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1. Introduction 
 

In order to achieve an optimal performance of a 

construction, sandwich structures with different types of 

cores such as homogenious materials, FG materials, porous 

materials, honeycombs (Hatami-Marbini and Rohanifar 

2019) and reological fluids (Hasheminejad et al. 2013) can 

be used. Due to the remarkable mechnaical properties of 

metals and high thermal performance of ceramics, FG 

structures and FG-sandwich structures have attained wide 

acceptance in aerospace and many other industries. These 

types of composite structures are widely employed in 

aircraft and space vehicles and revolutionized the aerospace 

industry over 40 years ago, making aircrafts lighter, 

stronger and faster, and allowing them to carry more weight 

and improve fuel efficiency (Tounsi et al. 2013). 

Flutter phenomenon is one of the most important items 

need to be investigated in the design of aircrafts (Afshari 

and Torabi 2017a, Torabi et al. 2017b, Torabi et al. 2017) 

and long-span bridges (Han et al. 2015, Wang et al. 2016, 

Tang et al. 2017). Cantilever plates can be used to model 

many structures in mechanical, civil and aerospace 

engineering. As flight velocity of an aircraft rises, the self- 
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excited vibration of wing or tail fin will occur which is 

known as the flutter. As flutter can be dangerous to the 

aircraft safety, numerous researchers have studied the flutter 

characteristics for structures. Srinivasan and Babu (1985) 

used finite element method (FEM) for flutter analysis of 

quadrilateral plates and presented both critical dynamic 

pressure and flutter frequency for various boundary 

conditions. A shear deformable element was used by 

Chowdary et al. (1996) to investigate the supersonic flutter 

of composite skew plates. For different boundary conditions 

and fiber orientation, they studied effect of skew angle on 

the critical dynamic pressure. Using FEM, Singha and 

Ganapathi (2005) presented a parametric study on 

supersonic flutter behavior of laminated composite skew 

plates. For different boundary conditions, they studied 

effect of skew angle and fiber orientation on the critical 

aerodynamic pressure. Prakash and Ganapathi (2006) 

employed FEM and investigated influence of temperature 

on the supersonic flutter characteristics of FG flat panels. 

Singha and Mandal (2008) used isoparametric finite 

element formulation and studied supersonic flutter analysis 

of laminated composite plates and cylindrical panels. They 

investigated effects of different parameters on the 

supersonic flutter characteristics including curvature, 

laminate stacking sequence, air flow direction and boundary 

condition. Using FEM and quasi-steady aerodynamic theory, 

Kuo (2011) studied effect of variable fiber spacing on the 

supersonic flutter of rectangular composite plates. He 
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showed that flutter boundaries may be increased or 

decreased due to variable fiber spacing. Based on the FSDT 

for plate and local piston theory for aerodynamic pressure 

in supersonic flow, Meijer and Dala (2015) used a finite 

element structural model and developed a zeroth-order 

flutter prediction for cantilever plates. Sankar et al. (2015) 

used a higher-order structural theory and QUAD-8 shear 

flexible shell element and studied supersonic flutter 

behavior of doubly curved sandwich panels with carbon 

nanotube (CNT) reinforced face sheets. They studied effect 

of the volume fraction of the CNT, core-to-face sheet 

thickness, total thickness, aspect ratio, radius-to-thickness 

ratio and temperature on the flutter boundaries. Using FEM, 

Cunha-Filho et al. (2016) presented a numerical study on 

the flutter analysis of a three-layer sandwich rectangular 

plate. They studied the possibility of reducing the effects of 

the supersonic aeroelastic instability of plates using passive 

constrained viscoelastic layers. 

Using Galerkin method, some authors studied flutter 

analysis of structures; i.e., Navazi and Haddadpour (2011) 

