
Wind and Structures, Vol. 3, No. 1 (2000) 1-10 1

ivariate
ittent

entation
re time

ndency
ccuracy
ents the
wind

w
ressure
r 1997,
spectral
ulating
resenting
end on:
umber

entation
ulation
andom
e main
ns of

rated by

DOI: http://dx.doi.org/10.12989/was.2000.3.1.001
Random number sensitivity in simulation of wind loads
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Abstract. Recently, an efficient and practical method has been developed for the generation of un
non-Gaussian wind pressure time histories on low building roofs; this methodology requires interm
exponential random numbers for the simulation. On the other hand, the conventional spectral repres
scheme with random phase is found suitable for the generation of univariate Gaussian wind pressu
histories on low building roofs; this simulation scheme requires uniform random numbers. The depe
of these simulation methodologies on the random number generator is one of the items affecting the a
of the simultion result; therefore, an attempt has been made to investigate the issue. This note pres
observed sensitivity of random number sets in repetitive simulations of Gaussian and non-Gaussian 
pressures.

Key words: Gaussian; non-Gaussian; random number; simulation; wind loads.

1. Introduction

Recently, based on the characteristics of several wind tunnel measured pressures on various lo
building roofs, a general approach for representing Gaussian as well as non-Gaussian wind p
characteristics using FFT (Fast Fourier Transform) algorithm has been suggested (Suresh Kuma
1999, Suresh Kumar and Stathopoulos 1997, 1999). This approach uses the conventional 
representation scheme with random phase (Rice 1954, Shinozuka and Deodatis 1991) for sim
Gaussian pressures, and the spectral representation scheme with a new stochastic model rep
phase for simulating non-Gaussian pressures. The accuracy of these simulation methods dep
(1) the approximate representation of the power spectral density of the time series, (2) the n
of samples considered in analysis, (3) the random number generator and (4) the precision of the
numerical technique (Grigoriu 1986). The errors in simulation results caused by approximate repres
of the spectrum have already been evaluated (Grigoriu 1986). Since the above mentioned sim
methods are dependent on random numbers, it is of interest to study the influence of the r
number generator on the simulation results. This note presents the results of a study with th
objective to investigate the sensitivity of random number data sets in repetitive simulatio
Gaussian and non-Gaussian wind pressures.

2. Simulation methodology

Univariate Gaussian and non-Gaussian zero-mean wind pressure time series can be gene
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inverting the properly selected Fourier coefficients with the help of the FFT algorithm. The Dis
Fourier Transform (DFT) equation (Suresh Kumar 1997, Suresh Kumar and Stathopoulos 
used for such simulation is described by:

(1)

Where, Zt corresponds to time series, n corresponds to time series length,  corresponds to Fou
amplitude, φk  corresponds to Fourier phase and the tem 2πk/n is the integer multiple of the
fundamental frequency 2π/n known as Fourier frequency. The Fourier amplitude required for 
simulation is taken as the amplitude part of the DFT of the known (measured or target) s
Gaussian or non-Gaussian time series (Xt) which is in the form

(2)

By using the amplitude of the specified sample, the method ensures the reproduction 
various second order characteristics of the given sample. For convenience, the zero frequency co
of the amplitude part(mean) is kept zero in all the simulations. Later, the mean of the corresp
time series can be added separately to the simulated zero-mean time series. The phase pa
Fourier coefficient of a Gaussian time series can be represented by independent uniform r
numbers (u) ranging between -π and π (Rice 1954, Shinozuka and Deodatis 1991):

φk = 0, k = 0

              uk , 1 ≤ k ≤

                                                   −un-k, +1 ≤ k ≤ n-1 (3)

However, in the case of non-Gaussian time series, the phase part cannot be represe
independent uniform random numbers. After an extensive investigation, the Exponential Peak Gen
(EPG) model is proposed for the generation of skeleton time series from which the required
can be drawn (Suresh Kumar 1997, 1999, Suresh Kumar and Stathopoulos 1997, 1999). Th
model takes the form.

