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1. Introduction 
 

Boundary layer separation often occurs when fluid is 

passing over a bluff body. This separation causes a fluid 

rotation and vortex shedding behind the body. Depending 

on the value of Reynolds number, the vortex pattern 

shedding might result periodic. The periodic pattern causes 

a periodic lift force on the bluff body, which can result in 

vibrations of the body due to its flexibility or when it is 

mounted on a flexible support. This type of vibration is 

usually called vortex induced vibration or VIV (Bearman 

1984).  

When the vortex shedding frequency approaches the 

natural frequency of the oscillator, a significant increase in 

the amplitude of the oscillations of the system (a cylinder in 

studied case) takes place. This event is called lock-in 

phenomenon. There are two main differences between 

linear resonance and lock-in. Unlike linear resonance, lock-

in is a nonlinear phenomenon and the vibration of the 

structure changes itself the vortex shedding. Secondly, lock-

in happens over a band of frequencies and does not show a 

sharp peak in amplitude (Blevins 1990). 

Many structures such as long buildings, marine risers, 

offshores, mooring cables, bridges, nuclear reactors, 

conductors, cooling stacks and wind turbine blades 

experience the vortex induced vibration. Lock-in 

phenomenon is an important factor in their designing, and it 

may result in serious damage, or even collapse, when it is  
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not taken into account. The collapse of Tacoma Narrows 

Bridge in the U.S. in 1940 is one of the most known 

collapses due to VIV in the word (Kim Vandiver et al. 

2009), (Chaplin et al. 2005), (Abdul Nariman 2016), (Wang 

et al. 2016a, b), (Leblond and Hardy 2005), (Sun et al. 

2013).  

In spite of the disadvantage introduced by VIV, its 

effects may be advantageous in some cases. Recently, the 

use of VIV for energy harvesting has been considered by 

researchers. In some of these applications, a configurations 

with a rectangular beam excited by aerodynamic forces is 

considered; these forces are applied on a bluff body 

attached to the extreme of a cantilever beam and the large 

vibration experienced is then converted to electricity by a 

piezoelectric layer coated on the flexible beam (Dai et al. 

2018), (Abdelkefi et al. 2013), (Song et al. 2015).   

VIVACE is the name given to a similar system, 

proposed by Bernitsas and Raghavan from the University of 

Michigan, assembled like a rigid cylinder bluff body on a 

flexible base. In this system, the horizontal hydrokinetic 

energy of water flow is converted into vertical vibrations of 

the cylinder. The latter is then converted to electricity 

through some electric power generators (Bernitsas et al. 

2008). The idea of bladeless wind turbine as a new 

application of VIV has been also proposed by a Spanish 

group (Whitlock 2015). In this project, a cylinder vertically 

mounted on an elastic rod oscillates due to the interaction 

between fluid and structure; the latter then generates 

electricity through an alternator system. Another 

configuration of bladeless wind turbine has been proposed 

by Salvador et al. (2017). It is an arc-shaped, or disc-shaped, 

magnet pendulums attached to the end of a cylinder under 

VIV. The energy of the wind converts to electricity by 

moving the magnet inside the coil, which behaves as a 
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stator on each side of the pendulum generator.   

Considering both advantages and disadvantages of VIV, 

many researches have been developed to model a 

mathematical formulation for the lift force during VIV on 

the structure. Most of them are  focused on a cylinder 

mounted on the spring under VIV. If the structure is a 

flexible cylinder under VIV, then the solution of Navier 

Stokes equations in presence of moving boundaries is 

necessary to model the system, and it results quite complex 

(Chizfahm et al. 2018). Therefore, for simplicity, many 

researchers focused on the semi-empirical model. One of 

the most accurate models which simulates the dynamic 

behavior of a cylinder under VIV is in fact the semi-

empirical wake model proposed by Skop and Griffin (1973) 

and Griffin et al. (1973). This model, which has been 

modified by Skop and Balasubramanian (1997), describes 

the cross-flow fluid force by mean of a van der Pol 

differential equation. This equation is coupled to the 

structural motion by a velocity structural term in its right 

hand side (Skop and Luo 2001). Following this, Facchinetti 

et al. (2004a) showed that the acceleration coupling term 

introduced in the van der Pol wake oscillator better predicts 

the system dynamic behavior than velocity and 

displacement coupling. A modified wake oscillator model 

has been introduced by Farshidianfar and Zanganeh (2010) 

to increase the possibility of using wake model for a wider 

range of mass-damping ratios. Some coefficients for 

calculating the empirical parameters which have been 

settled as constants by Facchinetti et al. (2004a) have been 

presented by Wan-hai et al. (2010) as variable. A wake 

oscillator model based on van der Pol model with nonlinear 

coupling term has been proposed also by Qu and Metrikine 

(2010). An attempt for improving the Facchinetti et al. 

model has been carried on by Ogink and Metrikine (2010), 

introducing the frequency dependent coupling. Postnikov et 

al. proposed two degrees-of-freedom wake oscillator model 

for describing vortex-induced vibrations of elastically 

supported cylinders capable of moving both in cross-flow 

and in-line directions (Postnikov et al. 2017). Afterwards, a 

modification to this model has been investigated by 

Kurushina and Pavlovskaia (2017).   

