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1. Introduction 
 

With the rapid development of technology and economy, 

a considerable number of complex engineering structures, 

such as high-rise buildings and long-span bridges, are 

constructed to satisfy the requirements of people's life and 

production in recent decades. Owing to the wind load is 

always the dominant design load of these complex 

structures, it is of paramount significance to proceed with 

the wind-induced dynamic response analysis for the 

performance-based design or control of these structures. 

Studies have shown that the dynamic responses of the 

structures subjected to the fluctuating wind load are 

extremely complicated, such as the structural along-wind 

vibration and the structural across-wind vibration (Khanduri 

et al. 1998, Zu and Lam 2018). In fact, the fluctuating wind 

load has randomness in nature (Huang et al. 2018, Zhu et al. 

2018), which is generally described by the stochastic wind 

velocity field. Therefore, simulation of the stochastic wind 

velocity field is attracting increasing attention and no doubt  
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to be the primary task in structural wind engineering. 

Generally, the stochastic wind velocity field can be 

represented as the stationary multivariate stochastic process 

(the discrete form) or the stationary stochastic field (the 

continuous form). In practice, there are two widely-used 

methods for simulating the stationary multivariate 

stochastic processes, i.e., the spectral representation method 

(SRM) and the proper orthogonal decomposition (POD), of 

which are both based on the spectral decompositions of 

power spectral density (PSD) matrixes. The SRM was first 

proposed by Shinozuka (1971, 1972) in the application for 

simulating the multidimensional and multivariate stochastic 

processes (Wu et al. 2013, 2018). Then it was Yang (1972) 

who first successfully introduced the Fast Fourier 

Transform (FFT) algorithm to the SRM, and this treatment 

greatly enhances the computational efficiency when 

simulating the multivariate stochastic processes. 

Furthermore, Di Paola et al. (1998, 2001) proposed the 

POD and applied it to simulate the stochastic wind velocity 

processes. Compared with the SRM, the POD has explicit 

physical meanings. In addition, the model truncation 

technique can also be applied in the POD to accelerate the 

simulation with little loss of precision, which can be readily 

achieved by the first several modes possessing dominant 

energy (Chen and Letchford 2005, Huang 2015). 

Although the theory and technology of the SRM and the 

POD have been well developed to date, it is still difficult to 

handle the issue when the simulated components rise to a 

large number (Benowitz and Deodatis 2015). In this case, 

the spectral decompositions may work slowly or even break 

down due to the adjacent points may exhibit a high degree 
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of correlation and the PSD matrix increasingly closes to 

singular as its order grows larger. Aiming at the above 

situation, Deodatis and Shinozuka (1989) then proposed the 

frequency-wavenumber spectral representation (FWSR) 

which expresses the stochastic field as a form of stochastic 

waves. Moreover, Benowitz and Deodatis (2015) combined 

the FWSR with the FFT algorithm and applied it in the 

simulation of horizontal stochastic wind velocity fields. 

Meanwhile, Carassale and Solari (2002) put forward a kind 

of continuous proper orthogonal decomposition (CPOD) to 

simulate the stochastic wind velocity fields based on the 

cross PSD functions, and gave the semi-analytical solution 

of the proper problem. Actually, the two continuous forms 

(FWSR and CPOD) can generate samples of arbitrary point 

along the main direction of structures, while the discrete 

forms can only obtain samples of a relatively small number 

of pre-assigned points. Consequently, in the refined 

dynamic response analysis for complex long-span and long-

distance engineering structures with a series of numerous 

simulated points, the continuous forms should be preferred. 

In practical applications, the random-phase-angles-based 

methods (Chen and Kareem 2005, Peng et al. 2016) 

associated with the above four representations are the most 

popular ones in the simulation of stochastic processes or 

fields. However, the random-phase-angles-based schemes 

all belong to the family of the conventional Monte Carlo 

methods which usually require millions of random phase 

angles uniformly distributed in the high-dimension space to 

ensure an acceptable simulation accuracy. As a result, this 

treatment will inevitably lead to the following two principle 

challenges. The first one is that the multitude of high-

dimensional random variables cannot be obtained easily 

(Ghanem and Spanos 1991, Li and Chen 2009). At present, 

almost all pseudo random number generation method 

cannot commendably deal with the high-dimensional 

random variables. Though the accuracy of the Monte Carlo 

method is independent of the dimension of random 

variables in theory, there is still a great difficulty in 

generation of the pseudo random numbers. This can be 

attributed to the fact that the correlation of pseudo random 

numbers in different dimensions may be unexpectedly 

strong when the dimension is extremely high (Glasserman 

2013, Chen et al. 2018). The second one is that due to the 

randomness of sampling caused by the Monte Carlo 

sampling method, each generated sample does not have an 

assigned probability and the samples cannot assemble a 

complete set in the probability level. This will result in the 

randomness of the dynamic system cannot be completely 

transmitted and evolved from the external excitations to 

structural dynamic responses. In fact, applying the Monte 

Carlo methods, only some statistics, such as mean, standard 

deviation and high order moments, can be obtained, while it 

is unavailable to capture accurate probability density 

functions of structural dynamic responses (Liu and Liu 

2018). In view of this, it is of primary concern to reduce the 

number of the random variables without loss of accuracy 

and ensure the completeness of probability with respect to 

the generated samples. 

In recent years, for the purpose of reducing the number 

of random variables, Chen et al. (2013, 2017) suggested the 

stochastic harmonic function representations of the 

stationary and non-stationary stochastic processes. 

Meanwhile, Liu et al. (2016) introduced the random 

function to the SRM, making it feasible to accurately 

represent the stationary and non-stationary stochastic 

processes with merely one or two elementary random 

variables. Utilizing the dimension reduction method of 

random function, the stationary multivariate stochastic 

processes can be naturally simulated by two or three 

elementary random variables (Liu et al. 2018a). The 

dimension reduction method bypassing the difficulties faced 

by the high-dimensional random variables can be combined 

with the probability density evolution method (PDEM) (Li 

and Chen 2009) to accurately evaluate the structural 

dynamic reliability (Liu and Liu 2018, Liu et al. 2018b, Liu 

et al. 2019). In this study, the dimension reduction method 

is extended in the simulation of the stochastic wind velocity 

fields using just one elementary random variable with 

several hundred representative points possessing assigned 

probabilities. Furthermore, this study also suggests an 

improved scheme with non-uniform wavenumber intervals 

to remarkably enhance the simulation efficiency and the 

PSD accuracy in low frequency component in the FWSR. 

