer downstream from the elevated
source) indicate that the valu§, increases with distance downstream from the source. The
turbulent diffusion coefficient is found to be a function of a distance from the source since
turbulent eddies in this case are not limited by the jet size. This behawgrcofresponds to the
results of Deardorff (1978).

Poreh and Cermak (1964) performed an experimental study of passive scalar diffusion of the ammonie
gas from a near-ground line source in the boundary layer on a plane rigid surface. In these experiments
dynamics of contaminant jet evolution with the distance downstream from the source has been
investigated in more detail. In particular, the turbulent diffusion coefficient has been found not only to be
changing in the vertical direction but also to be an increasing function of the distance from the source.

In the present paper characteristics of the concentration field of a passive contaminant diffusing
from a near-ground source in the turbulent boundary layer are evaluated. The simulation is based or
the two-parameter model of turbulent transport. The turbulent kinetic energy EKBRY2<uu;>
and the spectral consumptier v < (du/ du)?> of the TKE ¢ is the molecular viscosity coefficient)
are defined by the differential transport equations. As a result, the turbulent visgosiy/ £ and
the turbulent diffusion coefficierk, are not only the functions of the vertical coordinate but they
are also varying with the distance from the source which is in agreement with the experimental
results discussed above.

2. Predictions of the velocity field based on the two-parameteric
model of the turbulent transport

Existing variants of thdé=-¢ turbulent transport model differ mainly in the approximations of
the turbulent diffusion terms in the governing transport equations and in various modifications of
the € equation for flows near a wall (Nagano and Shimada 1995). This difference is caused by
the absence of a natural boundary condition; the value of the dissipatioa isafaite on the
rigid underlying surface. In the present paper e turbulent transport model of Nagano and
Tagawa (1990) is used allowing us to obtain acceptable results for turbulent quantities of the
velocity field.

2.1. Governing equations for turbulent characteristics
The turbulent transport model for the steady flow in the boundary layer along a smooth plate

consists of
- the continuity equation,

oU/ox+adV/idy=0 (1)
- the equation for the longitudinal mean velodity
ou oy _ o ou
U—+V—=—[v+v —} 2

- the equation for the TKE,

oE ., 0 d 1PE
U&+Va—;zzd—y[%l+é%%y}+l3—€ 3)
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- the equation for the spectral consumption of the TKE (the dissipgtion

de, \d_ I, Vroe £
UG+ Ve = c?y[%”rag Ddy}(cﬂflp—quzg)E (4)

In the Egs. (1) - (4)P=—-<uv>(dU/0y) is the turbulence productionug>=-v (dU/ dy) is the
shear Reynolds stress, and the eddy viscosity is

W = CH fﬂ (EZ/E) f|_'|' (5)

fir=exp{-y [0 (X) / (x— %913} at x> X%, (fir=0 at X< Xg) is the intermittency function describing
characteristics of the transition region from laminar to the turbulent flow state. »jee the
coordinate of origin of the transition regiops 10 is the numerical coefficient; the boundary layer
thicknessd (x) is defined as the coordinageat whichU/Uy = 0.99; U, is the mean veldty of the
external flow.

fu=[1-exp Cy'/26)F {1 +4.1/Re¥*}, f,=1,f,=[L-exply'/6)]* {1 -0.3 exp F(Rer/ 6.5¥]}

are the damping near-wall functions [§},= (yu)/ v is the non-dimensional near-wall coordinate
in the direction normal to the wall, Re E?/(ve) is the turbulent Reynolds numbau, =
JV(0U/0dy)y=0 is the wall friction. In Eqgs. (1)-(5) the standard values of coefficients are used:
0:=1.0,0,=1.3,C; =1.44,C,=1.92,C, =0.09.