Yt = 0 , with probability b 
                     et , with probablity 1− b   0 ≤ b < 1 (4)

Where, Yt corresponds to skeleton time series, b is the probability parameter which controls th
intensity as well as the frequency of spikes in the skeleton time series, and et is the exponential
random number. The skeleton time series, Yt , consists of intermittent exponential random numbe
The Fourier phase (φk) required for the non-Gaussian simulation can be obtained by taking
phase part of the DFT of skeleton time series (Yt) by

Zt n-1 I k
k 0=

n 1–

∑ e
iφkei2πkt n⁄ , t 0 1 ……, ,= n 1–=

I k

Ik Xt e
i2πkt n⁄–

t 0=

n 1–

∑=

n
2
---

n
2
---
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Result of the mathematical operation arctan representing four-quadrant inverse tangent will lie
interval −π to π which is the same for phase angles of a time series. This is in contrast wit
result of simple inverse tangent which is limited to the interval −π/2 to π/2 (MATLAB 1992).

A new parametric estimation procedure has been introduced in this study; the computat
parameter b is accomplished by minimizing the sum of the squared errors in higher order sta
such as skewness and kurtosis (Suresh Kumar 1997, 1999, Suresh Kumar and Stathopoulo
1999). Further, stationarity of the simulated non-Gaussian time series is justified for b ≤ 0.9; values
of b > 0.9 are not obtained even when modeling highly non-Gaussian pressure fluctuations (
Kumar 1997, Suresh Kumar and Stathopoulos 1999). Simplicity and effectiveness of
methodology have been demonstrated using several wind tunnel measured pressures on low building
roofs (Suresh Kumar 1997, 1999, Suresh Kumar and Stathopoulos 1997, 1999).

3. Sensitivity of random numbers

Wind tunnel measured Gaussian and non-Gaussian pressure time series (n = 8192) on a monoslope
roof of a low building have been used for the demonstration of random number sensitiv
corresponding simulations. Fig. 1 shows the selected time histories and their statistics. Appe
as well as statistics reveals that sample S22 is Gaussian and sample S1 is non-Gaussian. N
that sample S1 is negatively skewed due to the presence of many negatively going spikes;

φk arc

Yt 2πkt n⁄( )sin
t 0=

n 1–

∑–

Yt 2πkt n⁄( )cos
t 0=

n 1–

∑
-------------------------------------------------tan=

Fig. 1 Measured (Target) pressure time series on a monoslope roof
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typical for the case of non-Gaussian pressures on roofs (Suresh Kumar 1997).
In order to show the sensitivity of random numbers in repetitive simulations, the sample

histories are reconstructed using the previously described simulation methodology. In the foll
Gaussian simulations, sample S22 is reconstructed using the amplitude part of the DFT o
target counterpart (Eq. 2) and phase represented by uniform random numbers (Eq. 3). On th
hand, in non-Gaussian simulations, sample S1 is reconstructed using the amplitude part of the DFT
of their target counterpart (Eq. 2) and phase generated using the EPG model (Eqs. 4 and 5).

3.1. Gaussian simulations

For the simulation of Gaussian time series, uniform random numbers (u) ranging between −π and
π are required to represent the phase part of the Fourier coefficients. Though various algorith
available and listed by Knuth (1981) good random number generators are hard to find. Pa
Miller (1988) presented the inadequacy of the many available random number generators alon
the discussion of practical and theoretical issues concerning the design, implementation and use o
good, minimal standard random number generator that will port to virtually all systems. They 
that the linear congruential generator with proper parmetric values is good in terms of accomplishing
full periodicity, randomness and easy implementation. On this basis, this generator is selected
the random number generation in this study. Three quantities, i.e., a multiplier, a modulus and an
initial seed value are required to generate uniform random numbers by using this algorithm. The
value of multiplier and modulus equal to 75 and 231−1 respectively,  which provide full period
randomness and easy implementation capabilities to the generator (Park and Miller 1988), are used
in this study. The initial seed value is adopted to be 931316785, the value set by MATLAB (
at the start of any simulation. The basic algorithm is

u1 = seed/(231−1),
u = −π + (2π * u1),
seed = (75 * seed) mod(231−1),

where, u1 corresponds to random number whose value is between 0 and 1 and u corresponds to
random number whose value is between −π and π. Subsequent sets of random numbers are expe
to be different due to the change of initial seed value. Therefore, an attempt has been m
examine the sensitivity of uniform random number sequences on simulation results.