studied nonlinear aeroelastic behavior of homogeneous and 

functionally graded two dimensional and three-dimensional 

flat plates under supersonic airflow. They showed that under 

real flight conditions and using coupled model, the type of 

instability is divergence. Based on the classical Love’s shell 

theory and the first-order piston theory for aerodynamic 

loading and also considering temperature-dependent 

properties, Haddadpour et al. (2008) and Mahmoudkhani et 

al. (2010) focused on supersonic aero-thermoelastic 

analysis of a functionally graded cylindrical and truncated 

conical shells, respectively. For the cylindrical shells they 

investigated effects of power-law index, internal pressure 

and temperature rise on the flutter boundaries and for the 

conical one they predicted the flutter boundaries for 

different values of semi-vertex cone angles, different 

temperature distributions, and different volume fraction 

indices. Kouchakzadeh et al. (2010) studied nonlinear 

aeroelasticity of a general laminated composite plate in 

supersonic airflow. They used the classical plate theory and 

the von-Karman nonlinear strains for structural modeling 

and also linear piston theory for aerodynamic modeling and 

studied effects of in-plane force, static pressure differential, 

fiber orientation and aerodynamic damping on the 

aeroelastic characteristics of the plate. They showed that the 

fiber orientation has significant effect on dynamic behavior 

of the plate. Vedeneev focused on the single mode flutter 

analysis which happens at low supersonic speeds. He 

presented a comprehensive numerical solution of single 

mode flutter (Vedeneev 2012). As he employed Euler-

Bernoulli beam theory, accuracy of his results were limit to 

panels of high aspect ratios. In another work, he 

investigated effect of damping on single mode panel flutter 

of panels at low supersonic speeds (Vedeneev 2013). He 

showed that for typical structural, damping levels single 

mode flutter is not always avoidable. Moreover, for some 

conditions damping level necessary to suppress flutter is too 

high and cannot be achieved by the structure itself. He and 

his coworkers (2010) presented an experimental study on 

single mode flutter of panels in supersonic gas flow. Using 

von Karman nonlinear strain–displacement relations, 

Hosseini et al. (2011) studied nonlinear analysis of 

functionally graded curved panels under high temperature 

supersonic gas flows. They investigated effects of volume 

fraction index, curved panel height-rise, and aerodynamic 

pressure, in conjunction with the applied thermal loading, 

on the dynamical behavior of the panel. Hosseini and 

Fazelzadeh (2010) the aerothermoelastic post-critical and 

vibration characteristics of temperature-dependent 

functionally graded panels in a supersonic airflow. They 

investigated panel vibration responses through time history 

responses, state-space trajectories, frequency spectra and 

the bifurcation diagrams of Poincaré maps. 

Using DQM, Torabi and afshari focused on vibration, 

supersonic flutter and aeroelastic optimization of cantilever 

trapezoidal moderately thick plates. They modeled the plate 

based on the FSDT and estimated aerodynamic pressure of 

external flow using the piston theory. Torabi and afshari 

(2016, 2017c) studied vibration analysis of cantilever 

trapezoidal thick plates of non-uniform thickness or 

uniform ones made of functionally graded materials. 

Afshari and Torabi (2017) presented a parametric study on 

flutter behavior of cantilever trapezoidal functionally 

graded sandwich plates. Torabi et al. (2017) studied 

vibration and supersonic flutter analysis of cantilever 

trapezoidal honeycomb sandwich plates. Torabi and afshari 

(2017a, b) used particle swarm optimization (PSO) and 

found the best configuration of the cantilever trapezoidal 

thick plates of non-uniform thickness or uniform ones made 

of FG face sheets and homogeneous core which leads to 

maximum value of the critical aerodynamic pressure. 

Ghorbanpour Arani et al. (2019a, b) used third order shear 

deformation theory (TSDT) and studied free vibration and 

flutter analysis of laminated functionally graded carbon 

nanotube (CNT) reinforced cylindrical panels under yawed 

supersonic flow. They studied effect of geometrical 

parameters, volume fraction and distribution of CNTs and 

yaw angle on the natural frequencies, critical speed and 

flutter frequency. 

In this paper, supersonic flutter analysis of cantilever 

sandwich plates with non-symmetric FG face sheets is 

presented. The plate is modeled using the FSDT and 

aerodynamic pressure is estimated based on the linear 

piston theory for a desired yaw angle. Effect of different 

parameters on the variation of the critical speed versus yaw 

angle are investigated including aspect ratio, total thickness, 

relative thickness of the core and face sheets and power law 

indices. 

 

 

2. Governing equations 
 

As depicted in Fig. 1, a Cantilever plate clamped at y=0 

and free at other edges is considered. It is assumed that the 

plate is exposed to a compressible supersonic flow of 

density ρ∞, velocity U∞ and yaw angle θ∞ created between 

the fluid flow direction and x axis. The plate is considered 

to be composed of a homogeneous ceramic core and two 

non-symmetric FG face sheets which their properties vary 

from metal-rich layers to interior ceramic-rich ones 

according to two different power law functions. Thus, 
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volume fraction of the ceramic (V) can be considered as 
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where p and q are power law indices. A sample property of 

the plate (P) can be presented as 

     m c mP z P P P V z    (2) 

in which subscripts ''c'' and ''m'' indicate corresponding 

properties in ceramic and metal, respectively. It should be 

noticed that usually in FG-structures Poisson's ratio (ν) is 

considered to be constant. 