Another group of researches is also devoted to the use of 

wake model to simulate the dynamic behavior of continuous 

system for practical application. The oscillations of flexible 

slender cables and riser coupled with the Facchinetti et al. 

wake oscillator has been investigated by Violette et al. 

(2007), Facchinetti et al. (2004b), Mathelin and de Langre 

(2005), using the harmonic balance approach. Keber and 

Wiercigroch (2007) considered the dynamic response of a 

simply supported offshore riser by introducing the nonlinear 

geometry terms. They demonstrated that, although the 

frequency response of the nonlinear system is very close to 

the linear one, the difference in amplitudes is substantial 

even for small tensile forces. The vortex induced response 

of slender cantilever cylindrical beam has been investigated 

by Leclercq and de Langre (2018). The Strouhal number 

linked with the vortex shedding frequency, assumed as 

constant in previous works, has been considered as a 

function of the Reynolds number for a simply supported 

flexible cylinder by Gao et al. (2018). They solved the 

equation of motion coupled with van der Pol, taking into 

account the primary harmonic function and showed that one 

can obtain more accurate results. An experimental work for 

vortex-induced vibration of a long flexible cylinder pinned 

at both sides in uniform cross-flow has been presented by Ji 

et al. (2018). The equations of motion of VIV of a rigid 

cylindrical bluff body mounted at the end of a flexible 

slender cantilever beam have been solved numerically by 

Dai et al. (2014). Song et al. (2015) and Jia et al. (2018) 

investigated VIV of rigid cylindrical bluff body mounted at 

the end of a flexible slender cantilever beam by both 

experimental and numerical method. Chizfahm et al. (2018) 

investigated a numerical solution on the discretized 

equation by Galerkin method when the cylinder is mounted 

on a flexible rod. Recently Zhang et al. (2019) developed an 

experimental work to investigate the effect of interference 

cylinder with different geometry on the VIV of a rigid 

cylindrical bluff body mounted at the end of a flexible 

slender cantilever beam.     

In this study, vortex induced vibrations of a cylinder 

mounted on a flexible beam are analyzed. The literature 

review shows that an analytical study for the vortex induced 

vibration of this configuration has not been published yet, 

and here it is presented. In this work the structure 

oscillations equation coupled to the wake oscillations 

equation are solved using multiple scale perturbation 

method, for the first time. An analytical expression that 

predicts the lock-in phenomenon range of wind speed is 

derived. The discretized equations of motion are also solved 

using RKF45 numerical method. Results show a good 

agreement between numerical and analytical methods, 

which represents a valuable starting point for theory 

verification and further work. It must be noted that most of 

previous works consider the cylinder mounted on a slender 

rectangular beam and, only Chizfahm et al. (2018) 

considered it mounted on a circular rod. As mentioned 

before, it represents the key element of new conception 

bladeless wind turbine (Whitlock 2015). Here, the lift force 

is evaluated according to van der Pol wake oscillator model 

improved by Facchinetti et al. (2004a), which is more 

accurate in comparison with the wake oscillator model used 

by Chizfahm et al. (2018). In addition, by applying some 

assumptions to the model, it represents a multiple scale 

solution for a vortex induced vibration of a rigid cylinder 

mounted on flexible spring as was analyzed by harmonic 

balance in previous work by Facchinetti et al. (2004a). The 

results are compared together and, again, show a good 

agreement. Here, equations of motion are discretized by 

Galerkin method using the exact mode shape of free 

vibration of system i.e. the mode shape considering the non-

uniformity of the cross section. The diagrams of steady state 

amplitude of the structure oscillation and wake oscillation 

with respect to the wind speed are extracted for different 

values of system parameters. Moreover, their effects on the 

lock-in domain are evidenced. 

 

 

2. Modeling and formulation 
 

The system consists of a cylindrical bluff body mounted  
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over a flexible rod, such as shown in Fig. 1. The cylinder is 

subject to the wind flow with 
5300 Re 1.5 10    in 

direction Z , whilst the system vibrates in direction Y due 

to periodic nature of vortex shedding behind the cylinder. The 

equation of motion is hence given by 

4 2

4 2

( , ) ( , ) ( , )
( ) ( ) ( ) ( ) ( , )

W X t W X t W X t
E X I X C X M X F X t

X t t

  
  

  

 (1) 

Where W  indicates the transverse deflection of system 

along direction Y , ( )M X  indicates the total amount of 

structure mass and fluid mass per unit length, ( ) ( )E X I X  

is the bending stiffness, and ( )C X  is the damping 

coefficient per unit length, due to wind flow. 