The specific contents of this study are organized as 

follows. The two original spectral representations of the 

stationary stochastic fields are firstly elicited in Section 2. 

And the relations between the CPOD and the FWSR are 

also expounded in this section. Following that, this study 

proposes a random function form including merely one 

elementary random variable, and introduces it to the CPOD 

and the FWSR to realize the dimension-reduction 

representations of the stochastic fields in Section 3. 

Meanwhile, to accelerate the numerical simulation, the 

application of the FFT algorithm is also discussed within 

this section. Furthermore, with the intention of improving 

the simulation efficiency and accuracy in the FWSR, the 

scheme with non-uniform wavenumber intervals embedded 

in the FFT algorithm is presented in Section 4. Then, the 

simulation of the horizontal stochastic wind velocity fields 

is carried out in Section 5, and the detailed comments of the 

CPOD and the FWSR are also exposed in this section. The 

superiority of the proposed dimension-reduction methods is 

fully demonstrated through the comparisons with the 

conventional Monte Carlo methods. Finally, some 

conclusions are summarized in Section 6. 

 

 

2. Original spectral representations of stationary 
stochastic fields 

 

Suppose that 
0 ( , )f x t  is a zero-mean stationary 

stochastic field, it can be represented as the following 

Fourier-Stieltjes integral (Carassale and Solari 2002) 

i
0 0( , ) e d ( , )tf x t Z x 




   (1) 

where x and t denote the space variable and time variable, 

respectively;   denotes the circular frequency; i 1   

denotes the imaginary unit; 
0 ( , )Z x   denotes a complex 

orthogonal stochastic field whose frequency increment 
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0 0 0d ( , ) ( , d ) ( , )Z x Z x Z x       should satisfy the 

following basic conditions 

0[d ( , )] 0E Z x   ; 
0 0d ( , ) d ( , )Z x Z x    (2a) 

00 0[d ( , )d ( , )] ( , , ) dfE Z x Z x S x x     


  

 

(2b) 

where [ ]E   denotes the  mathematical expectation; the 

superscript  ‘ * ’  denotes the complex conjugate; 

0
( , , )fS x x   denotes the two-sided cross PSD function in 

terms of the stochastic processes 
0 ( , )f x t  and 

0 ( , )f x t ; 

   denotes the Kronecker delta. 

 

2.1 Continuous proper orthogonal decomposition 
(CPOD) 

 

Let ( )m   and ( , ) ( 1,2, )m x m    be the 

eigenvalues and the eigenfunctions of the cross PSD 

function 
0
( , , )fS x x  , respectively. In fact, they are the 

nontrivial solution of the second class Fredholm integral 

equation (Carassale and Solari 2002) expressed as 

0
( , , ) ( , )d ( ) ( , )f m m mS x x x x x     


     (3) 

where   denotes the spatial domain. 

In general, since the cross PSD function 
0
( , , )fS x x   is 

bounded, Hermitian and non-negative definite, its 

eigenvalues ( ) ( 1,2, )m m    are non-negative real 

functions and the corresponding eigenfunctions 

( , )m x  ( 1,2, )m   are complex functions of frequency 

 . Further, ( )m   and ( , )m x   should satisfy the 

following conditions 

*( , ) ( , )di j ijx x x   


  (4a) 

0

*( , , ) ( , ) ( , )d d ( )f i j i ijS x x x x x x       
 

    
 

(4b) 

It is the completeness of the eigenfunctions ( , )m x   

set that ensures the spectral decomposition of the cross PSD 

function (Kanwal 1971). In general, for a continuous 

stochastic field, there may be a finite or infinite number of 

eigenvalues. However, in either case, by means of sorting 

the eigenvalues in decreasing order, the cross PSD function 

thus can be approximately expressed as the sum of the first 

M1 terms of eigenvalues containing dominant energy (Solari 

and Carassale 2001) 

1

0

*

1

( , , ) ( ) ( , ) ( , )
M

f m m m

m

S x x x x      


   (5) 

where M1 denotes the truncation number of eigenvalues, 

depending on the truncation accuracy which is defined as 

the ratio of the sum of the first M1 terms of eigenvalues to 

the sum of total eigenvalues. 

Combining Eq. (5) and Eq. (2(b)), the frequency 

increment 
0d ( , )Z x   can be approximately expressed as 

the following discrete form 

0 = 0d ( , ) ( , )
n nZ x Z x     

1

1

( ) ( , )
M

m n m n mn

m

x P   


   

(6a) 

( 0.5) 1,2, ,

( 0.5) 1, 2, ,
n

n n N

n n N






  
 

       

(6b) 

where 
u / N    is the frequency interval, in which 

u  is the upper-cutoff frequency and N is the number of 

frequency intervals; 
mnP  denotes the zero-mean complex 

orthogonal random variables. 

It should be noted that the frequency interval   

should be small enough to ensure the validity of the 

approximate representation in Eq. (6(a)), meanwhile, the 

corresponding time interval t  should satisfy the 

following condition (Shinozuka and Deodatis 1996) 

u

t



   (7) 

For convenience, the complex eigenfunctions 

( , )m nx   and the complex orthogonal random variables 

mnP  can be defined as the following real form, respectively 

( , ) ( , ) i ( , )m n m n m nx x x        (8a) 

imn mn mnP R I 

 

(8b) 

where 
mnR  and 

mnI  denote the real orthogonal random 

variables satisfying the following conditions 

[ ] [ ] 0mn mnE R E I  ; [ ] 0im jnE R I   (9a) 

1
[ ] [ ]

2
im jn im jn ij mnE R R E I I   

 

(9b) 

where 
11,2, ,i M ; 1,2, ,j N . 

Generally, the eigenvalues have symmetry with respect 

to the frequency, i.e., ( ) ( )m n m n     ; and the 

eigenfunctions satisfy the relation *( , ) ( , )m n m nx x     . 

Therefore, based on Eqs. (6) and (8), the original stochastic 

field 
0 ( , )f x t  can be approximately expressed as the 

following simplified real form 

1

1

1 1

( , ) 2 ( )
M N

m n

m n

f x t   
 

    

  ( , ) cos( ) sin( )m n mn n mn nx R t I t      

 ( , ) sin( ) cos( )m n mn n mn nx R t I t     

(10) 

where 
1( , )f x t  denotes the original spectral representation 

based on the CPOD. The paper will use the CPOD to name 

Eq. (10) hereinafter. 
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From the above process, it can be observed that the 

CPOD expresses the stochastic field as the summation of 

the first M1 terms of the proper modes. The eigenvalues 

represent the energy contained in the proper modes, and the 

eigenfunctions, which are the continuous functions of the 

space coordinates x, determine the mode shapes of the 

proper modes. In addition, it should be noted that Eq. (10) 

cannot be directly used in the simulation of stochastic field 

since the probability distributions of the orthogonal random 

variables 
mnR  and 

mnI  are undetermined. 