For each simulation (n = 8192), 4096 uniform random numbers ranging between −π and π are
required (see Eq. 3). One hundred distinct blocks of 4096 uniform random numbers each hav
generated and the variation of their first four moments (mean, variance, skewness, and kurtosis)
displayed in Fig. 2 using boxplot. Boxplot produces a box and whisker for each data set (MAT
1994). The box has lines at the lower quartile, median and upper quartile values. The whisk
lines extending from each end of the box to show the extend of the rest of the data. Mea
skewness of the random number sets are supposed to be zero (see Appendix - A); h
negligible variations up to ±5% are noted. Variations in variance and kurtosis values of the ran
number sets are also shown in the same figure after they have been normalized with respect
corresponding theoretical values provided in Appendix - A. Again, negligible variations up to ±5%
have been observed. Simultaneously, the same 100 blocks of random numbers have been
simulate 100 corresponding Gaussian time histories using the amplitude part of the sample S
3 presents the variation of the first four moments of the simulated time histories in a boxplot f
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Note that mean and variance of the simulated time histories are always equal to the corresp
target values of −0.69 and 0.02 respectively. This is due to the employment of the same amp
part of the DFT of the target signal S22 in all simulations. Further, it is clear from the theory
the different random number sets (phase part) do not have an effect on the simulated mea
variances; on the other hand, they do have an effect on skewness and kurtosis values of the s
time histories (Suresh Kumar 1997). Based on the Gaussian assumption, skewness and ku
values of the simulated time histories are supposed to be zero and three respectively; howe
to the varying statistical properties of the random number sets, variations up to ±15% have been
observed. Furthermore, since many time histories are required for extreme value and fatigue
analysis, the average skewness and kurtosis values among many samples are expected to be
zero and three respectively. Overall, the performance of the used random number gene
satisfactory and the small variations noted in simulated skewness and kurtosis values 
neglected for practical applications.

Fig. 2 Variation of the first four moments of the uniform random number data sets

Fig. 3 Variation of the first four moments of the simulated time histories
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3.2. Non-Gaussian simulations

For the simulation of non-Gaussian time series, intermittent exponential random numbers (ψt) are
required. On the other hand, generation of exponential random numbers (et) is essential for the
generation of intermittent exponential random numbers. Many algorithms are currently available to
generate exponential random numbers (Clark and Holz 1960, Knuth 1981). For the present
logarithmic transformation of uniform random numbers if employed for the generation of expon
random numbers. This is the most widely used algorithm. The intermittent exponential ra
number sequence, controlled by the parameter b is generated using the following algorithm:

if (0 < u1(i) < b, ψt (i) = 0
if (b ≤  u1(i) ≤ 1), ψt (i) = log(u2(i))

where, u1 and u2 are two independent sets of uniform random numbers whose values are betw
and 1. ψt represents intermittent exponential random numbers whose upper limit is obviously
but its lower limit varies. Subsequent sets of intermittent exponential random numbers are expe
be different due to the change of initial seed value used in the generation of uniform ra
numbers. Therefore, an attempt has been made to examine the sensitivity of intermittent exponential
random number sets on simulation results.

For each simulation, 8192 intermittent exponential random numbers are required. One h
distinct sets of 8192 intermittent exponential random numbers each have been generated
b = 0.87 (the parameter estimated for sample S1). For each set, the first four moments (mean, v
skewness and kurtosis) have been computed and then normalized with respect to their corres
theoretical values estimated using the equations provided in Appendix - A. The variation of
normalized moments is displayed in Fig. 4 using boxplot. Clearly, the variation of the statistics is
higher than those in the case of uniform random numbers shown in Fig. 2. The mean, varian
skewness of  the sequences vary up to ±15%, while the kurtosis values vary up to ±25%. It is
suspected that high variation in statistics is due to the presence of very small values close to
some of the sets of uniform random numbers. This can change the statistics of the exponential 
numbers drastically since the logarithm of those values are high. Since this variation in statis