By introducing following dimensionless parameters 

1 2

1 2

2 22
1 1

z zz

h h h
         (3) 

Eq. (1) can be written as 
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(4) 

and Eq. (2) can be written for elastic modulus (E) and 

density (ρ) as 
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The distance of the neutral axis from the mid-plane of 

the plate can be calculated as (Eltaher et al. 2013) 
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which can be written in the following dimensionless form 
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According to the Reissner-Mindlin plate theory, the 

displacement field is considered as follows (Mindlin 1951) 

 

Fig. 1 Non-symmetric functionally graded sandwich 

plate in a compressible supersonic flow 
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(9) 

where uz, vz and wz show the components of displacement 

along x, y and z directions, respectively; u, v and w indicate 

corresponding components of displacement on the neutral 

axis (z=zn) and ψx and ψy are rotations about y and x axes, 

respectively. Components of strain in plate can be stated as 
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(10) 

Furthermore, by neglecting σz in comparison with σx 

and σy in Hook's laws, components of stress can be stated as 
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in which k=(5+5υ)/(6+5υ) is shear correction factor 

(Kaneko 1975). 

According to the Hamilton's principle, considering δ as 

variation operator, t as time and [t1,t2] as a desired time 

interval, the set of governing equations and boundary 

conditions can be derived using following relation 

 
2
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where T, U and Wext are kinetic energy, strain energy and 

work done by external forces, respectively. These 

parameters are calculated as 
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in which V is volume of the plate, S is area of the plate at 

the middle surface and f is external force per unit area. By 

substituting Eqs. (9), (10) and (13) into Eq. (12), the set of 

governing equations can be derived as 
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(14) 

and boundary conditions can be stated as follow 
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where components of stress resultant and inertia are defined 

as 
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Using Eqs. (11) and (16) one can write 
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in which 
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For flutter analysis, the external force per unit area is 

created by the aerodynamic load. For the Mach numbers in 

the range of M∞>1.7, this load is approximately evaluated 

by the supersonic piston theory (Grover et al. 2016) 

cos sin
w w w

f
x y t

      

   
    

   
 (19) 

in which ξ∞ and μ∞ are the aerodynamic pressure and 

damping parameters, respectively; these parameters are 

presented as 
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As the aerodynamic damping term in Eq. (19) always 

stabilizes the flutter boundaries (Shin et al. 2006), to study 

the aeroelastic characteristics of supersonic plate, the 

aerodynamic load without the aerodynamic damping is used 

to derive the flutter equation of the supersonic plate (Shin et 

al. 2006). Thus, substituting Eqs. (17) and (19) into the Eq. 

(14) and neglecting aerodynamic damping, the set of 

governing equations can be stated as 
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in which υ2=(1+υ)/2. For the cantilever plate depicted in Fig. 

1, boundary conditions can be considered as 
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and using Eqs. (17) and (22) boundary conditions at free 

edges can be written as 
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which can be simplified to 
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Using Eqs. (3), (5), (16) and (18), following relations 

can be presented 
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where equivalent forms of rigidity and inertia of a pure 

metallic plate are defined as 
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and f0-g2 are coefficients defined as 
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Using dimensionless variables ζ=x/a and η=y/b and 

using the method of separation of variables as 
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where ω is an eigen value, the set of governing Eq. (21) can 

be rewritten as 
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where following dimensionless parameters are defined 
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in which Us is the velocity of sound. Also dimensionless 

form of boundary conditions can be stated as 
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3. Differential quadrature method 
 

Values of function F(ζ,η) at N×M pre-selected grid of 

points can be considered as 
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According to the differential quadrature rules, all 

derivatives of the function can be approximated by means 

of weighted linear sum of the function values at the pre-

selected grid of points as 
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(33) 

where A(ζ), B(ζ), A(η) and B(η) are the weighting coefficients 

associated with the first and second order derivatives in ζ 

and η directions, respectively. These matrices for the first-

order derivatives are given as (Bert and Malik 1996) 

