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1. Introduction 
 

A composite material is formed by the combination of 

two or more constituent materials with significantly 

different physical or chemical properties to form a new 

material, whose properties and performances are designed 

such as the result is greater than those of the constituent 

materials acting independently. Laminated composite, one 

of the types of composite materials, consists of several 

orthotropic layers of different materials that are bonded 

together with adhesive, to give added strength, stiffness, 

corrosion resistance, or some other benefit, these materials 

offer definite advantages compared to more traditional 

materials than steel or aluminum (Sahadat Hossain et al. 

2017). Laminated composite plates are widely used around 

the world in many fields such as aerospace, naval, 

automotive, civil industries, mechanical engineering, 

biomedical and other structural applications due to their 

attractive properties and reliability. In view of the increase 

importance in the application of laminates in engineering 

structures, a variety of laminated theories have been 

developed in order to study the static and dynamic behavior 

of laminated composite plates (Baseri et al. 2016, Becheri  
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et al. 2016, Javed et al. 2016, Chikh et al. 2017, Hirwani et 

al. 2017a). 

Several studies have been carried out on the bending, 

vibration and buckling problems of isotropic, orthotropic 

and laminated composite plates and various researchers 

have done mathematical modeling of these different 

structures using classical plate theory and first-order shear 

deformation theory. It should be noted that the classical 

plate theory (CPT) developed by Kirchhoff (1850) is the 

simplest theory applicable for thin laminated composite 

plates but inaccurate for the thick plate due to the neglect of 

transverse shear deformation effect. To overcome the 

limitations of CPT and accurately incorporate the transverse 

shear deformation effects for moderately thick or thick 

plates, Reissner (1945) and Mindlin (1951) have been 

proposed the first-order shear deformation theory (FSDT) in 

which requires a shear correction factor to correct the 

unrealistic variation of the shear strain/stress through the 

thickness and in order to satisfy the free transverse shear 

stress conditions on the top and bottom surfaces of the 

structure (Al-Basyouni et al. 2015, Madani et al. 2016, 

Bouderba et al. 2016, Bellifa et al. 2016, Kolahchi 2017, 

Cherif et al. 2018, Draoui et al. 2019, Semmah et al. 2019, 

Karami et al. 2019a). The limitations of CPT and FSDT 

forced the development of higher order shear deformation 

theories (HSDTs) to avoid the use of shear correction 

factors, to include correct cross sectional warping and to get 

the realistic variation of the transverse shear strains and 
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stresses through the thickness of structures (Belkorissat et al. 

2015, Mahi et al. 2015, Bousahla et al. 2016, Bounouara et 

al. 2016, Houari et al. 2016, Kolahchi and Moniri Bidgoli 

2016, Beldjelili et al. 2016, Kolahchi et al. 2017a,b,c, 

Khetir et al. 2017, Hajmohammad et al. 2017, Bellifa et al. 

2017a,b, Hachemi et al. 2017, Abdelaziz et al. 2017, 

Kolahchi and Cheraghbak 2017, Mouffoki et al. 2017, 

Sekkal et al. 2017a, Selmiand Bisharat 2018, Golabchi et al. 

2018, Fakhar and Kolahchi 2018, Hosseini and Kolahchi 

2018, Hajmohammad et al. 2018a,b,c, Bouadi et al. 2018, 

Mokhtar et al. 2018, Belabed et al. 2018, Kaci et al. 2018, 

Attia et al. 2018, Yazid et al. 2018, Bakhadda et al. 2018, 

Karami et al. 2019b, Bourada et al. 2019, Meksi et al. 

2019). 

Therefore, many six variable and five variable plate 

theories have been developed for the analysis of plates. 

Reddy (1984a) has developed well-known higher order 

shear deformation theory considering polynomial functions 

in-terms of thickness coordinate for the analysis of 

laminated composite plates. Soldatos (1992) proposed a 

hyperbolic shear deformation theory for homogenous 

monoclinic plates. Touratier (1991) has developed a 

trigonometric shear deformation theory for bending, 

buckling and vibration analysis of laminated composite and 

sandwich plates. Shimpi et al. (2000) proposed a 

trigonometric theory for static and free vibration analysis of 

isotropic, orthotropic and layered composite plates. Zenkour 

(2004) used a unified theory of cross-ply laminated 

composite plates to investigate the bending response of 

laminated plates under a sinusoidally distributed transverse 

mechanical load and a sinusoidally non-uniform distribution 

of temperature. Metin (2006) Compared the various shear 

deformation theories for bending, buckling, and vibration of 

rectangular symmetric cross-ply plate with simply 

supported edges conditions. Karama et al. (2009) have 

proposed an exponential shear deformation plate theory to 

predict the mechanical behaviour of multilayered laminated 

composite structures. Ghugal and Sayyad (2010 and 2011) 

have developed trigonometric shear deformation theory 

considering the effects of transverse shear and normal 

deformations for static flexure and free vibration analysis of 

thick isotropic and orthotropic plates. Mantari et al. (2012) 

used the trigonometric function in the new displacement 

field for analyzing the static behavior of isotropic and 

composite laminated and sandwich plates, however the 

results show that the present model is in close agreement 

with Reddy’s and Touratier’s shear deformation theories. 