 

2.2 Frequency-wavenumber spectral representation 
(FWSR) 

 

In Eq. (1), if we define 

i
0 1d ( , ) e d ( , )xZ x Z  




   (11) 

Thus, the stationary and homogeneous stochastic field 

0 ( , )f x t  can be expressed as (Priestley 1965, Deodatis and 

Shinozuka 1989) 

i( + )
0 1( , ) e d ( , )x tf x t Z   

 

 
    (12) 

where   denotes the wavenumber corresponding to the 

spatial variable x; the increment 
1d ( , )Z     

1 1( d , d ) ( , )Z Z         should satisfy the following 

conditions 

1[d ( , )] 0E Z    ; *
1 1d ( , ) d ( , )Z Z       (13a) 

*
1 1 w[d ( , )d ( , )] ( , ) d dE Z Z S            

  

 

(13b) 

where 
w ( , )S    denotes the two-sided frequency- 

wavenumber spectral density (FSD) function of 
0 ( , )f x t , 

generally satisfying the following symmetry, i.e., 

w w( , ) ( , )S S       described in (Shinozuka and 

Deodatis 1996). 

For stationary and homogeneous stochastic field, the 

complex increment 
1d ( , ) d ( , ) id ( , )Z U V       . 

Thus, the real orthogonal increments d ( , )U    and 

d ( , )V    can be approximately written as the following 

discrete form, respectively 

( )
,d ( , ) ( , )

m n

i
m nU U           

( )
w ( , ) ,  1,2i

m n mnS X i        

(14a) 

( )
,d ( , ) ( , )

m n

i
m nV V           

( )
w ( , ) ,  1,2i

m n mnS Y i      

 

(14b) 

where ( )i
mnX  and ( )i

mnY ( 1,2)i   are the zero-mean real 

orthogonal random variables which satisfy Eq. (15(a)); 
n  

is equally defined in Eq. (6(b)), and 
m  is defined in Eq. 

(15(b)), such that 

( ) ( )[ ] [ ] 0i i
mn mnE X E Y  ; ( ) ( )[ ] 0i j

km lnE X Y   (15a) 

( ) ( ) ( ) ( ) 1
[ ] [ ]

2

i j i j

km ln km ln ij kl mnE X X E Y Y    

 

(15b) 

2

2

( 0.5) 1,2, ,

( 0.5) 1, 2, ,
m

m m M

m m M






  
 

     
 (15c) 

where , 1,2i j  ; 
u 2/M    denotes the wavenumber 

interval, in which 
u  is the upper-cutoff wavenumber, and 

M2 is the number of the wavenumber intervals. 

Substituting Eq. (14) into Eq. (12), thus the original 

stochastic field 
0 ( , )f x t  can be approximately rewritten as 

the following discrete form 
2

2 w

1 1

( , ) 2 ( , )
M N

m n

m n

f x t S    
 

     

 (1) (1)[cos( + ) sin( + ) ]m n mn m n mnx t X x t Y      

(2) (2)[cos( ) sin( ) ]m n mn m n mnx+ t X x+ t Y       

(16) 

where 
2 ( , )f x t  is the so-called original spectral 

representation based on the FWSR. 

It is noted that   and   should be small enough 

to ensure that Eq. (12) can be replaced by Eq. (16) without 

loss of accuracy. Similarly, the time interval t  must 

satisfy the condition defined in Eq. (7), the corresponding 

spatial interval x  must satisfy the analogical condition 

expressed as 

u

x



   (17) 

The FWSR represents the stationary and homogeneous 

stochastic field as the sum of a series of stochastic waves 

modulated by the random variables. In addition, the FSD 

function can also be regarded as the energy distribution in 

the two-dimensional domain of frequency and wavenumber, 

while the modulation function with respect to the spatial 

variables x is contained in the cosine function. Similarly, 

due to the probability distributions of ( )i
mnX  and 

( )i
mnY ( 1,2)i   are unknown, one can not directly utilize Eq. 

(16) to generate representative samples either. 

 

2.3 Relations between the CPOD and the FWSR 
 
It can be observed from Eq. (10) and Eq. (16) that the 

above two original spectral representations have similar 

formats, say both express the stochastic field as summation 

of a series of products upon the trigonometric functions and 

the energy elements which denote the energy distribution of 

the stochastic field. In fact, the above two representations 

are equivalent in certain circumstances. 
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For examples, considering a zero-mean stationary and 

homogeneous stochastic field 
1( , )f x t  with period L in 

space domain and period T in time domain, and taking one 

period from which defined in the space domain 

/ 2 / 2L x L    and the time domain / 2 / 2T t T   , 

the relations between the two representations were 

summarized by Chen and Kareem (2005) as follows. 

The eigenfunctions ( , ) ( 1, 2, )m x m      of the 

CPOD are identical to the following Fourier basis functions 

i
1

( , ) e m x
m x

L

    (18) 

Then the corresponding eigenvalues become the PSD 

functions expressed as 

0

/ 2
i

w
/2

( ) ( , )e d 2 ( , )m

L

m f m
L

S S       


    (19) 

where x x    denotes the spatial distance between the 

points x and x , thus 
0
( , )fS    is equal to 

0
( , , )fS x x  . 

And the integral result can be readily obtained by the 

relation between the PSD function and the FSD function. 

Hence, utilizing Eqs. (18) and (19) and defining 

2 L   , the stochastic field 
1( , )f x t  based on the 

CPOD can be rewritten as 

1 w

1 1

( , ) 2 ( , )
M N

m n

m n

f x t S    
 

     

  cos( ) sin( )mn m n mn m nR x t I x t        

[ cos( ) sin( )]mn m n mn m nR x t I x t          

(20) 

where M is equal to M1 in the CPOD defined in Eq. (10). 

Certainly, M in Eq. (20) can also be equal to M2 in the 

FWSR. It is obvious that in this case the above two original 

spectral representations are totally identical, say Eq. (20) 

based on the CPOD is exactly equal to Eq. (16) based on 

the FWSR, and the two can be transformed to each other 

easily. In fact, the two original spectral representations have 

similar meanings. On the one hand, as previously 

mentioned, the CPOD has an explicit physical meaning. 