462



 

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics 

 

 

 
 

 
 

1
,

1

1

, , 1, 2,3,..., ;

1
, 1,2,3,...,

N

i k

k
k i n

N

n k
in k

k n

N

k i k
k i

i n N i n

A

i n N



 

 

 














 

  


  
 








 

 

 

 
 

 
 

1
,

1

1

, , 1, 2,3,..., ;

1
, 1,2,3,...,

M

j k

k
k j m

M

m k
jm k

k m

M

k j k
k j

j m M j m

A

j m M



 

 

 














 

  


  
 








 

(34) 

and of second-order derivatives are extracted from the 

following relations 

           
B A A B A A

     
   (35) 

Eq. (37) can be written in the following matrix form 
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in which superscript T indicates transpose operator. 

For a matrix  
N M

F


, an equivalent column vector 

 
1NM

F


 can be defined as (Torabi and Afshari 2017a) 

 1v ijF F v j N i     (37) 

Using this technique, multiple of three matrices as 

   a F b  can be replaced by      
T

b a F ; in which 

⊗ indicates the Kronecker product (Torabi and Afshari 

2017a). Therefore, Eq. (40) can be written as 
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(38) 

where I(ζ) and I(η) indicate the identity matrices of order N 

and M, respectively. 

In addition to number of grid points, distribution of 

them affects convergence of solution. A well-accepted set of 

the grid points is the Gauss–Lobatto–Chebyshev points 

given for interval [0,1] as (Bert and Malik 1996) 
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4. DQ analogue 
 

Using DQ rules, the set of governing differential Eq. 

(29) is transformed to the following form 

     2K s M s  (40) 

where [K] and [M] are stiffness and mass matrices which 

are presented in details in Appendix A. Also in a similar 

manner boundary conditions (31) can be written using DQ 

rules as 

    0T u   (41) 

in which matrix [T] is presented in details in Appendix B. 

The grid points can be separated into two sets: boundary 

points which are located at the four edges of the plate and 

domain ones which are other internal points. By neglecting 

satisfying the Eq. (40) at the boundary points, this equation 

can be written as (Du et al. 1994) 

   2K s M s        (42) 

where bar sign implies the corresponding non-square matrix. 

Eqs. (41) and (42) may be rearranged and partitioned in 

order to separate the boundary (b) and domain (d) points as 

follows 

   

    2

d bd b

d bd b

K s K s

M s M s

      

       

 (43a) 

         0
d bd b

T s T s 

 

(43b) 

Substituting Eq. (43(b)) into Eq. (43(a)) leads to the 

following eigen value equation 

     2

t td d
K s M s  (44) 

in which 

 

 

Table 1 Mechanical properties of the materials used in the 

FG sandwich plate (Hosseini-Hashemi et al. 2011) 

Material 
Properties  

E (GPa) ρ (kg/m3) υ 

Aluminum (Al) Metal 70 2702 0.3 

Alumina (Al2O3) Ceramic 380 3800 0.3 
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 (45) 

It should be noted that the eigen values achieved using 

Eq. (44) are complex numbers. Non-dimensional 

frequencies (Ω) are defined as imaginary part of eigen 

values Ω=Im(λ) and the real part of eigen values specify 

stability or instability of oscillation. 

 

 

5. Numerical results 
 

A numerical investigation was presented in previous 

sections for supersonic flutter analysis of non-symmetric 

FG sandwich plates. In this section, numerical examples are 

presented for the presented solution. Unless mentioned 

otherwise, numerical results are reported for a functionally 

graded sandwich plate composed of aluminum as metal and 

alumina as ceramic which their mechanical properties are 

presented in Table 1. 

At first, convergence and accuracy of the presented 

numerical solution should be tested. For this purpose, 

consider a sandwich plate of φ=2, γ=0.02, ξ1=-0.6, ξ2=0.8, 

p=0.5 and q=1.5 exposed to a supersonic flow of ξ*
∞=2×10-

5, M∞=3, and θ∞=15∘. Effect of the number of grid points 

(N=M) on the values of the first four dimensionless 

frequencies of the plate is presented in Table 2. This table 

confirms convergence of the proposed numerical solution 

and N=M=15 is considered in all of the following numerical 

examples. 

In order to validate the proposed numerical solution 

consider a homogeneous plate of φ=1 and γ=0.01. Variation 

of first two dimensionless frequencies and corresponding 

real parts versus variation of non-dimensional aerodynamic 

pressure (
2 3 2 2 1s cU a M D M 

   ) are depicted Figs. 

