Wind and Structures, Vol. 3, No. 1 (2000) 1-10 1
DOI: http://dx.doi.org/10.12989/was.2000.3.1.001

Random number sensitivity in simulation of wind loads

K. Suresh Kumar'

Centre for Building Studies, Concordia University, 1455, de Maisonneuve Blvd. W.,
Montreal, Quebec, Canada H3G 1M8

Abstract. Recently, an efficient and practical method has been developed for the generation of univariate
non-Gaussian wind pressure time histories on low building roofs; this methodology requires intermittent
exponential random numbers for the simulation. On the other hand, the conventional spectral representatior
scheme with random phase is found suitable for the generation of univariate Gaussian wind pressure time
histories on low building roofs; this simulation scheme requires uniform random numbers. The dependency
of these simulation methodologies on the random number generator is one of the items affecting the accurac
of the simultion result; therefore, an attempt has been made to investigate the issue. This note presents th
observed sensitivity of rmlom number sets in repetitive simulations of Gaussian and non-Gaussian wind
pressures.
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1. Introduction

Recently, based on the charadtes of several wind tunneheasured pressures on various low
building roofs, a general approach for representing Gaussian as well as non-Gaussian wind pressur
characteristics using FFT (Fast Fourier Transform) algorithm has been suggested (Suresh Kumar 1997
1999, Suresh Kumar and Stathopoulos 1997, 1999). This approach uses the conventional spectre
representation scheme with random phase (Rice 1954, Shinozuka and Deodatis 1991) for simulating
Gaussian pressures, and the spectral representation scheme with a new stochastic model representi
phase for simulating non-Gaussian pressures. The accuracy of these simulation methods depend o
(1) the approximate representation of the power spectral density of the time series, (2) the numbel
of samples considered in analysis, (3) the random number generator and (4) isienpoécthe
numerical technique (Grigoriu 1986). The errors in simulation results caused by approximate representatior
of the spectrum have already been evaluated (Grigoriu 1986). Since the above mentioned simulatior
methods are dependent on random numbers, it is of interest to study the influence of the random
number generator on the simulation results. This note presents the results of a study with the mair
objective to investigate the sensitivity of random number data sets in repetitive simulations of
Gaussian and non-Gaussian wind pressures.

2. Simulation methodology

Univariate Gaussian and non-Gaussian zero-mean wind pressure time series can be generated |
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inverting the properly selected Fourier coefficients with the help of the FFT algorithm. The Discrete
Fourier Transform (DFT) equation (Suresh Kumar 1997, Suresh Kumar and Stathopoulos 1997)
used for such simulation is described by:

n-1 : .

Z = n'lz Jefe?™ t=01, ... n—1 (1)

k=0
Where, Z; corresponds to time serigscorresponds to time series IengU‘i_,k corresponds to Fourier
amplitude, ¢ corresponds to Fourier phase and the temk/r2is the integer multiple of the
fundamental frequencyréh known as Fourier frequency. The Fourier amplitude required for this
simulation is taken as the amplitude part of the DFT of the known (measured or target) sample
Gaussian or non-Gaussian time serdg} \Which is in the form
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By using the amplitude of the specified sample, the method ensures the reproduction of the
various second order characteristics of the given sample. For convenience, the zero frequency componel
of the amplitude part(mean) is kept zero in all the simulations. Later, the mean of the corresponding
time series can be added separately to the simulated zero-mean time series. The phase part of tf
Fourier coefficient of a Gaussian time series can be represented by independent uniform randorr
numbers ) ranging betweenreand 1T (Rice 1954, Shinozuka and Deodatis 1991):
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However, in the case of non-Gaussian time series, the phase part cannot be represented b
independent uniform random numbers. After an extensive investigation, the Exponential Peak Generatior
(EPG) model is proposed for the generation of skeleton time series from which the required phase
can be drawn (Suresh Kumar 1997, 1999, Suresh Kumar and Stathopoulos 1997, 1999). The EPC
model takes the form.