The eigenvalues refer to the energy of the proper modes, 

and the original stochastic field can be accurately simulated 

by the first M1 terms of the eigenvalues containing the 

dominant energy. On the other hand, similar to eigenvalues, 

the FSD functions can be rewritten as linear functions of 

eigenvalues, which is reflected in Eq. (19), and represent 

the energy distribution of the stochastic field in the two-

dimensional region of frequency and wavenumber. 

Though the two original spectral representations can be 

transformed to each other in form, they are significantly 

different in essence, mainly reflected in the following two 

aspects. 

i) Eq. (20) is a special case of Eq. (10) in essence. For 

homogeneous stochastic field 
1( , )f x t  or 

2 ( , )f x t  with 

spatial period L, the spatial domain is generally defined in 

the whole space, i.e., x    . In this way, the 

eigenfunctions and eigenvalues of the stochastic fields are 

defined as Eqs. (18) and (19), respectively. However, in 

practice application, the stochastic field is bounded in space, 

generally defined in 0 x L  , even if it may lead to the 

non-completely homogeneous stochastic field. At this point, 

the explicit expressions of eigenvalues and eigenfunctions 

can be directedly obtained by solving the proper problem 

defining as Eq. (3). Therefore, it is believed that, as for the 

stationary and homogeneous stochastic field, the FWSR can 

be considered as a priority. However, the CPOD can 

provide an optimal representation for the non-completely 

homogeneous stochastic field. 

ii) The other difference is the number of random 

variables in the two original spectral representations. The 

CPOD just requires 
12 M N   orthogonal random 

variables, but the number in the FWSR is 
24 M N  . This 

is owing to that for any specified space coordinate, the 

eigenvalues and the eigenfunctions are unary functions of 

frequency, and the frequency increment 
0d ( , )Z x   has 

symmetry about the   axis. However, the FSD functions 

are binary functions of frequency and wavenumber, the 

increment 
1d ( , )Z    is symmetric about the original point 

of the frequency-wavenumber two-dimensional region. 

What's more, 8 M N   or 8 y zM M N    orthogonal 

random variables are even required in the case that the joint 

wavenumber-frequency spectral density functions are 

ternary functions (Song et al. 2018). 

 

 

3. Dimension-reduction simulation of stationary 
stochastic field 

 

As afore-mentioned, the first task when utilizing Eq. 

(10) or Eq. (16) to simulate the stochastic field is to 

determine the probability distributions of the random 

variables. In fact, arbitrary probability distribution is 

theoretically effective. Generally, the conventional Monte 

Carlo methods regard the random variables as the random 

phase angles uniformly distributed in [0,2 ] , such that 

only a half number of random variables compared with the 

original spectral representations is required. However, due 

to the number of random variables in Eqs. (10) and (16) is 

always as high as millions, the conventional Monte Carlo 

methods still has to face the dilemma caused by the high-

dimensional random numbers. Moreover, since the Monte 

Carlo sampling method is random in essence and the 

random variables require to be reselected to generate a new 

sample each time, the probability of each generated sample 

is unknown. Consequently, it is unfeasible to obtain the 

accurate probability density functions with respect to the 

dynamic responses of complex engineering structures under 

stochastic excitations. For that, this study introduces the 

idea of random function to effectively reduce the dimension 

of random variables, and applies it in the simulation of 

stochastic fields, making it possible to implement the 

refined dynamic response analysis and dynamic reliability 

assessment of complex engineering structures combining 

with the PDEM. 
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3.1 Random function representation of the orthogonal 
random variables 
 

In the previous works, Liu et al. (2018a) successfully 

constructed random functions using merely two or three 

elementary random variables with representative points 

owing given probabilities to realize the efficient dimension-

reduction simulation of stationary random processes. As a 

matter of fact, the dimension of random variables can be 

further reduced to just one, which will be presented in this 

section. The specific implementation procedures are as 

follows. 

Step 1, construct orthogonal functions 

At first, for simplicity, suppose (1)
mn mnR X  and 

(1)
mn mnI Y  since they satisfy the same conditions 

respectively defined in Eqs. (9) and (15(a)). Then, construct 

the orthogonal random variables set  ( ) ( ),  ( 1,2)j j
pq pqX Y j   

utilizing merely one elementary random variable, such that 

( ) ( ) cos( ),  1,2j
pqX r j    (21a) 

( ) ( ) sin( ),  1,2j
pqY r j  

 

(21b) 

where   follows uniform distribution in the range [0,2 ] ; 

( , , )r h j p q  satisfies the conditions as follows 

i) 1,2, ,p M  and 1,2, ,q N , where M is the 

same as that in Eq. (20). 

ii) There is just one set { , , }j p q  corresponding to the 

specific value of ( , , )h j p q ,i.e., the equation 

( , , ) ( , , )h i k l h j p q  exists only in the case that i = j, k 

= p and l = q. 

iii) It is recommended that ( , , )r h j p q  takes an integer. 

In the present paper, we can define 

[( 1) 1]r j N q M p       . Obviously, the orthogonal 

functions defined in Eq. (21) completely satisfy the 

conditions defined in Eq. (15(a)). The similar proof process 

for the constructed random functions has been elaborated by 

Liu et al. (2018a), which will not be detailed herein. 

Step 2, construct one-to-one mapping relationships 

Then, the order of the terms in the orthogonal variables 

set  ( ) ( ),  ( 1,2)j j
pq pqX Y j   constructed in Step 1 requires to 

be messed up to obtain the target orthogonal random 

variables set  ( ) ( ),  ( 1,2)i i
mn mnX Y i   through a unique 

transformation. The one-to-one mapping between the two 

sets can be realized by the MATLAB tool box functions 

(' ' 0)rand state ,  and (2 )temp randperm M N  . Suppose 

that the 2 M N  -order matrixes X  and X  denote the 

sets ( )j
mnX  and ( )  ( 1,2)j

pqX j  , respectively. Then defining 

index tags [( 1) ( 1)]c i N n M m        and 

[( 1) ( 1)]c j N q M p       , the one-to-one mapping 

relationship can thus be expressed as follows 

     ( )c temp c c X X X  (22) 

The other random variables ( )  ( 1,2)i
mnY i   can be 

realized in the same way. Obviously, the essence of Eq. (22) 

is to stochastically rearrange the random variables defined 

in Eq. (21). Thus, the target orthogonal random variables set 

 ( ) ( ),  ( 1,2)i i
mn mnX Y i   using merely one elementary random 

variable are finally obtained. 