( , )F X t  is the lift force per unit length, which is related 

to wake oscillator variable ( , )Q X t as below (Facchinetti et 

al. 2004a) 

2

0 1

1

1 1

1

1
( , ) ( , )H( ),

4

0 ,
H( ) ( )

1

f L
F X t U C DQ X t X l

X l
X l Heaviside X l

X l

 


    



 (2) 

where D  is the diameter of the cylinder, and 1
l  is the 

length of the rod.
 f
  is the mass per unit volume of the 

wind, and U  is the wind speed. The wake oscillator 

variable, ( , )Q X t , is defined as 0
2 ( )

L L
C t C , where 

( )
L

C t  is the time variable lift coefficient, and
 0L

C  is the 

lift coefficient amplitude on a fixed cylindrical structure 

experiencing vortex shedding, and is equal to 0.3 over a large  

 

 

range of Reynolds number (Facchinetti et al. 2004b). The 

wake oscillator variable is coupled to the structure motion as 

follows (Facchinetti et al. 2004a) 

2 2

2 2

2 2

( , ) ( , ) ( , )
(2 )( ( , ) 1) (2 ) ( , )

T T

Q X t U Q X t U G W X t
S Q X t S Q X t

t D t D D t
  

  
   

  

 
(3) 

where T
S  is the Strouhal number which is approximately 

constant and equal to 0.2 in range 5300 Re 1.5 10   . 

 and G  are the damping van der Pol parameter and the 

coupling coefficient, and are typically equal to 0.3  and 12, 

respectively (Facchinetti et al. 2004a).  The functions of 

( ) ( )E X I X  and ( )M X  are given as below 

1 1 1 2 2 1

2

1 1 1 2 2 1

2

1

( ) ( ) (1 H( )) H( ),

( ) (1 H( )) ( )H( ),
4

( ) (2 )H( ),

4

f M

T f

D

T

E X I X E I X l E I X l

m X A X l D C A X l

U
C X S D X l

D

C

S


  

  




    

     

 



 

(4) 

where 
1

 and 
2

 are the mass density, 
1

A  and 
2

A are 

the  cross sections areas, 
1

I  and 
2

I are the second area 

moment, and
 1

E  and 
2

E are the elasticity modulus of the 

rod and cylinder , respectively. In addition M
C  is the added 

mass coefficient due to the fluid, and   is a stall parameter 

which is directly related to the mean sectional drag 

coefficient of the structure 
D

C . For analytical convenience, 

the following changes in variables are applied to the 

equations of motion. 

 

Fig. 1 System configuration subjected to vortex induced vibration 
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4

1 1

1 1

, , ,
AlW X t

w x T
D l T E I


     (5) 

Where l  is the total length of the structure. By applying 

the above variables changes into Eq. (1) the dimensionless 

form of motion equations assume the form 

4 2

2

4 2

2 2

2 2

2 2

( , ) ( , ) ( , )
( ) ( ) ( ) ( ) ( ) ,

( , ) ( , ) ( , )
( ( , ) 1) ( , )

f f

f

w x t w x t w x
E x I x c x m x f x Q

x t

Q x Q x w x
Q x Q x G





  
  

  

  
    

  

  
   

  

 
(6) 

where 

1 2 2

1 1

2

2 2
1 1

1 1

2

1

1 1

2

0 1

2 2

1 1

( ) ( ) (1 H( )) ,

4( ) (1 H( )) H( ),

( ) H( ),

( ) H( )
16

2

f M

f

f L

T

T

f

l E I
E x I x x

l E I

D C A
l l

m x x x
l A l

D l
c x x

A l

C D l
f x x

A S l

S UT

D


 



 





 



   



    

 

 

 

 (7) 

 

 

3. Discretization of motion equation  
 

Eq. (6) shows that differential equation of structure 

oscillation is coupled to nonlinear van der Pol wake 

oscillator. Therefore the Galerkin method is used to 

discretize the equation of motion. Firstly, the exact mode 

shape of free vibration of system, i.e., the mode shape 

considering the non-uniformity of the cross section, is 

extracted to be used as comparison function. Therefore, the 

free vibration response of system is assumed as 

1

,1

1

,2

( , ) ( ) , ,

( , ) ( ) ,

i

i

i t

i

i t

i

l
w x t x e x

l

l
w x t x e x

l









 

 

 (8) 

Where 
,1
( )

i
x  and 

,2
( )

i
x  are the functions of i-th 

mode shape along the rod and cylinder length. Substituting 

Eq. (8) into Eq. (1) without considering the damping and 

wake oscillator term results in 

 
 

 
 

4

,12 1

,1 4

4

,222 2 2 2 1

,2 4

1 1 1 1

0, ,

0      1

i

i i

i

i i

d x l
x x

dx l

d xA E I l
x x

A E I dx l


 


 



   

   
       
   

 
(9) 

By solving the above equations, 
,1i

  and 
, 2i

 will be 

as follows 

 

       