Fig. 4 Variation of the first four moments of the intermittent exponential random numbers
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suspected to be due to the transformation of uniform random numbers, other algorithms no
the transformation of uniform random numbers have been attempted. For instance, the alg
provided by Clark and Holz (1960) and some of the algorithms provided by Knuth (1981) 
applied but, no significant improvement over the present method was observed. On this ba
present method is used in this study. Simultaneously, the same 100 blocks of random numbe
been used to simulate 100 corresponding non-Gaussian time histories using the amplitude part o
the sample S1. Fig. 5 presents the variation of skewness and kurtosis of the simulated time h
in a boxplot format. Variations up to ±25% have been observed in both quantities and this h
variaiton is due to the highly varying statistical properties of the intermittent exponential ran
number sets shown in Fig. 4. On the other hand, the noted high variation in skewness and k
of the simulated time series can be reduced by averaging them for a number of samples. Mo
this scenario seems practical since several time histories are required for carrying out extrem
and fatigue analysis. A typical example provided in Fig. 6 shows the average skewness as 
kurtosis values against the number of simulations. The time histories previously simulated for 
have been used for this demonstration. For instance, the skewness value at the 50th num

Fig. 5 Variation of skewness and kurtosis values of the simulated time histories

Fig. 6 Variation of average skewness and kurtosis values with respect to number of simulations
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simulation represents the average skewness value of the first 50 simulated time histories. 
number of simulations increases, the average skewness as well as kurtosis stabilizes. Af
consecutive simulations, the target skewness and kurtosis are achieved within 5%. Overa
performance of the used random number generation is satisfactory. Nevertheless, further res
required to develop a good exponential random number generator that would produce indep
random number sets with stable statistics.

4. Conclusions

This note presents the observed sensitivity of random number generator in repetitive simulations
of Gaussian and non-Gaussian wind loads. This investigation employed (1) the conventional s
representation method using random phase for the digital generation of univariate Gaussia
pressure time histories, (2) the recently suggested simulation methodology for the digital gen
of univariate non-Gaussian wind pressure time histories, and (3) several wind tunnel measured p
on low building roofs. The results show that the performance of the uniform random numbe
generator used in Gaussian simulations is satisfactory. On the other hand, non-Gaussian sim
appear sensitive to the intermittent exponential random number data set produced by the used gerator;
however, the discrepancy in simulation results can be reduced by considering numerous samp
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Appendix - A:  Properties of random variables

Uniform Random Variable

Let U be a uniform random variable. The probability density function of U is  
    

(A.1)

The first four moments (mean, variance, skewness and kurtosis) of U are derived using the principles o
mathematical expectation (Papoulis 1984). The derived moments are

mean (U) = 0 (A.2)

Variance (U)= (A.3)

Skewness (U) = 0 (A.4)

Kurtosis (U) = 1.8 (A.5)

Intermittent Exponential Random Variable

The intermittent exponential random variable (Ψ ) required for EPG model has the form,

Ψ = IE (A.6)

where, I represents discrete random variable and E represents continuous exponential random variable. T
probability density function of I is

(A.7)

The probability density function of E is

fE(e) = λ exp (−λe), e> 0 (A.8)

where, the parameter λ governs the properties of this distribution. In the present study, λ = −1 is used which
directly generates negatively going spikes observed in non-Gaussian wind pressure time series on roo
the perviously discussed properties of I and E, the first four moments (mean, variance, skewness a
kurtosis) of Ψ are derived using the principles of mathematical expectation (Papoulis 1984). The de
moments are

mean (Ψ ) = µ = E (Ψ ) = (b−1) (A.9)

variance (Ψ ) = σ 2= E[Ψ −Ψ ) 2] = (1−b2) (A.10)

Skewness (A.11)

fU u( ) 1
2π
------ π u π≤ ≤–,=

π2

3
-----

Ψ( ) E Ψ Ψ–( )
3

[ ]
σ3

------------------------------ 2 b3 1–( )
1 b2–( )3 2⁄

-------------------------= =
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Kurtosis (A.12)

Since, I and E are independent and identically distributed (i.i.d.) sequences, theoretically, Ψ must also be and
i.i.d. sequence. Therefore, the values of Ψ at two different times are uncorrelated.

( Communicated by Chang-Koon Choi)

Ψ( )
E Ψ Ψ–( )

4
[ ]

σ4
------------------------------ 3 3 2b2– b4–( )

1 b2–( )2
-----------------------------------= =
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