Step 3, substitute the random functions into the 

original spectral representations 

Substituting  (1) (1),mn mnX Y  into Eq. (10) and utilizing the 

trigonometric formulas to simplify the equation, then the 

dimension-reduction representation of the CPOD is 

expressed as 

1

1

1 1

( , ) 2 ( , ) ( )
M N

m n m n

m n

f x t x    
 

    

(1)cos ( , ) ( )n m n mnt x         

(23) 

where  ( , ) arctan ( , ) ( , )m n m n m nx x x      ; the 

random phase ( ) ( )( ) ( )i j
mn pq r        ( , 1,2)i j  , and 

the one-to-one mapping relationship between ( ) ( )i
mn   and 

( ) ( )j
pq   is identical to that between ( )  ( 1,2)i

mnX i   and 

( )  ( 1,2)j
pqX j  . 

Similarly, the original stochastic field based on the 

FWSR can be rewritten as the following dimension-

reduction form 

2

2 w

1 1

( , ) 2 ( , )
M N

m n

m n

f x t S    
 

     

 (1) (2)cos[ + ( )] cos[ ( )]m n mn m n mnx t x t             

(24) 

It can be seen that the proposed dimension-reduction 

schemes have similar simulation formulations with the 

conventional Monte Carlo schemes involving the random 

phase angles. However, it is worth noting that the 

dimension of random variables between the two schemes 

varies considerably. Specifically, the randomness dimension 

in the conventional Monte Carlo schemes is 
1M N  or 

22 M N  , however, that in the proposed methods is just 

one, which could effectively avoid the difficulties of dealing 

with the high-dimensional random variables. Treated in this 

way, the one-dimensional representative point sets can thus 

be readily obtained by some well-developed sampling 

methods, such as the number theoretical method. Benefiting 

from this, each generated representative sample has an 

assigned probability and all the representative samples 

assemble a complete set in the probability level, providing a 

handy combination with the PDEM to perform the accurate 

dynamic response analysis and dynamic reliability 

evaluation of randomly-excited complex engineering 

structures. 

 

3.2 Simulation scheme with FFT algorithm 
 

Though the high dimension of random variables is 

effectively reduced employing Eqs. (23) and (24), it still 
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results in expense in computational effort and time due to 

the huge number of frequency and wavenumber terms. 

Hence, a particular effort is made in this study to efficiently 

expedite the numerical simulation by means of adopting the 

FFT algorithm. In conjunction with the FFT algorithm, Eq. 

(23) can be rewritten as 

1

2

1

1 1

1

i
( , ) Re exp

2

M

mq

m

q
f x q t B

N

  
    

  
  (25a) 

2

2
2

1

i
exp

N

mq mn

n

n q
B A

N

   
  

 


 

(25b) 

 (1)

2 ( , ) ( )

exp i[ ( , ) ( )]

mn m n m n

m n mn

A x

x

    

   

  


 (25c) 

where 
2q  denotes the remainder of 

1 2q N , 

1 10,1, ,2 1q M N    , 
2 0,1, ,2 1q N  ; Re[ ]  

denotes the real part. Eq. (25(c)) is true once 0 n N  , 

while 0mnA   if 2N n N  . 

Similarly, the dimension-reduction FWSR combining 

with the FFT algorithm can be expressed as the following 

form 

2 2

2 2

(1)1 1

2 1 1

2

(2)1 1

2

i i
( , ) Re exp

2 2

i i
exp

2 2

p q

p q

p q
f p x q t C

M N

p q
C

M N

   
      

  

   
   

  

 (26a) 

2

2 2

2 2
( ) 2 2( ) 1

1 1 2

i i
exp ( 1)

M N
j j j

p q nm

m n

m p n q
C D

M N



 

      
   

 


 

(26b) 

( ) ( )
w2 ( , ) exp i ( )j j

mn m n mnD S             (26c) 

where 
2p  denotes the remainder of 

1 2(2 )p M , 

1 20,1, ,2 1p M N    , 
2 20,1, ,2 1p M  ; 

2q  

denotes the remainder of 
1 (2 )q N , 

1 20,1, ,2 1q M N    , 
2 0,1, ,2 1q N  ; 1,2j  . 

Similarly, Eq. (26(c)) is true if 
20 ,0m M n N    . 

 

 

It can be observed from Eqs. (25) and (26) that the FFT 

algorithm can only be adopted for frequency terms in the 

CPOD, whereas the FFT algorithm can be applied for both 

frequency and wavenumber terms in the FWSR, resulting in 

the FWSR owes a relatively higher simulation efficiency for 

the sample generation of a stochastic field with numerous 

simulated points. 

 

 

4. An improved scheme using non-uniform 
wavenumber intervals 

 

In wind engineering, in consideration of the fairly large 

error of the PSD function in low frequency and the poor 

simulation efficiency in the FWSR (Benowitz and Deodatis 

2015), an improved scheme involving the non-uniform 

wavenumber intervals is proposed. According to the 

convergence rule of the FSD function upon wavenumber, 

this study adopts two wavenumber intervals to expound the 

validity of the scheme, say the minor wavenumber interval 

1  used in low wavenumber component and the major 

wavenumber interval 
2  used in high wavenumber 

component. Suppose (1)

3M  and (2)

3M  denote the numbers 

of the wavenumber intervals 
1  and 

2 , respectively. 

And (1) (2)

3 3 3M M M   denotes the total number of 

wavenumber intervals. Thus, the wavenumber 
m  in this 

case is defined as 

When (1)

31,2, ,m M  

1( 0.5)m m     (27a) 

When (1)

3 31, ,m M M   

(1) (1)

3 1 3 2( 0.5) ( 0.5)m M m M          (27b) 

In fact, this scheme can also be combined with the FFT 

algorithm. Thus, the stochastic field based on non-uniform 

wavenumber intervals can be expressed as 

 

 

 

 

 

 

 

 

 

 

2 2 2 2

2 2 2 2

(1) (1) (3)1 1 1

2 3 1 2 1 2(1)

3

(2) (1) (4)1 1 1

3 1 2 1 2(1)

3

i i iiˆ ( , ) Re exp exp 2 1
2 2 2 2

i i ii
exp exp 2 1

2 2 2 2

p q p q

p q p q

p q q
f x t C M p x C

M N N

p q q
C M p x C

M N N

 

 





     
                

   

     
                

   

 (28a) 

(1)
3

2 2

2 2
( ) 2 2( ) 1

(1)
1 1 3

i i
exp ( 1)

M N
j j j

p q mn

m n

m p n q
C D

M N



 

      
   

 
   (28b) 

(1)( )
w 1 3( )

2 ( , ) exp[ i ( )] 0 ,0

0 otherwise

j
m n mnj

mn

S m M n N
D

             
 


 (28c) 
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where 1,2j  ;
2p  denotes the remainder of (2)

1 3(2 )p M , 

(2)

1 30,1, ,2 1p M N     , (2)

2 30,1, ,2 1p M   . 