Y;= 0 , with probabilityb
& , with probablity b O<b<1 4)

Where, Y; corresponds to skeleton time seribsis the probability parameter which controls the
intensity as well as the frequency of spikes in the skeleton time serieg Bnthe exponential
random number. The skeleton time seriés,consists of intermittent exponential random numbers.
The Fourier phaseg) required for the non-Gaussian simulation can be obtained by taking the
phase part of the DFT of skeleton time serigs lfy
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@ = arctan (5)
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Result of the mathematical operation arctan representing four-quadrant inverse tangent will lie in the
interval -t to 77 which is the same for phase angles of a time series. This is in contrast with the
result of simple inverse tangent which is limited to the interv#2 to 772 (MATLAB 1992).

A new parametric estimation procedure has been introduced in this study; the computation of
parameteb is accomplished by minimizing the sum of the squared errors in higher order statistics
such as skewness and kurtosis (Suresh Kumar 1997, 1999, Suresh Kumar and Stathopoulos 199
1999). Further, stationarity of the simulated non-Gaussian time series is justified ®09; values
of b>0.9 are not obtained even when modeling highly non-Gaussian pressure fluctuations (Suresh
Kumar 1997, Suresh Kumar and Stathopoulos 1999). Simplicity and effectiveness of this
methodology have been demonstrated using several wind tunnel measured pressurdsuibairigw
roofs (Suresh Kumar 1997, 1999, Suresh Kumar and Stathopoulos 1997, 1999).

3. Sensitivity of random numbers

Wind tunnel measured Gaussian and non-Gaussian pressure timenseB8492) on a monoslope
roof of a low building have been used for the demonstration of random number sensitivity in
corresponding simulations. Fig. 1 shows the selected time histories and their statistics. Appearance
as well as statistics reveals that sample S22 is Gaussian and sample S1 is non-Gaussian. Note al
that sample S1 is negatively skewed due to the presence of many negatively going spikes; this is
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Fig. 1 Measured (Target) pressure time series on a monoslope roof



4 K. Suresh Kumar

typical for the case of non-Gaussian pressures on roofs (Suresh Kumar 1997).

In order to show the sensitivity of random numbers in repetitive simulations, the sample time
histories are reconstructed using the previously described simulation methodology. In the following
Gaussian simulations, sample S22 is reconstructed using the amplitude part of the DFT of their
target counterpart (Eq. 2) and phase represented by uniform random numbers (Eq. 3). On the othe
hand, in non-Gaussian simulations, sample S1 is reconstructed using titadegart of the DFT
of their target counterpart (Eq. 2) and phase generated using the EPG model (Egs. 4 and 5).

3.1. Gaussian simulations

For the simulation of Gaussian time series, uniform random numljeranging betweer T and
1T are required to represent the phase part of the Fourier coefficients. Though various algorithms are
available and listed by Knuth (1981) good random number generators are hard to find. Park and
Miller (1988) presented the inadequacy of the many available random number generators along with
the discussion of practical and theoretical issuesaroing the design, implementation and use of a
good, minimal standard random number generator that will port to virtually all systems. They found
that the linear congruential generator with proper parmetric values is good in teacmonfplishing
full periodicity, randomness and easy implentation. On this basis, this generator is selected for
the random number generation in this study. Three quantities, i.e.|tiplievu a modulus and an
initial seed value are required to generate uniform random numbers bythisirg/gorithm. The
value of multiplier and modulus equal t6 @nd 2'-1 respectively, which provide full period,
randomness and easy implementation capabilities to the generator (Parklland 988), are used
in this study. The initial seed value is adopted to be 931316785, the value set by MATLAB (1992)
at the start of any simulation. The basic algorithm is

ul = seed/(3-1),
u=-m+ (2ir* ul),
seed = (7*seed) mod(2™-1),

where,ul corresponds to random number whose value is between 0 and Ul camgesponds to
random number whose value is betweegnand m Subsequent sets of random numbers are expected

to be different due to the change of initial seed value. Therefore, an attempt has been made tc
examine the sensitivity of uniform random number sequences on simulation results.