3(a) and 3(b). As shown in these figures, increase in 

aerodynamic pressure leads to increase in first frequency 

and decrease in second one. At χ=61.75  these two  

 

 

 

 

 

 

 

Fig. 2 Effect of aerodynamic pressure on values of the 

first two frequencies and corresponding real parts of a 

homogeneous square plate 

 

 

 

Table 2 Convergence of the presented solution 

N=M 5 7 9 11 13 15 17 19 21 

Ω1 7.774074 6.125260 6.223997 6.257455 6.273370 6.281024 6.284421 6.285821 6.286373 

Ω2 29.80827 11.96498 10.46085 9.932952 9.693708 9.566213 9.494072 9.451423 9.425048 

Ω3 113.5690 11.96498 19.05531 18.48284 18.10157 17.88133 17.75882 17.69121 17.65318 

Ω4 207.4183 18.65217 32.37174 33.52119 33.54693 33.31259 33.15478 33.05720 32.99643 

Table 3 Non-dimensional critical aerodynamic pressure and non-dimensional flutter frequencies for a homogeneous 

square plate 

χ cr Ωcr 

Present 
FEM (Chowdary et al. 

1996) 

FEM (Singha and 

Ganapathi 2005) 
Present 

FEM (Chowdary et al. 

1996) 

FEM (Singha and 

Ganapathi 2005) 

61.75 59.51 57.89 6.7 6.48 - 
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Fig. 3 Effect of aspect ratio on critical Mach number 

 

frequencies become equal to Ω=6.7 and corresponding 

value of real part of the second mode becomes a positive 

value. In fact, at this point, the aeroelastic self-excited 

oscillation of the plate occurs which is known as the flutter. 

Value of the aerodynamic pressure at this point is called 

critical aerodynamic pressure and the corresponding 

frequency is called the flutter frequency. 

At Table 3, values of the non-dimensional critical 

aerodynamic pressure and non-dimensional flutter 

frequencies are listed and compared with those presented by 

other authors based on FEM. This comparison confirms the 

high accuracy of the presented solution. 

Convergence and accuracy of the presented numerical 

solution were confirmed by Tables 2 and 3. In what follows 

a parametric study is presented for study the effect of 

different parameters on flutter boundaries of the sandwich 

plates. For all of the following example the plates is 

considered to be exposed to a supersonic flow of ξ*
∞=5×10-5. 

In order to investigate effect of aspect ratio on flutter 

boundaries, consider a sandwich plate of γ=0.01, ξ1=-0.7, 

ξ2=0.3, p=1 and q=2. Fig. 3 shows variation of critical 

velocity versus variation of yaw angle for various values of 

aspect ratio. This figure shows that for all values of the yaw 

angle, increase in value of aspect ratio decreases value of 

the critical speed and plates with lower aspect ratio are 

more stable for all values of yaw angle. In other words, for 

all values of the yaw angle, wings and tail fins with longer 

length and shorter width are more stable against supersonic 

flows. 
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Fig. 4 Effect of total thickness of the plate on critical 

Mach number 
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Fig. 5 Effect of relative thickness of core and FG face 

sheets on critical Mach number 

 

 

Thickness of the plate has a significant effect on 

aeroelastic behavior of the plate. For investigate this aspect, 

a sandwich plate of φ=0.8, ξ1=-0.3, ξ2=0.5, p=0.75 and q=1 

is considered. For different values of dimensionless 

thickness of the plate, variation of critical speed versus 

variation of yaw angle is depicted in Fig. 4. As shown in 

this figure, for all values of the yaw angle a small grow in 

thickness of the plate can lead to a considerable rise in 

value of the critical speed. Although it can be concluded 

that thicker plates are more stable against supersonic flows, 

but it should be noted that increase in thickness of the plate 

makes it heavier which is not a suitable item for aircrafts. 

Flutter boundaries of the sandwich plate can be affected 

by change in thickness of the homogeneous ceramic core 

and FG face sheets. Consider a geometrically symmetric 

sandwich plate (ξ2=-ξ1) of φ=0.7, γ=0.008, p=1.5 and q=0.25. 