At this point, it is necessary to state that Eq. (28) can be 

conveniently realized in practice applications regardless of 

their complex forms. As a matter of fact, the wavenumber 

can be dispersed by means of more wavenumber intervals, 

and the frequency can also be treated in the same way, in 

theory which can significantly improve the accuracy and 

efficiency of the FWSR. However, due to the length of this 

study confined, the elaboration will not be expanded here. 

In addition, it is of great significance that in theory the 

proposed scheme involving the non-uniform frequency 

intervals can be also applied in the CPOD, even the POD 

and the SRM, which shows that it has a broad application 

prospect. 

To distinguish the above three representations, say Eqs. 

(25), (26) and (28), they are named DR-CPOD, DR-FWSR-

I and DR-FWSR-II, respectively. The availability of the 

proposed methods scrutinized by numerical examples will 

be presented in the next section. 

 

 

5. Numerical example of horizontal stochastic 
wind velocity fields 

 
5.1 The semi-analytical solutions of proper problem in 

CPOD and the explicit FSD function in FWSR 
 

Obviously, in the CPOD, the paramount work for 

simulating the stochastic wind velocity field is to solve the 

second class Fredholm integral equation defined in Eq. (3); 

while in the FWSR, it is to obtain the explicit expression of 

FSD function, which are discussed in the following sections. 

 
5.1.1 The eigenvalues and eigenfunctions 
Generally, in wind engineering, as for the stochastic 

field defined in the horizontal spatial domain 0 x L   

and the time domain 0 t T  , the cross PSD function of 

which can be defined as follows 

0 0( , ) ( ) ( , )fS S Coh       (29) 

where 
0 ( )S   denotes the two-sided auto PSD function of 

the stochastic field; ( , )Coh    denotes the spatial 

coherence function. In this study, ( , )Coh    adopts the 

Davenport spatial coherence function expressed as  

 

 

 

 

 

 

(Davenport 1961, Peng et al. 2018) 

( ) | |
( , ) expCoh

L

  
 

 
  

 
 (30) 

where ( ) ( | |) (2 )x zc L u    ; 
xc  is the decay factor 

along the horizontal direction, valued by 10xc   in this 

study; 
zu  is the average wind velocity at the height z. 

Utilizing the Davenport spatial coherence function, 

Carassale and Solari (2002) derived the following semi-

analytic expressions of the eigenvalues and eigenfunctions 

from the second class Fredholm integral equation 

0

2 2

2 ( ) ( )
( )

( )
m

m

L S  
 

  



 (31a) 

2 2

( ) 2
( , )

( ) 2 ( )

sin cos
( )

m

m

m m m

x
L

x x

L L

 
 

    

  

 

 
 

    
    

    

 (31b) 

where ( , )m x   is real, which means ( , )m nx   in Eq. 

(23) is equal to zero. The parameter 
m  can be obtained 

by the following equation 

( )
tan( 2) tan( 2) 0

( )

m

m m

m

  
 

  

  
    

   
 (32) 

It is obvious that the parameter 
m  only depends on 

the parameter ( )  . In practice, on the basis of the 

periodicity of the tangent function, the dichotomy can be 

applied to obtain the approximate solution of 
m . In 

addition, it is worth mentioning that the eigenfunctions have 

the symmetry or anti-symmetry about the midpoint 

2x L  in the space domain 0 x L  . In the case of 

tan( 2) ( )m m    , the eigenfunctions are symmetric 

about the midpoint; in the case of tan( 2) ( )m m     , 

the eigenfunctions have anti-symmetry about the midpoint, 

which is concordant to the structural vibration modes in 

structural dynamics. 

 

5.1.2 The explicit expression of FSD function 
In the FWSR, the relation between the FSD function and 

PSD function can be expressed as (Zerva 1992) 

(2)
3

2 2

2 2
( 2) 2 2( 2) 1

(2)
1 1 3

i i
exp ( 1)

M N
j j j

p q mn

m n

m p n q
C D

M N

  


 

      
   

 
   (28d) 

(1)( )
w 2 3 3( 2)

2 ( , ) exp[ i ( )] ,0

0 otherwise

j
m n mnj

mn

S M m M n N
D

     


        
 


 (28e) 

396



 

Dimension-reduction simulation of stochastic wind velocity fields by two continuous approaches 

0

i
w

1
( , ) ( , )e d

2
fS S     







 
 (33) 

Owing to the Davenport coherence function is adopted 

as expressed in Eq. (30), Eq. (33) can be further expressed 

as the following form (Benowitz and Deodatis 2015) 

w 0

1
( , ) ( ) ( , )

2
S S F    


 (34a) 

i
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2
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( , ) ( , )e d
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z
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c
F Coh

c
u

u



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







 

  
    

   


 (34b) 

Thus, the FSD function of horizontal stochastic wind 

velocity field is expressed explicitly. Notice that the FSD 

function is inversely proportional to the wavenumber, 

which has consistency of convergent rule of the eigenvalue 

( )m   defined in Eq. (31(a)). 

It is worth mentioning that there is a limitation in the 

application of the CPOD, say the semi-analytical solutions 

defined by Eqs. (31) and (32) are only applicable to the 

cross PSD function independent of altitude z. However, the 

FWSR can be applied in arbitrary one-dimensional-space 

stochastic wind velocity field, say no matter the wind 

velocity field is vertical or horizontal. What's more, the 

FWSR can represent two-dimensional-space stochastic 

fields by introducing new wavenumber in other directions 

(Song et al. 2018), indicating that the FWSR has a wider 

range of applications in the simulation of stochastic fields. 

 
5.2 Numerical examples 
 

For the purpose of verifying the validity of the proposed 

dimension-reduction methods, this study performs a 

simulation of the horizontal stochastic wind velocity fields 

acting on a long-span bridge. The simulation parameters are 

listed in Table 1. 

Moreover, the most generally used two-sided Kaimal 

fluctuating wind velocity spectrum is applied in this study 

to describe the characteristics of the horizontal stochastic 

wind velocity field, given by (Kaimal et al. 1972) 

2
*

0 5 3

200 1
( )

4 (1 50 )z

u z
S

u





 
 (35a) 

;
2 zu

z




 

*

0ln( )

zKu
u

z z


 

(35b) 

where 
*u  denotes the friction wind velocity; 0.4K   

denotes the Karman constant; 
0z  is the surface roughness 

length, and valued by 
0 0.05z  m with respect to 

geomorphic type B. 