       
1

4

22 2 1 1

1 1 2 2

1, 2,

1

,1 1 1, 2 1, 3 1, 4 1,

1

, 2 5 2, 6 2, 7 2, 8 2,

 ,                 

( ) cosh sinh cos sin , ,

( ) cosh sinh cos sin , ,    

     
i i

i i i i i

i i i i i

i i

A E I

A E I

l
x C x C x C x C x x

l

l
x C x C x C x C x x

l


   



    

    

 

    

    

 
 
 

 

(10) 

where Ci are constant coefficients, calculated from 

boundary and continuity conditions due to equality of shear 

and moment at the stepped cross section as 

2 3

,1 , 2 ,2

,1 2 30

0 1 1

,1 ,21 1 1 1

2 2 3 3

,1 ,2 ,1 ,22 2 2 2

2 2 3 31 1 1 1
1 1 1 1

,1 ,2

/ / / /

/ / /

0,   0,   0,   0

,    ,

,

i i i

i
x

x x x

i i

i i i i

i i

x l l x l l x l l x l l

x l l x l l x l l x l

d d d

dx dx dx

d d d dE I E I

dx E I dx dx E I dx

d d

dx dx
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

 

   

 



  

   

   

   

   
   
   

 

  /l

 

(11) 

Therefore, system normalized mode shape will be 

1 1

,1 ,2

1
21 1

,1 ,2
0

1 H( ) ( ) H( ) ( )

( )

( )((1 H( )) ( ) H( ) ( ))

i i

i

i i

l l
x x x x

l l
x

l l
m x x x x x dx

l l

 

 

 
    

 
 

   

 
(12) 

The main part of the structure oscillation belongs to the first 

mode shape; therefore it may be assumed that 

1
( , ) ( ) ( )w x t x p t   and 

1
( , ) ( ) ( )Q x t x q t  where 

1
( )x  

is the first normalized mode shape. In addition ( )p t  and 

( )q t  are time coordinate functions correspond to structure 

and wake oscillations, respectively. By substituting these 

assumptions into Eq. (6), multiplying the outcome by 
1
( )x  

and integrating on the whole length of the structure, the 

differential equation governing the system oscillations will be 

as 

1

2

2 2

2

2 2

2 2

2 2

4
1 1

0.5 21

1 14
0 0

1
3

1
1

2 1

1
0

( ) ( )
( ) ( ),

( ) ( ) ( )
( ( ) 1) ( )

( )
( ( ) ( ) ( ) ) , ( ) ( ),

( )

( ) ( )( ( )) ,

eq f s eq f

f f

s eq

l

l

eq

d p dp
c p f q

d d

d q dq d p
S q q G

d d d

x
x E x I x dx c c x x

x

x dx
l

f f x x Heaviside x dx S
l

 
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 

  
  

  



    

    

 
   





   


 




1

1

1
( )l

l

x dx

 

(13) 

where 
1s

   is the first natural frequency of vibration 

of the structure. 

 

 
4. Frequancy and modal analysis 

  
Neglecting the nonlinear and damping terms, the motion 

equations governing the oscillations will be as 

2

2 2

2

2 2

2

2 2

( )
( ) ( ),

( ) ( )
( )

s eq f

f

d p
p f q

d

d q d p
q G

d d


  



 


 

  

 

 (14) 

Now, considering the response of Eq. (14) as 

( ( ), ( )) ( , ) ivp q p q e    and substituting it into Eq. (14) 
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2 2 2

2 2 2

( ) 0,

( ) 0

s eq f

f

v p f q

Gv p v q

    

   
 (15) 

For nonzero solution the determinant of coefficients must 

be equal to zero, so 

4 2 2 2 2 2 2( ) 0
s f eq f s f

v f G v         (16) 

By solving the algebraic Eq. (16), it results to the 

following frequencies and modal shapes 

2 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2

2( ) ( ) ( ) 4 ,

( )

( )

s f eq f s f eq f s f

eq f f

s

v f G f G

f vp

q v Gv

  




         

  
 

 

 
(17) 

When the value of expression inside the radical is positive, 

then both values for v  will be real, and therefore both 

solution modes, i.e., 1 2,
iv ive e 

, will be periodic. When the 

value of expression inside the radical is negative, then the 

mode with negative imaginary part of v  will be unstable. So 

the boundary values of 
f

 for staying in unstable domain 

may be obtained by letting the expression inside the radical 

equal to zero as follows 
2 2 2 2 2( (1 ) ) 4 0,

1

s eq f s f

s

f

eq

f G

f G

 




     

 


 
(18) 

In the range of 
f f f 

   , the linear system is 

unstable. Noting Eq. (7) which demonstrates that 

2 /
f T

S UT D  , the boundary values for unstable solution 

based on the wind speed will be as 

,
2 21 1

S S

T Teq eq

S

S

D D
U

TS Sf G f G

T



 




 

 

 

 

(19) 

Where 
S

  is the first dimensional natural frequency of 

system and, as mentioned before, S
 is the first non-

dimensional natural frequency. It has been shown by de 

Langre (2006) that, for a rigid cylinder mounted on the 

spring, the unstable domain of linear system corresponds to 

lock-in domain. 
 