For each simukion (n=8192), 4096 uniform random numbers ranging betwegrand i are
required (see Eq. 3). One hundred distinct blocks of 4096 uniform random numbers each have beelr
generated and the vatitan of their first four momentg¢mean, variance, skewness, and kurtosis) is
displayed in Fig. 2 using boxplot. Boxplot produces a box and whisker for each data set (MATLAB
1994). The box has lines at the lower quartile, median and upper quartile values. The whiskers are
lines extending from each end of the box to show the extend of the rest of the data. Mean and
skewness of the random number sets are supposed to be zero (see Appendix - A); however
negligible variations up ta5% are noted. Variations in variance and kurtosis values of the random
number sets are also shown in the same figure after they have been normalized with respect to thei
corresponding theoretical values provided in Appendix - A. Again, negligible variations #5840
have been observed. Simultaneously, the same 100 blocks of random numbers have been used
simulate 100 corresponding Gaussian time histories using the amplitude part of the sample S22. Fig
3 presents the variation of the first four moments of the simulated time histories in a boxplot format.
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Fig. 2 Variation of the first four moments of the uniform random number data sets
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Fig. 3 Variation of the first four moments of the simulated time histories

Note that mean and variance of the simulated time histories are always equal to the corresponding
target values 0f0.69 and 0.02 respectively. This is due to the employment of the same amplitude
part of the DFT of the target signal S22 in all simulations. Further, it is clear from the theory that
the different random number sets (phase part) do not have an effect on the simulated means an
variances; on the other hand, they do have an effect on skewness and kurtosis values of the simulate
time histories (Suresh koar 1997). Based on the Gaussian assumption, skewness and kurtosis
values of the simulated time histories are supposed to be zero and three respectively; however, du
to the varying statistical properties of the random number sets, variations #15% have been
observed. Furthermore, since many timistdries are required for erime value and fatigue
analysis, the average skewness and kurtosis values among many samples are expected to be close
zero and three respectively. Overall, the performance of the used random number generator is
satisfactory and the small variations noted in simulated skewness and kurtosis values can be
neglected for practical applications.
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3.2. Non-Gaussian simulations

For the simulation of non-Gaussian time series, intermittent exponential random nugpars (
required. On the other hand, generation of exponential random nuna)eis ¢ssential for the
generation of interittent exponential random numbers. Many algorithams currently available to
generate exponential random numbers (Clark and Holz 1960, Knuth 1981). For the present study,
logarithmic transformation of uniform random numbers if employed for the generation of exponential
random numbers. This is the most widely used algorithm. The intermittent exponential random
number sequence, controlled by the parameisrgenerated using the following algorithm:

if (0 <ul()<b, % ()=0
if (b < ul() <1), g () = logu2())

where,ul andu2 are two independent sets of uniform random numbers whose values are between O
and 1.y, represents intermittent exponential random numbers whose upper limit is obviously zero
but its lower limit varies. Subsequent sets of intermittent exponential random numbers are expected tc
be different due to the change of initial seed value used in the generation of uniform random
numbers. Therefore, an attempt has been made to examine shiwigenf intermittent exponential
random number sets on simulation results.

For each simulation, 8192 intermittent exponential random numbers are required. One hundred
distinct sets of 8192 intermittent exponential random numbers each have been generated usinc
b=0.87 (the parameter estimated for sample S1). For each set, the first four moments (mean, variance
skewness and kurtosis) have been computed and then normalized with respect to their correspondin
theoretical values estimated using the equations provided in Appendix - A. The variation of their
normalized moments is displayed in Fig. 4 using boxplot. Clearly, the variation of tisécstas
higher than those in the case of uniform random numbers shown in Fig. 2. The mean, variance anc
skewness of the sequences vary upt16%, while the kurtosis values vary up #35%. It is
suspected that high variation in statistics is due to the presence of very small values close to zero ir
some of the sets of uniform random numbers. This can change the statistics of the exponential randor
numbers drastically since the logarithm of those values are high. Since this variation in statistics is
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Fig. 4 Variation of the first four moments of the intermittent exponential random numbers
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Fig. 5 Variation of skewness and kurtosis values of the simulated time histories