To simulate the horizontal stochastic wind velocity field, 

the coordinate system is established setting the direction 

along the span of the bridge as x-axis. Specifically, the left 

endpoint of the span direction is set as the origin, i.e., 

0x  m, thus the coordinate of the right endpoint is 

1000mx  . In this study, three positions of coordinates 

1 125mx  , 
2 150mx   and 

3 200mx  , i.e., the 1001th, 

1201th and 1601th point in the DR-FWSR-I, are selected as 

the simulated points to generate the representative samples 

of the stochastic wind velocity fields as a typical study. In 

addition, with the intention of quantitatively evaluating the 

simulation accuracy and efficiency of the proposed methods, 

four evaluation indexes (Liu et al. 2017) are employed in 

this study, including the mean error, the standard deviation 

error and the auto PSD error of the simulated wind velocity 

filed, as well as the expense in computational time. 

Especially, for reflecting the effect of actual PSD values on 

error, the weighted auto PSD error can be defined as 

follows 

0 0

PSD

1

ˆ| ( ) ( ) |
100%

( )

N
i i

i

S S

S

 
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(36b) 

where 
0

ˆ ( )iS   denotes the estimated auto PSD function at 

the i-th frequency point; 
0 ( )iS   denotes the 

corresponding target auto PSD function at the i-th 

frequency point; ( )S   denotes the sum of auto PSD 

function of the stochastic field. 

Meanwhile, the comparisons with the conventional 

Monte Carlo methods upon the four cases of 
seln  (the 

number of representative samples) is 233, 377, 610 and 987 

are proceeded to further demonstrate the superiority and 

effectiveness of the proposed methods. Corresponding to 

the three proposed dimension-reduction methods, the three 

Monte Carlo methods are named as MC-CPOD, MC-

FWSR-I and MC-FWSR-II, respectively. 

The average-relative-error (ARE) for every simulated 

point refers to Eq. (36) and the reference (Liu et al. 2017). 

The mean values of the average-relative-errors (M-AREs) 

for the above three positions upon the mean, standard 

deviation and auto PSD with respect to both the proposed 

methods and the Monte Carlo methods are calculated for 

comparison purposes, shown in Fig. 1. It can be seen that all 

the M-AREs decrease as the number of the sample 

functions increase, indicating the proposed method has a 

good robustness. For the M-AREs upon the mean, the 

proposed schemes all have a better accuracy than the 

conventional Monte Carlo schemes, while for the M-AREs 

upon the standard deviation and the auto PSD, the accuracy 

does not vary obviously. In addition, the CPODs, DR-

CPOD and MC-CPOD included, totally behave better than 

the FWSR-Is, DR-FWSR-Is and MC-FWSR-Is included, in 

the standard deviation and auto PSD error, which indicates 

the superiority of the CPODs. Moreover, as clearly 

presented in the figures, except the M-AREs upon the mean, 

FWSR-IIs, DR-FWSE-II and MC-FWSR-II included, 

possess lower M-AREs for both the standard deviation and 

the auto PSD than the FWSR-Is, which fully reveal the 

superiority of the proposed scheme using the non-uniform  
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wavenumber intervals for the FWSR. Thus, the 

effectiveness of the proposed methods is exposed 

remarkably. At this point, since the accuracy is acceptable 

when the 
seln  is around 300, the following will take the 

case of 
sel 377n   as examples for illustrative purposes. 

Fig. 2 shows the representative samples of the horizontal 

stochastic wind velocity field at the above three positions in 

case of 
sel 377n   generated by the three proposed  

 

 

 

 

dimension-reduction approaches, respectively. It can be 

clearly seen that the time-history curves have the typical 

characteristics of the fluctuating wind velocity, which 

indicates that the simulated stochastic wind velocity field is 

a zero-mean stationary stochastic field. 

Figs. 3 and 4 show the comparisons upon the mean and 

standard deviation (Std.D) between the simulated values by 

the proposed methods and the corresponding target ones. 

Evidently, the simulated values fit the target quiet well  

Table 1 Parameter values of the horizontal stochastic wind velocity field 

Parameters Values Parameters Values 

Length of the main span (m) 1000L   Duration (s) 1024T   

Height of the deck above 

ground (m) 
30z   Geomorphic type B 

Average wind velocity on 

deck (m/s) 
=34zu  

Number of the eigenvalue 

terms 1 500M   

Number of the wavenumber 

terms 2 4096M   
Number of the frequency 

terms 
2048N   

Space interval (m) 0.125x   Time interval (s) 0.25t   

Wavenumber interval 

(rad/m) 
0.00613   Frequency interval (rad/s) 0.00613   

Number of the wavenumber 

terms 3 3072M   (1)
3 2048M   (2)

3 1024M   

Wavenumber interval 

(rad/m) 1 0.00153   Space interval (m) 1 1x   

Wavenumber interval 

(rad/m) 2 0.0245   Space interval (m) 2 0.125x   

  
(a) M-AREs of the mean (b) M-AREs of the standard deviation 

 
(c) M-AREs of the auto PSD 

Fig. 1 Accuracy comparisons between the proposed methods and the conventional Monte Carlo methods 
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except the standard deviation of the DR-FWSR-I is slightly 

off the target, which is also reflected in Fig. 1(b) and again 

validates the superiority of the improved scheme adopting 

the non-uniform wavenumber intervals. 

Figs. 5 and 6 present the results of comparisons upon the 

auto/cross PSD function between the simulated values and  

 

 

 

 

the corresponding target values, respectively. By inspection 

of the figures, one can see that the estimated PSD curves 

generated by the DR-CPOD seem to be consistent well with 

the target curves in the low frequency component, while a 

certain deviation occurs in the high frequency component. 

Conversely, the estimated PSD curves by the FWSR-Is  

  
(a) Representative samples of the fluctuating wind velocity 

by DR-CPOD 

(b) Representative samples of the fluctuating wind velocity 

by DR-FWSR-I 

 
(c) Representative samples of the fluctuating wind velocity by DR-FWSR-II 

Fig. 2 Representative samples of the stochastic wind velocity field generated by the proposed methods in case of 

sel 377n   

  
(a) Comparison upon the mean between simulated values 

and target value by DR-CPOD 

(b) Comparison upon the mean between simulated values 

and target value by DR-FWSR-I 

 
(c) Comparison upon the mean between simulated values and target value by DR-FWSR-II 

Fig. 3 Comparison upon the mean between simulated values and target values in case of 
sel 377n   
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coincide perfectly well with the target curves in almost the 

whole frequency domain except a few frequency points 

possessing high power in the low frequency component, 

which results in relatively big M-AREs upon the PSD as 

shown in Fig. 1(c). It is owing to that the actual value of 

PSD has been taken into consideration of the M-AREs upon 

PSD. Fortunately, since the FWSR-IIs can successfully 

combine the advantages of the above two methods, it thus 

has a remarkable precision upon PSD in both the low and 

high frequency component, which strongly validates the 

effectiveness of the improved scheme. 