 

5. Solving the equation using multiple scales 
method  

 

It has been shown in previous section that, if the one 

neglects the effect of linear damping and also nonlinear van 

der Pol damping coupling terms of Eq. (13), then system will 

be unstable for a range of wind speed. It means that the 

amplitude of structure oscillations tends to infinity in that 

range, which is not physically acceptable. Therefore, to get a 

true solution, the coupled linear terms must be balanced with 

nonlinear and damping terms. So that, to strike a balance 

between the terms of Eq. (13), the bookkeeping parameter 

1  , which represents the order of terms, is used as below 

2

2 2

2

2 2

2 2

2 2

( ) ( )
( ) ( ),

( ) ( ) ( )
( ( ) 1) ( )

eq f s eq f

f f

d p dp
c p f q

d d

d q dq d p
S q q G

d d d

 
    

 

  
   

  

    

    

 
(20) 

Now the response of Eq. (20) is assumed as follows using 

multiple scales method of perturbation theory 

0 0 1 1 0 1

0 0 1 1 0 1

( ) ( , ) ( , )

( ) ( , ) ( , )

P p T T p T T

q q T T q T T

 

 

 

 
 (21) 

Where 0
T  and 1

T   are time scales. By 

substituting Eq. (21) into Eq. (20) and separating terms with 

equal order of  , the following relations are obtained: 

Order 1( ) 

2

2

0 0 1 0 0 12

0

2

2

0 0 1 0 0 12

0

( , ) ( , ) 0,

( , ) ( , ) 0

s

f

d
p T T p T T

dT

d
q T T q T T

dT

 

 

 (22) 

Order ( ) 
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0 1 00

2

0 0 1

22
2 20

0 0 1 0 0 1 0 0 12

0 10

2
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(23) 

The solution of Eq. (23) will be as follows 

0 0

0 0

0 0 1 1 1

0 0 1 1 1

( , ) ( ) ( )

( , ) ( ) ( )

s s

f f

i T i T
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q T T B T e B T e
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 

 
 (24) 

Whereas A(T1) and 1
( )B T  are the complex coefficients 

and 
1

( )A T and 
1

( )B T are their complex conjugates. These 

coefficients are obtained by solvability conditions applied in 

the following process. By substituting Eq. (24) into Eq. (23) 
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(25) 

By assuming 
f s

    , whereis the detuning    

parameter, and by rearranging the outcome 
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(26) 
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CC indicates conjugate of complex term, and NST 

represents all terms which are not secular. For solvability 

condition the coefficient of secular term in Eq. (26), i.e., the 

coefficients of 0si T
e
  and 

0fi T
e


must become equal to zero. 

By equating it to zero and substituting 2( )A T  as polar, 

1( )
1 1

1
( ) ( )

2

i T
A T a T e


 , and 1( )

1 1

1
( ) ( )

2

i T
B T b T e


 , and noting that 

0 1T T  , one obtains 
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   

    
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(27) 

By multiplying 
ie 

 at the first equation and 

multiplying 
ie 

 at the second equation 
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(28) 

By separating the real part and imaginary part of Eq. (28) 

and equating the outcome equal to zero 
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(29) 

Now by assuming 1
T       
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 (30) 

By putting derivative of ,a b   and    equal to zero 

in Eq. (30), the equation governing equilibrium solution 

amplitude will be obtained. If one substitutes 1( )A T  and 

1( )B T  into Eq. (24) 

0 01 1

0 01 1

( ) ( )

0 0 1 1 1

( ) ( )

0 0 1 1 1

1 1
( , ) ( ) ( )

2 2

1 1
( , ) ( ) ( )
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 

 

 (31) 

The above equation demonstrates that when the effect of 

damping is considered, then the frequency presented in wake 

and structure oscillation are as s   and f   , 

respectively. 

 

 

6. Numerical solution 
 

The equations of motion (20) are solved using Runge–

Kutta–Fehlberg numerical method, which is called RKF45. 

Variations of steady state amplitudes of the structure and 

wake oscillations with respect to the variations of wind 

speed are extracted for two loops of wind speed. During the 

first loop, the value of 
f

 , which is closely related to the 

wind speed, is considered much less than the natural 

frequency of linear system. Then, solving the equations of 

motion and by obtaining time history of solution, the 

amplitude of the steady state is recorded. By slightly 

increasing the value of 
f

  i.e., by slowly increasing the 

wind speed, the previous step is repeated. The steady-state 

amplitude of the previous step is considered as the initial 

conditions of displacement for the next step, whilst the 

initial condition of the velocity is settled to zero. This loop 

is followed until 
f

  largely overpass the system natural 

frequency. Once terminated this loop, the same operations 

is repeated for the second loop by slowly decreasing the 

value of 
f

 . The backward loop is followed until 
f

  

reaches the same value of  
f

  at the beginning of forward 

loop. The importance of sweeping the frequency during the 

forward loop and the backward loop is due to the fact that a 

system under vortex induced vibration has a hysteresis 

behavior. It causes, in fact, the sudden oscillation amplitude 

at a frequency which is different during forward and 

backward loop. 