The vertical component of the mean velocity vector in Eqgs. (2)-(4) is calculated by integrating the
continuity Eq. (1):

V= [ (0U/dx)dy 6)
0

Boundary conditions for the Eqgs. (2)-(6) are as follows,
a)y=0:U=E=0,e=Vv (0%E/0Y?);
b) y — o : 0U /oy =0E /dy = 0/ dy = 0O;

C) X=Xo: the functionU = sin[7sy / (2y,)] at 0y <y, (U =Up aty =y, approximates the laminar
Poiseuille profile ¥o = 0.002ynax is the initial thickness of the laminar boundary layer); background
values E = 10°U% € = 10*U¥ymax are used for the TKE and the dissipation; height of the
computational domainyna is the vertical scale taken to be equal to 127 cm (50 in) in order to
resolve the last region of the concentration field evolution observed in the experiments of Poreh and
Cermak (1964).

The parabolic Egs. (2)-(4) together with the above boundary conditions are solved numerically by
the implicit three-point finite-difference scheme and the running method. The computational grid
along the vertical coordinate is non-uniform; its resolution increases toward the wall surface. The
viscous sub-layer is explicitly resolved: yt< 5 there are five mesh intervals located alongythe
axis in the region corresponding to the first cross section of the measurements (Poreh and Cermal
1964) with parameters, = 9 ft/sec (= 274 cm/sec) andl(x—X, = 34 ft) = 7 in. The number of nodes
within the viscous sublayer increases in the posikgirection. To verify the accuracy of the
numerical solution computations have been peréal on successive grids with resolutions differing
by a factor of two in bothx- andy- directions. As a result, a grid-independent solution has been
obtained in the computational flow domain that includes ranges of coordinates of the laboratory
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experiments (Poreh and Cermak 1964, Gibsbal 1984, Klebanoff 1955) and those of the direct
numerical simulation (DNS) of Spalart (1998).

2.2. Computational results of statistical characteristics of the velocity field

In Fig. 1 the computed turbulent velocity field characteristics are compared with the data of Poreh
and Cermak (1964), Gibsat al (1984), Klebanoff (1955), Spalart (1998) at corresponding Reynolds
numbers. Good agreement between the calculated mean-velocity profile and the measurements ¢
DNS results is obtained in the external part of the boundary layer (Fig. 1a) where the profile
deviates from the log law / u, =In (y*) / 0.41+5.0 (dash-dot line 5 in Fig. 1a). Computed profiles
of the shear turbulent stress (Fig. 1c,d) and the TKE (Fig. 1e,f) also agree with the experiment and
DNS data, e.g., near a wall (Fig. 1c,e). Deviations of the computed TKE dissipation from the DNS
results of Spalart (1988) in close proximity to the rigid surfacey{at20) should be noted
(Fig. 19). It can be explained by the absence of the natural boundary condition for the famction
the wall. However, this difference does not significantly influence the computed second-order moments
of the velocity field.

. .
0 100 ¥ 20 00 yé 10

@

Fig. 1 Velocity field characteristics in the turbulent boundary layer
(a)-(g) [8], ——— Re=1410; 2 [6], ----- Rey=5480; + [7], — Rg=7900; (h) 1-Rg, 2- Rey ,
3-Rg, 4-Re,5-0.003 vi/v; *-[3], »-[6], - [8].
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Fig. 1h shows the monotonic increase of the boundary layer parame;erslgabv, Re;, = Uod /v,
Reg=Up0/ v Re=u,d/ v with the opon-dimensional distance,R&Jox/ v. Here 9, = _|’ , (1-U/Ug)dy is
the displacement thicknes§, = _|’0 (U/Ux)(1-U/Uydy is the momentum thickness. The maximum
value ofv; along the vertical cross-section also increases in the paositiirection (Fig. 1h). These
findings are confirmed by the measurements of Poreh and Cermak (1964) discussed in the Introduction
They can also be seen in Fig. 1a,b where the vertical profileg afe plotted by lines 1-4; the
region corresponding to the parameters of experiments (Poreh and Cermak 1964 eGatsbdd4)
is between lines 2 (Re=2685) and 3 (Re =5480).