Fig. 7 shows the comparison of the simulation efficiency 

with respect to the proposed methods and the conventional 

Monte Carlo methods. As shown in the figure, it is obvious 

that the computation time of the CPODs is much less than 

that of the FWSR-Is and FWSR-IIs. Moreover, the 

proposed schemes, say the FWSR-IIs employing the non-

uniform wavenumber intervals, own a dramatically 

improvement in the simulation efficiency compared with 

the FWSR-Is. However, as afore-mentioned, the 

employment of FFT algorithm regarding the wavenumber  

 

 

 

 

would result in a significant saving in the average 

computation time for each sample generation of numerous 

spatial points by means of the FWSR-Is or FWSR-IIs, even 

the average computation time is less than that taken by the 

CPODs. In addition, though the conventional Monte Carlo 

methods seem to offer a higher efficiency, in fact, only 

several seconds are required to generate a representative 

sample and only a few hundred representative samples are 

needed to obtain a satisfactory accuracy using the 

dimension-reduction methods. Thus, the difference in 

simulation efficiency can be completely ignored in practical 

applications for structural dynamic response analysis. As a 

result, the simulation efficiency of the proposed methods 

can be considered acceptable through the above 

investigations. 

From the above analysis, the following two remarks can 

be summarized. 

i) The above three representations all have their own 

features. Specifically, the CPODs have superiority in 

simulation efficiency for sample generation involving a 

small number of simulated points, and the error upon the  

  
(a) Comparison upon the standard deviation of simulated 

values with target value by DR-CPOD 

(b) Comparison upon the standard deviation of simulated 

values with target value by DR-FWSR-I 

 
(c) Comparison upon the standard deviation of simulated values with target value by DR-FWSR-II 

Fig. 4 Comparison upon the standard deviation between simulated values and target values in case of 
sel 377n   

   
(a) Comparison upon the auto PSD of 

simulated values with target value by 

DR-CPOD 

(b) Comparison upon the auto PSD of 

simulated values with target value by 

DR-FWSR-I 

(c) Comparison upon the auto PSD of 

simulated values with target value by 

DR-FWSR-II 

Fig. 5 Comparison upon the auto PSD between simulated values and target values in case of 
sel 377n   
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Fig. 7 Comparison upon the calculation time between the 

proposed methods and the Monte Carlo methods 

 

 

PSD mainly concentrated in the high frequency component. 

In contrast, as for the FWSR-Is, the accuracy upon the PSD 

in the low frequency component should be considered more 

seriously. In spite of the above, the FWSR-IIs, characterized 

by the connection of the merits involved in the above two 

representations, possess a prominent improvement in both 

the simulation accuracy and efficiency for the FWSR, 

which makes it can be more extensively applied in 

numerical simulation of stochastic fields. 

ii) Compared with the conventional Monte Carlo 

methods, the proposed dimension-reduction methods offer 

more satisfactory results in simulation accuracy. 

Furthermore, in practical dynamic response analysis of 

complex randomly-excited structures, just several hundred 

representative samples are required in the proposed 

dimension-reduction methods to instead of tens of 

thousands of sample functions involved in the conventional 

Monte Carlo methods to achieve the same acceptable 

simulation accuracy. Consequently, though the simulation 

efficiency of the proposed methods is relatively inferior 

compared with the Monte Carlo schemes, it can still be 

concluded that the proposed methods have a higher 

simulation efficiency by comprehensively considering the 

calculation time required for structural dynamic response 

analysis. 

 

 

 

6. Conclusions 
 

This study deduces the original spectral representations 

based on the CPOD and the FWSR of the stationary 

stochastic fields, and the relations between the two are 

detailedly discussed. Then the dimension-reduction 

methods are proposed to simulate the stochastic wind 

velocity fields using merely one elementary random 

variable. In addition, the improved scheme adopting non-

uniform wavenumber intervals is suggested to effectively 

enhance the accuracy of standard deviation and PSD 

function in the low frequency component and simulation 

efficiency for the FWSR. Finally, numerical examples 

elaborate the peculiar features of the three representations, 

say the CPODs, the FWSR-Is and the FWSR-IIs. The 

validity and effectiveness of the proposed dimension-

reduction methods are also adequately demonstrated 

through comparison with the conventional Monte Carlo 

methods. The main characteristics of the proposed 

dimension-reduction methods drawn from this study can be 

summarized as follows. 

i) The dimension-reduction methods can effectively 

reduce the high dimension of random variables to merely 

one. Generally, millions of random variables are required in 

the conventional Monte Carlo methods; however, the 

extremely low dimension of the random variable involved 

in the proposed methods can successfully bypass the 

difficulties suffered from the conventional Monte Carlo 

methods. Besides, the dimension-reduction methods can be 

further integrated with FFT algorithm to significantly 

improve the simulation efficiency. 

ii) The simulation accuracy and efficiency of the FWSR 

can be greatly improved simultaneously through adopting 

the non-uniform wavenumber intervals. Correspondingly, it 

is believed that the simulation accuracy and efficiency can 

also be enhanced by introducing the non-uniform frequency 

intervals. In fact, this scheme can also be applied to the 

CPOD, even the SRM and the POD. 

iii) The probability information of the representative 

samples generated by the proposed dimension-reduction 

methods is well reflected. Since the dimension-reduction 

methods are achieved by just one elementary random 

   
(a) Comparison upon the cross PSD of 

simulated values with target value by 

DR-CPOD 

(b) Comparison upon the cross PSD of 

simulated values with target value by 

DR-FWSR-I 

(c) Comparison upon the cross PSD of 

simulated values with target value by 

DR-FWSR-II 

Fig. 6 Comparison upon the cross PSD between simulated values and target values for x1 and x2 in case of 
sel 377n   
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variable with the representative points set, each 

representative sample of the fluctuating wind velocity fields 

is generated with an assigned probability, and all the 

probabilities of the representative samples can ensemble a 

complete probability set. Therefore, it proves a solid 

foundation for the proposed dimension-reduction methods 

being combined with the PDEM to accurately analyze the 

dynamic response and evaluate dynamic reliability of 

complex wind-induced structures in engineering practices. 
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