 
 

7. Results and discussion 
 

In this part, the effects of system parameters change are 

studied in terms of structure oscillation amplitude and wake 

oscillation amplitude. The system parameters are considered 

as in Table 1, except for those values which are written on the 

caption (or legend) of each figure. Also it must be noted that 

when the fluid is water then 1
M

C   (Facchinetti et al. 

2004b), and when the fluid is air the amount of added mass 

may be negligible due to low value of air mass density, even 

if one assumes 1
M

C  . For stationary cylinder in the sub-

critical range 
5300 Re 1.5 10    the amount of 

D
C  can 

be assumed 1.2 (Facchinetti et al. 2004a). It should be also 

remarked that the drag coefficient becomes nonlinear when it 

is referred to oscillations in transverse direction. However, 

for the sake of simplicity, 
D

C   was assumed equal to 2  

by de Langre (2006); so far, noting that the Strouhal number 

(
T

S ) is equal to 0.2  in 
5300 Re 1.5 10    (Blevins 

1990), the value of   will be equal to 0.8 . 
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Fig. 2 shows the steady state amplitude of the structure 

oscillations and wake oscillations with respect to the 

variation of wind speed using numerical method.  It shows 

that, for low values of wind speed, the structure oscillation 

amplitude remains very small whilst, by slowly increasing 

the wind speed, a “special” value is reached when the 

amplitude suddenly increases to a large value. 
Graphs also show that further increasing the wind speed 

value the amplitude remains large until a second “special” 

value is reached, when the amplitude suddenly decreases to a 

very small value; this interval is called lock-in domain. It is 

shown in Fig. 2 that a similar behavior takes place by 

decreasing the wind speed. It also indicates that, along the 

decreasing wind speed phase, the wind speed corresponding 

to sudden variation of the amplitude are different. In other 

worlds, a hysteresis phenomenon between the forward and 

backward loops evidently appears. 

It is shown in Fig. 3 that there is a reasonable agreement 

between the results obtained by the numerical and the 

perturbation method. The comparison of Figs. 2(a) and 2(b) 

shows that the trend of the variation of the structure 

oscillations amplitude and the trend of the variation of the 

wake oscillations amplitude are similar. However, in contrast 

with structure oscillation, whose amplitude outside the lock- 

 

 

 

 

in domain is very small, the amplitude of the wake oscillation 

remains considerably high even outside the cited domain. 

This is shown in Fig. 4, where the time history of structure 

and wake oscillation are depicted in dimensionless time 

domain. Fig. 4(b) shows that, although the amplitude of the 

wake oscillator is considerable for 0.6 /U m s , the 

structure oscillation is very small. By increasing the wind 

speed to 0.75 /m s , the amplitude of the wake oscillation, 

and specially the amplitude of the structure oscillation, 

increases significantly. 

The main reason of increasing structure oscillations may 

be found in the variations of frequency of the wake 

oscillations due to interaction between wind and structure 

shown in Fig. 5. It indicates that if the flexibility of the 

structure is neglected i.e., it is assumed as a constrained rigid 

cylinder without oscillation, then according to Strouhal 

number, the vortex shedding frequency increases by 

increasing the wind speed. It must be mentioned that when 

the fluid passes over a constrained rigid cylinder, the 

frequency of vortex shedding may be evaluated using 

Strouhal number as . /TU S D  in Hz (Facchinetti et al. 

2004a), and in dimensionless form as 2 . . . /TT U S D  . If the 

flexibility of the structure be considered then, according to  

Table 1 Parameters of system
 

( )l m  1
( )l m  3

1
( / )kg m  3

2
( / )kg m  

3( / )
f

kg m  

1  0.3  2700  2700  1.2  

2

1
( / )E N m  

2

2
( / )E N m  ( )d m  ( )D m  ( )h m  

970 10  
970 10  0.005  0.1  45 10  

 

Fig. 2 (a) is the variation of the steady state amplitude of the structure oscillation, and (b) is the variation of wake 

oscillation amplitude with respect to the variation of wind speed at the free end of the structure 
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Eq. (24), the frequency of vortex shedding will be as   

f    . Fig. 5 shows that the vortex shedding frequency is 

locked on the natural frequency of the structure for a special 

domain of the wind speed. It demonstrates that outside of this  

 

 

 

 

domain the frequency of vortex shedding follows the 

predicted value by Strouhal number. The domain where 

vortex synchronizes itself to the natural frequency of the 

structure is called lock-in domain (Facchinetti et al. 2004a). 

It causes the structure oscillating with a large amplitude.  