3. Modeling of the concentration field dynamics

Applying the Eulerian approach can accurately solve diffusion problems in a egal fkbw of
the atmospheric boundary layer. TBeequation in the two-dimensional case is,
oC  ,,0C_ d7~0C 0[~0C
—+V—=—=|D—- +—|D— -
Vo oy 0X[ ox md]} f?y[ ay D/C@
where D is the molecular diffusion coefficient. For deriving the closed form of the Eq. (7) the
turbulent contaminant flux vector componentsc<and <vc> are to be defined.

(7)

3.1. Transport equation for the mean contaminant concentration

For the considered problem of passive scalar diffusion from the continuously working near-ground
line source of assigned productiviy (Fackrell and Robins 1982, Poreh and Cermak 1964) in the
steady turbulent flow of the near-ground layer the Eq. (7) can be written in the boundary-layer
approximation as

oc  ,,0C_odr.ocC

" Voy = 3oy v ®
everywhere except in the immediate vicinity of the source. Fackrell and Robins (1982), Poreh and
Cermak (1964) noted that it is difficult to obtain reliable experimental data for concentration field
charactestics rear the source.dllowing the measements of Fackrell and Robins (1982), Poreh
and Cermak (1964) the vertical butent flux <vc> is parameterized by the gradient model with the
turbulent diffusion coefficienD+ (= K,) which is expressed in terms of the turbulent viscosity coefficient
and the turbulent Schmidt number; :

_D/Clj: DT(0C/0y), DT = VT/GT (9)

Taking into account (9) the Eq. (8) becomes

oC_ \,0C _ 97y VipC
U +Vf?y_0y[ﬁb+aTDr?y} (10)

whereo=v/D is the molecular Schmidt number. Distributions of the mean velocity vector components
U (xy), V(x,y) and the turbulent viscosity coefficient(x, y) are defined according to Eqgs. (2)-(6).
Similar to Eq. (10) has been used by Nieuwstadt and van Ulden (1978) to obtain mean concentratior
profiles in the near-ground layer which were in good agreement with the experimental data. The
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vertical profiles of mean wind and the vertical bulent diffusion coefficient ere defined as
functions of only of the vertical coordinate by using the similarity theory relations for the near-
ground layer in the form obtained in the 1968 Kansas experiment.

The continuous near-ground passive-scalar line source of the st@@hgthted at the point=x*
is determined by the contaminant conservation condition across the vertical section of the boundary
layer. Integrating the Eq. (10) with respectxtandy and taking into account the continuity Eq. (1)
and expressions (5), (9) for the turbulent viscosity and diffusion coefficients with the boundary conditions
for E, € aty =0, we have:

o x,[] C C a
Jo (€U~ (U oy =[ (D DJE%%M —D%y%yzo—(cwym%dx

AssumingC=0C/oy=0 aty — o (the upper free-stream boundary) aBd 0 at x=x; (the
region upstream from the source), the following integral equality is obtained,

[o(CU)=dy = D%CE] dez_[:fq(x)dx (11)
]

Here the functiomg(x) is a second-degree parabola in the form,
A0 = Ag+ A(x—X) —Ay(x—x)’ (12)

for (x —Ax < x< x* + Ax") whereAx" is the half-width of the region through which the contaminant of
the strengthQ is emitted into the boundary layer. Here the emission of the contaminant from the
near-ground line source is assumed to be laminar and the range of parameters is the same as in tl
experiments of Poreh and Cermak (1964), i.e., the Reynolds numbef=3s3Qé (2nc) ~ 10 where
n. is the dynamic contaminant viscosity.