suspected to be due to the transformation of uniform random numbers, other algorithms not using
the transformation of uniform random numbers have been attempted. For instance, the algorithm
provided by Clark and Holz (1960) and some of the algorithms provided by Knuth (1981) were
applied but, no significant improvement over the present method was observed. On this basis, the
present method is used in this study. Simultaneously, the same 100 blocks of random numbers hav
been used to simulate 100 corresponding non-Gaussian isteeids using the amplitude part of

the sample S1. Fig. 5 presents the variation of skewness and kurtosis of the simulated time historie:
in a boxplot format. Variations up t625% have been observed in both quantities and this high
variaiton is due to the highly varying statistical properties of the intermittent exponential random
number sets shown in Fig. 4. On the other hand, the noted high variation in skewness and kurtosis
of the simulated time series can be reduced by averaging them for a number of samples. Moreover
this scenario seems practical since several time histories are required for carrying out extreme value
and fatigue analysis. A typical example provided in Fig. 6 shows the average skewness as well as
kurtosis values against the number of simulations. The time histories previously simulated for Fig. 5
have been used for this demonstration. For instance, the skewness value at the 50th number c
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Fig. 6 Variation of average skewness and kurtosis values with respect to number of simulations
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simulation represents the average skewness value of the first 50 simulated time histories. As the
number of simulations increases, the average skewness as well as kurtosis stabilizes. After 10(
consecutive simulations, the target skewness and kurtosis are achieved within 5%. Overall, the
performance of the used random number generation is satisfactory. Nevertheless, further research i
required to develop a good exponential random number generator that would produce independen
random number sets with stable statistics.

4. Conclusions

This note presents the observed sensitivity of random number generatortitiveepenulations

of Gaussian and non-Gaussian wind loads. This investigation employed (1) the conventional spectral
representation method using random phase for the digital generation of univariate Gaussian wind
pressure time histories, (2) the recently suggested simulation methodology for the digital generation
of univariate non-Gaussian wind pressure time histories, and (3) several wind tunnel measured pressure
on low building roofs. The results show that the penence of the uniform random number
generator used in Gaussian simulations is satisfactory. On the other hand, non-Gaussian simulation
appear sensitive to the intermittent exponential random number data set produced by thecustnt; gen
however, the discrepancy in simulation results can be reduced by considering numerous samples.
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Appendix - A: Properties of random variables
Uniform Random Variable
Let U be a uniform random variable. The probability density functiot s
1
fu(u)y = =, —m<usm Al
o) = - (A1)
The first four moments (mean, variance, skewness and kurtosid)aoé derived using the principles of
mathematical expectation (Papoulis 1984). The derived moments are

mean (J)=0 (A.2)
Variance U)=%2 (A.3)
Skewness) =0 (A.4)
Kurtosis U) = 1.8 (A.5)

Intermittent Exponential Random Variable
The intermittent exponential random varial$#¢) fequired for EPG model has the form,
WY=IE (A.6)

where, | represents discrete random variable &tepresents continuous exponential random variable. The
probability density function of is

I | 0 1 (A7)
P d=1i) | b (1-b)
for 0<b<1

The probability density function d& is
fe(€) = A exp EAe), e>0 (A.8)

where, the parametey governs the properties of this distribution. In the present sfudy;1 is used which

directly generates negatively going spikes observed in non-Gaussian wind pressure time series on roofs. Fron
the perviously discussed properties lofand E, the first four moments (mean, variance, skewness and
kurtosis) of ¥ are derived using the principles of mathematical expectation (Papoulis 1984). The derived
moments are

mean ) = u=E (¥) = (b-1) (A.9)

variance ¢ ) = o’=E[¥-¥)? = (1-b?) (A.10)

E[(w-%)"] _ 2(6°-1)

3 3/2

SkewnesqW¥) = .
g (1-b%)

(A.11)
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— 4
E[(Y—¥)] _ 3(3—2p°-b"
04 (1 _ b2)2
Since,|l andE are independent and identically distributedd() sequences, theoretically must also be and
i.i.d. sequence. Therefore, the valuegtbét two different times are uncorrelated.

Kurtosis (¥) = (A.12)

( Communicated by Chang-Koon Choi
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