In Fig. 5 variation of critical speed versus variation of yaw 

angle is depicted for different values of thickness of FG 

face sheets. This figure reveals that in order to increase 

value of critical speed and expand flutter boundaries for any 

values of the yaw angle, it is better to increase thickness of 

the ceramic core and decrease thickness of FG face 

sheets. In other words increase in volume fraction of 

ceramic makes the plate more stable. But Table 1 shows that 

this attempt increases total weight of the plate. 
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Fig. 6 Effect of power law indices on critical Mach 

number 
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In order to study the effect of power law indices on the 

aeroelastic characteristics of FG sandwich plates, a 

sandwich plate of φ=0.8, γ=0.01, ξ1=-0.5 and ξ2=0.5 is 

considered. For various values of p and q, variation of 

critical speed versus variation of follow angle is depicted in 

Fig. 6. This figure reveals that for all values of the yaw 

angle increase in value of p and q leads to decrease in value 

of critical speed of the plate. According to Eq. (1) it can 

be claimed that decrease in values of volume fraction of 

ceramic in FG face sheets decreases the aeroelastic stability 

of the plate which is in agreement with those was concluded 

using Fig. 5. 

Figs. 3-6 shows that as yaw angle increases, value of the 

critical speed decreases at first and then increases. Thus 

there is a critical value for yaw angle which minimize value 

of critical speed. Figs. 3-6 reveal that increase in value of 

the aspect ratio (decrease in length and increase in width of 

the plate) decreases value of the critical yaw angle and other 

parameters such as total thickness of the plate, relative 

thickness of core and face sheets and also power law indices 

have no remarkable effect on value of critical yaw angle. 

 

 

6. Conclusions 
 

Using GDQM a numerical solution was presented for 

aeroelastic stability analysis of cantilever sandwich plates 

with homogenous core and non-symmetric FG face sheets. 

The plate was modeled based on the FSDT and 

aerodynamic load was calculated using the linear piston 

theory. Numerical results were presented for sandwich 

plates made of Al-Al2O3, and effects of yaw angle, aspect 

ratio, thickness of the plate, thickness of the cramic core 

and FG face sheets and also power law indices on the flutter 

boundaries were investigated. Numerical results revealed 

that in order to expand flutter boundaries of cantilever 

plates, it is better to use ones with larger length and shorter 

width, as much as possible. It was shown that increase in 

volume fraction of ceramic (Al2O3) makes the plate more 

stable; but increases the total mass of the plate, as well. It 

was concluded that value of the critical yaw angle depends 

only on value of the aspect ratio and other parameters have 

no remarkable effect on it. 
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Appendix A 
 

Components of matrices [K] and [M] appeared in Eq. 

(40) are defined as 

(A-1) 
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Appendix B 
 

Matrix [T] appeared in Eq. (41) is defined as 

(B-1)  

11 12 13 14 15

21 22 23 24 25

191 192 193 194 195

201 202 203 204 205

T T T T T

T T T T T

T

T T T T T

T T T T T

 
 
 
 
 
 
 
 

 

in which 

(B-2) 

   

 

11 22 33 44 55 1

12 13 14 15 21 23 24 25

31 32 34 35 41 42 43

45 51 52 53 54 *

0 :

0

j

N NM

T T T T T I I

T T T T T T T T

T T T T T T T

T T T T T

 

 

     

      

      

     

 

    
   

    
 

 

 

61 72 94 105

62 95

71 104

83

85

63 64 65 73 74 75 81 82 84

91 92 93 101 102 103 *

1:

0

Mj

Mj

Mj

Mj

Mj

N NM

T T T T A I

T T I A

T T I A

T A I

T I I

T T T T T T T T T

T T T T T T

 

 

 

 

 









    

  

  

 

 

       

      

 

   

    
    

   

    

111 133 144 155 1i

112 145 1i

121 154 1i

122 1i

134 1i

0 :

T T T T I A

T T A I

T T A I

T I A

T I I

 

 

 

 

 











    

  

  

 

 

 

 

113 114 115 123 124 125

131 132 135 141 142 143

151 152 153 *
0

M NM

T T T T T T

T T T T T T

T T T

    

     

   

 

   

    
    

161 183 194 205 Ni

162 195 Ni

171 204 Ni

1:

T T T T I A

T T A I

T T A I

 

 

 









    

  

  

 

   

    

 

172 Ni

184 Ni

163 164 165 173 174 175

181 182 185 191 192

193 201 202 203 *
0

M NM

T I A

T I I

T T T T T T

T T T T T

T T T T
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