The unknown coefficients in Eq. (12) are found from the conditgfrs- Ax') = q(xX' + Ax) =0
and from the integral relation (11) whichxat x* — Ax* andx,> x* + Ax* has the form

[7(CU)oy, dy=[ " o(¥dx=Q (13)

The boundary conditions for the diffusion Eq. (b0,
a) atx=x —Ax* (input data point in front of the sourc&= 0;
b) aty —» o (the upper free-stream boundar{)= O;
c)aty=0:

0C _ _a(x) _ 3Q[mx=X[f . ‘
=5 _4Ax*[DAx*D 1}s0 (at X' — AX X< X+ AX) (14)

J.10y = 0 (at the solid surface fo& x* + Ax).

The Eg. (10) together with the above boundary conditions is solved numerically using the implicit
three-point difference scheme. A numbeixaitepsin the interval X' — AX' < x < X'+ AX’) is chosen
so that the integral condition (13) is computed with the given precision at the vertical cross-section
of the boundary layek,= X"+ Ax". The choice of the step forx>x"+ Ax" is based on the need to
obtain a grid-independent solution in the computational domain which includes the range of coordinates
of Poreh and Cermak’s experiments and on the necessity to evaluate the condition (13) with the
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given tolerance fok,> x* + Ax'.
3.2. Results of computation of the concentration field characteristics

Computational results (lines) are compared in Figs. 2-4 with the measurements data [3] (markers)
for the external flow velocityJ, =9 ft/s (=274 cm/s) for two series of experiments. In the Series |
(S.I) the continuous line source of the stren@lkr 0.66 mg/(cnB) is placed on the underlying
surface at the distancé=33.5 ft (= 1021 cm) from the tbulent boundary layer origin, and in the
Series Il (S.1)Q = 0.55 mg/(cn8) and the distance ¥ =15.5ft (=472 cm). The limited length of
the measuring section of the experimental set-up (Poreh and Cermak 1964) did not permit to perform
measurements over the entire extension of the contaminant jet evolution for a fixed sotitre pos
The experimental data exists for the intermediate region of the scalar jet in the Series | and for the
final zone in the Series Il. Itllaws to establish some limit laws comfied by the results of the

e
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Fig. 2 Profiles of the mean concentration in different regions from a source: in the intermediate zon€ - S.I (
=3ft-1, & ; xX¢=51ft-2, + ;xX°=91ft-3, o ; x*=15 ft-4, O ); in the transitional zone - S.|
(x*=235ft-5), S.I g=15ft-6 ;X =23,5ft-7) ; in the final zone - S.IKf=35.5t-8,¢ ; xX*=

435ft-9,m).
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Fig. 3 Dependence of concentration field characteristics on the coorginate

(@) parameterf (lines & -weeeeeee O & - & show the region of mean values ¢
corresponding to those obtained |n [3] from the measured points(fprand A (x));

(b) thicknessd (lines 1,% are without the contaminant source; S.I, a - S.1l') and half-heighf (2,
3,<, #) in inches versus the distankén feet form the boundary layer origin;

(©) rat|05 1A

(d) half- helght}\ in cm (lines and markers 1) and the valu€gafUo in mg/(cnts) (lines and markers 2)
versus the distancein cm from the source.

Sl------- computation,> measurement; S.Il———  computatios,- measurement.

present paper.

Fig. 2 shows the dependence of the concentration pra@lé€ma.x on the non-dimensional
coordinatey/ A , whereCxis the maximum value of the mean concentration on the suXasethe
conventional thickness of the scalar jet defined by the valyeider the conditio (x, y = A) / Crax= 0.5.