 

Fig. 3 Comparison between numerical method and multiple scale perturbation method at the free end of the system,  (a) and 

(b) belong to structure oscillation by increasing and decreasing wind speed, respectively and (c) and (d) belong to the wake 

oscillation 

 

Fig. 4 (a) is time history of the structure oscillation  of the free end of the system, and (b) is  time history of the 

wake oscillation, solid line is for 0.6 /U m s , and dashed line is for 0.75 /U m s resulted from numeric solution 
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Concisely, the comparison between vortex shedding 

frequency for rigid cylinder and for the flexible structure here 

considered shows that outside the lock-in range the predicted 

values are approximately identical, since no interaction 

subsists between wind and structure oscillation. It also 

demonstrates that along the lock-in range their values are 

different, due to the interaction between wind and flexible 

structure. 
Now the relation between lock-in domain and instability 

domain of undamped linear system is considered. The 

variations of the eigenvalue of the undamped linear system 

with respect to the wind speed are shown in Fig. 6 using Eq. 

(17). It is clear that system has two different eigenvalues for 

low values of wind speed. By increasing the wind speed 

value the eigenvalue related to the wake oscillator increases 

up to approximately equalize the natural frequency. After  

 

 

 

 

this value, the linear system becomes unstable until two real 

eigenvalues appear again. A comparison between Figs. 6 

and 5 shows that the lock-in domain of Fig. 5 corresponds 

to the unstable domain of Fig. 6. It shows that although a 

good prediction of lock-in domain may be extracted by 

linear system, it is not possible to predict the amplitude of 

structure and wake oscillation. The results demonstrate that 

both lock-in domain and amplitude can be predicted using 

analytical multiple scale perturbation method. It has been 

shown in the last paragraph of previous section that when the 

damping effect is considered then the frequency of structure 

and wake oscillation are s   and f   , respectively. 

Not ing Eq.  (30)  when the  response  of  sys tem 

reaches the steady state condition, then 0       . 

In applying perturbation method it was assumed that  

 

Fig. 5 Variations of the frequency of the wake oscillator with respect to the variations of wind speed with considering 

damping and nonlinear terms according to the perturbation solution 
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Fig. 6 Eigenvalue variations of linear system with respect to the variations of wind speed 
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f s
    . By combining these assumptions, it is 

evidenced that the frequency appearing in wake and structure 

oscillation are identical. It means that the variations of 

dominant frequency of structure oscillation follow the curve 

shown by circle points in Fig. 5. The comparison between 

Figs. 5 and 6 demonstrates that one of the mode predicted by 

linear modal analysis is damped when the effect of damping 

factor is taken into account. As shown in Fig. 5, it means 

that outside the lock-in domain the dominant frequency 

belongs to the wake and inside the lock-in domain it 

belongs to the structure. 
 

 

 

 

 

 

For special coefficients of 0.0002, 0.3,S 1
eq

F     and 

12G  of Eq. (13), and replacing 
eq

c  by 2 /   , and 

f T r
S U  where 0.0031, 0.8   and 250   the 

equation of motion corresponds to the dimensionless 

motion equation of the rigid cylinder mounted on the 

flexible spring, and studied by de Langre (2006) and 

(Facchinetti et al. (2004a). They solved the equations of 

motion using harmonic balance, i.e., considering only the 

main harmonic contribution. Fig. 7 shows a comparison of 

the present work to the results presented by Facchinetti et al. 

(2004a) demonstrating a good agreement between the 

results.  

 

Fig. 7 Amplitude of the structure oscillations and wake oscillation for a rigid cylinder mounted on the spring   

(a) and (c) belong to wind speed increasing and (c) and (d) belong to wind speed decreasing 

 

Fig. 8 Variations of steady state amplitude of the structure oscillations at its free end with respect to the variations of 

wind speed for different values of the first cylinder length 
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Fig. 8 shows the effect of increasing the length of the 

rod, 1
l , on the steady state amplitude of the structure 

oscillations. It indicates that by increasing the value of 1
l , 

i.e. reducing its stiffness, the lock-in starts sooner and the 

span of lock-in domain decreases. This is simply due to the 

fact that according to Eq. (13) by increasing of the value of 

1
l , the stiffness reduces and hence the value of natural 

frequency s
 decreases too. Considering Eq. (18) the upper 

and lower range of the lock-in domain decrease by lowering 

the value of the natural frequency. 
Fig. 9 shows that the variations of lock-in domain and 

steady state amplitude of the structure oscillation are not 

considerable when the mounted cylinder elasticity modulus 

changes. The reason is that the main contribution of structure 

oscillations belongs to its first mode shape. As shown in Fig. 

10, the structure curvature along the mounted cylinder length 

related to its first mode is negligible. It is mainly due to the 

large value of the second area moment of the cylinder, i.e., it 

means that cylinder is approximately animated by a rigid 

motion. Therefore, an increase of the modulus of the cylinder 

does not have visible effect on the oscillation of the structure.  

Fig. 9, on the contrary, indicates that the change of the based 

rod elasticity modulus has a relevant effect on the values of 

lock-in domain. As expected, it shows that increasing the 

value of based rod elasticity modulus the lock-in domain 

begins at higher wind speed. Moreover, even the range of 

lock-in phenomenon increases; the amplitude does not shows 

a considerable change.  It is due to the fact that the curvature 

of the structure at the part near to the clamped boundary is 

considerable and so a change of its elasticity modulus causes 

the change of structure oscillation. 