The computed profiles demonstrate the developing character of the concentration field. The diffusing
contaminant jet is submerged entirely within the boundary layer. Its height is larger than the viscous sub-
layer thicknessA>>v/u,). The parameteB=L,/Ls (La=A/(dA/dX), Ls=9d/(dd/dX) characterizes a

measure of the relative growth rates of the jet and the boundary layer thickness. This parameter is
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small (Fig. 3a) in the near-source region where the diffusion of the passive scalar depends weakly
on the growth rate of the boundary layer. Growth of the paranm@teith increase of the
normalized distanc&®/ d,, from the sourcext=x-x, d,, is defined in (Poreh and Cermak 1964))

is followed by the transformation of the concentration field (lines 1-7 in Fig. 2). Predicted behavior
of Bis in good agreement with the experimentally based conclusions of Poreh and Cermak (1964)
about the dependence of diffusion field characteristics on the location of the source and on the
distance from it, in particular about variation of the turbulent diffusion coeffidert vi/ or not

only with the height but also with the distance from the source. When the par@hmeterases, the
contaminant jet evolution region approximately models the atmospheric diffusion from a near-
ground source in the absence of buoyanage® It should be noted that the diffusion model
reproduces correct power dependencies for growth of the scalar jet heigth the distancex¢

from the source (Fig. 3b-d) as does the model (2)-(6) of the velocity field for the boundary layer
thicknessd (Fig. 3b). The rate of increase of the vertical jet size near the source is larger than the
growth rate of the boundary layer thickness (Fig. 3b,c).

O
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Fig. 4 Profiles of the mean concentration versus the vertical coordinate normalized by the boundary layer thickness
SExC=3ft-1,O;x=9ft-3, A ;xX=15ft-4,[J; xX=235ft- 6;x=35.5ft - 8.
S:xC=3ft-2;xC=9ft-5x=15ft-7;xC=23.5ft - 9;x°=35.5ft - 10,4; x*=43.5f - 11, 1.

T T g [ v
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In the final region the growth rates of vertical sizes of the boundary layer and the scalar jet tend
to one power dependence so the param@tezaches the asymptotic value which is equal to one
(Fig. 3a) and the ratid /8 asymptotically goes to 0.64 (Fig. 3c). Lines 1 in Fig. 3c and all lines in
other Figures are obtained @t= 0.90 and curves 2 in Fig. 3c are computedrat 0.72. For large
values of parameters/d,, the dependence of diffusion field charactiics on the saue location
disappears gradually, and concentration profiles become approximately similar (lines 8, 9 in Fig. 2;
lines 10, 11 in Fig. 4). It should be noted here that the developing boundary layer is not entirely
self-similar. In particular, the boundary layer thickndsznd the typical length scale of the viscous
sub-layer (v/u,) are described by different power dependencies. drnerefore, characteristics of
the passive-scalar concentration field vary together with the velocity field characteristics.

Transformation of the contaminant jet concentration field with changing the pargfhéiem
small values up to the asymptotic value ®f 1 is followed by the decrease of the maximum
concentration on the underlying surface. Computational results show (Fig. 3d) that the functions
Cmax (X¢) and A (x¢) are not described by single power dependencies on the distance from the source
at different values ok®. It corresponds to the experimental observations discudsme.alf the
turbulent diffusion coefficient in the Eq. (10) depends only on the vertical coordinate (Kurbatskii
1993), then the predictéd, .« behavior does not agree with the measurements data [3] given in Fig. 3d.

5. Conclusions

Modeling of the turbulent diffusion of passive contaminant in the boundary layer on a plane
smooth underlying surface from a near-ground line source of the assigned strength has been carrie
out. The developed turbulent transport model includes the turbulent transport equations for the mear
velocity, the turbulence kinetic energy, dissipation and mean concentration. The model reproduces
charactestics of both the velocity field and the concentration field whdoh in good agreement
with the experimental data and the results of direct numerical simulations. The experimental observations
about the dependence of diffusion field charasties on the distance from the contaminant source
have been confirmed. It is found that the turbulent diffusion coefficient is didnnaof both the
vertical coordinate and the distance downstream from the source. Power laws of variation of the
typical vertical jet size and the maximum concentration on the underlying surface are not the same
in different regions of the contaminant jet, which is consistent with the measurements of Poreh and
Cermak (1964).
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