 

 
 

Fig. 11 indicates that by increasing the diameter of the 

cylinder, the lock-in range starts at larger wing speed. 

Moreover, it shows that the span of the lock- in domain 

increases. It has been mentioned that the frequency of vortex 

shedding outside the lock-in domain can be evaluated using 

Strouhal number as . /U ST D in Hz . When the predicted 

value by Strouhal number approaches the natural frequency 

of the structure, vortex shedding frequency deviates from 

Strouhal relation and becomes locked on the natural 

frequency (Facchinetti et al. 2004a). According to 

equation . /U ST D  that predicts the vortex shedding 

frequency outside of lock-in domain, it clearly appears that 

by increasing the cylinder diameter the vortex frequency 

decreases. Therefore, if the diameter of the cylinder increases, 

a larger value of wind speed is required to get the vortex 

shedding frequency equal to the natural frequency and, 

consequently, the lock-in phenomenon to take place. The 

effect of the change of the value of fluid mass density on the 

structure oscillation amplitude is shown in Fig. 12. It shows 

that, in contrast to previous figures, the lock-in domain 

enlarges on both sides. In other words, the lock-in domain 

will becomes wider by increasing fluid density. This result is 

in agreement with the previous works outcomes for rigid 

mass cylinder mounted on a flexible spring (Facchinetti et al. 

2004a). It has been also shown in that work that, by 

decreasing the ratio of 
2/

s f
m D

 
(where s

m is the mass 

of structure), the range of lock-in becomes wider. It is hence 

clear that a lowering of the 
f

  value leads to the opposite 

effect. 

 
 
 
 

 

Fig. 9 Variations of steady state amplitude of the structure oscillations at its free end with respect to the variations of 

wind speed for different values of elasticity modulus 
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The drag coefficient and Strouhal number are dimensio

nless number and do not depend on the fluid; so that here, 

similarly to previous work (de Langre 2006), it was assum

ed that 0.8  . However, since the value of drag coeffici

ent may be changed when it is referred to oscillations in t

ransverse direction (Facchinetti et al. 2004a), the effect of 

variations of  is presented in Fig. 13. It shows that by in

creasing  , the steady state amplitude of the structure osc

illations increases, and the lock-in domain becomes wider. 

It demonstrates that the effect of   on the structure osc

illation is considerable. It means that an error in evaluati

ng   may results in a considerable computational error.  

 

 

 

 

Therefore, by considering the effect of this parameter ov

er the considered application, a key element of bladeless 

wind turbine adoption, future works should be focused o

n this subject. It becomes even more relevant, when we 

consider that most of previous semi-empirical models ha

ve been developed based on experimental information of 

water and not air. 
 

 
8. Conclusions 
 

The lock-in phenomenon and the non-linear response of a 

flexible cylinder mounted on a flexible rod has been modelled  

 

Fig. 10 The first natural mode shape of system 

 

Fig. 11 Variations of the steady state amplitude of the structure oscillations at its free end with respect to the variations of 

wind speed for different values of mounted cylinder diameter 

452



 

Vortex induced vibration analysis of a cylinder mounted on a flexible rod 

 

 

 

 

based on wake model proposed by Facchinetti et al. (2004a). 

The equations of motion have been discretized by Galerkin 

method using exact mode shape of system as comparison 

function, and then solved using both the RKF45 numerical 

method and the analytical perturbation method. The results 

demonstrate a good agreement between the multiple scale and 

numerical method results. An analytical expression that 

predicts the lock-in phenomenon range of wind speed is 

derived. 

The results also show that the linear system is unstable 

in the wind speed span which corresponds to the lock-in 

domain of the non-linear system. It has been shown that the  

 

 

 

 

starting and stopping points of the lock-in domain are 

different when the wind speed is increasing or it is 

decreasing. It has been shown that, by lowering the natural 

frequency of system (for instance by decreasing the 

elasticity modulus of the foundation rod or by increasing its 

length or even by increasing the mass of the cylinder) the 

lock-in domain starts sooner, and its span decreases. It has 

also been shown that, by decreasing the diameter of the 

mounted cylinder the lock-in domain starts sooner. 

Moreover, the span domain and the amplitude of the 

structure oscillations decreases. The results also indicate 

 

Fig. 12 Variations of steady state amplitude of the structure oscillations at its free end with respect to the variations of 

wind speed for different values of mass fluid density 

 

Fig. 13 Variations of steady state amplitude of the structure oscillations at its free end with respect to the variations of 

wind speed for different values of stall parameter   
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that by increasing the fluid density the lock-in domain starts 

sooner and stops later. 

For some special parameters, the equation of motion of 

this paper corresponds to the motion equation of the rigid 

cylinder mounted on the flexible spring and studied by 

Facchinetti et al. (2004a). Results are in good agreement 

with those published on previous works and obtained by a 

harmonic balance approach. 
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