In the last few years, a new class of plate theories has 

been developed by researchers in which displacement field 

involves only four unknowns without including the 

thickness-stretching effect and five unknowns in which both 

shear deformation and thickness stretching effects are 

included. Thai et al. (2010) has developed a two variable 

refined plate theory for the free vibration analysis of 

antisymmetric cross-ply and angle-ply laminates, to extend 

the refined plate theory (RPT) developed by Kim et al. 

(2009) for static bending and buckling analyses of 

laminated composite plates. Benachour et al. (2011) 

analyzed the free vibration of rectangular functionally 

graded plates with arbitrarily varying material properties 

along the thickness direction by using a four variable 

refined plate theory. Tounsi et al. (2013) developed a 

refined trigonometric shear deformation theory for the 

thermoelastic bending analysis of functionally graded 

sandwich plates. Bouderba et al. (2013) presented an 

analytical solution for the thermo-mechanical bending 

response of functionally graded plates resting on Winkler-

Pasternak elastic foundations, in which the theoretical 

formulations are based on a refined trigonometric shear 

deformation theory.  Nedri et al. (2014) investigated the 

free vibration of laminated composite plates resting on 

elastic foundations. Bousahla et al. (2014) proposed a novel 

higher order shear and normal deformation theory based on 

neutral surface position for bending analysis of advanced 

composite. Meziane et al. (2014) presented an efficient and 

simple refined shear deformation theory for the bucking and 

vibration analyses of exponentially graded sandwich 

supported by elastic foundations with considering various 

types of boundary conditions. Chattibi et al. (2015) studied 

the thermo-mechanical bending response of antisymmetric 

cross-ply laminated composite plates by using a simple four 

variable sinusoidal theory. A novel four variable refined 

plate theory for the buckling response of isotropic and 

orthotropic plates is presented and discussed by Bourada et 

al. (2016). A higher order shear and normal deformation 

theory for the static flexural analysis of laminated 

composite plates subjected to uniformly distributed, 

uniformly varying and concentrated loads has been 

presented by Draiche et al. (2016). Many researches based 

on refined shear deformation theories are available in the 

literature for the bending, buckling and free vibration 

analysis of isotropic, orthotropic, laminated composite and 

functionally graded structures (Ahmed 2014, Zidi et al. 

2014, Attia et al. 2015, Shinde et al. 2015, Sayyad et al. 

2016, Ahouel et al. 2016, Hebali et al. 2016, Akavci 2016, 

Saidi et al. 2016, Janghorban 2016, Aldousari 2017, Fahsi 

et al. 2017, Bouazza et al. 2017, Kadari et al. 2018, 

Shahsavari et al. 2018, Karami et al. 2018a,b). Some 

experimental studies can be also consulted in different 

works found in literature (Sahoo et al. 2016, Hirwani et al. 

2016, Sharma et al. 2017a,b, Hirwani et al. 2017bc, Mehar 

et al. 2017, Sahoo et al. 2017, 2018, Sharma et al. 2018a,b, 

Bisen et al. 2018, Sahoo et al. 2019, Tlidji et al. 2019, 

Singh et al. 2019). 

In the present paper, a simple refined nth-higher-order 

shear deformation theory using undetermined integral terms 

in the displacement field is applied to develop the analytical 

solution for the free vibration analysis of isotropic, 

orthotropic and laminated composite plates. The present 

theory has only four unknowns and four governing 

equations, satisfies the shear stress free condition at top and 

bottom surface of the plates without using shear correction 

factors. Governing equations of motion are derived from the 

Hamilton’s principle. A closed form solution for simply 

supported boundary conditions is obtained by employing a 

double trigonometric series technique developed by Navier. 

The numerical results of natural frequencies obtained by 

using the present theory are presented and compared with 

those of the classical plate theory (CPT), first-order shear 

deformation plate theory (FSDT) and other higher-order 
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shear deformation plate theories (HSDTs) available in the 

literature to demonstrate the validity of the theory. 

 

 

2. Mathematical formulation 
 

Consider a laminated composite plate of the length a, 

width b and a constant thickness h along the z-direction as 

shown in Fig. 1. The coordinate system (x, y, z) chosen and 

the co-ordinate parameters are such that 0 ≤ x ≤ a, 0 ≤ y ≤ b, 

-h/2 ≤ z ≤ h/2. The plate is assumed to be constructed of an 

arbitrary number, N, of linearly elastic orthotropic layers. 

 

2.1 The displacement field 
 

The present higher-order shear deformation theory has a 

novel displacement field which includes undetermined 

integral terms and contains only four unknowns, as against 

five in case of other shear deformation theories. The 

displacement field at a point located at (x, y, z) in the plate 

can be written in a simpler form as (Besseghier et al. 2017, 

El-Haina et al. 2017, Menasria et al. 2017, Zine et al. 2018, 

Bourada et al. 2018) 
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Where ),(0 yxu , ),(0 yxv , ),(0 yxw  and ),( yx  are the four 

unknown functions of middle surface of the plate. The in-

plane displacement field uses the nth-order polynomial 

function in terms of the thickness coordinate to include the 

transverse shear deformation effect. The constants 1k  and 

2k  depends on the geometry. The shape function )(zf is 

chosen to satisfy the stress-free boundary conditions on the 

top and bottom surfaces of the plate obtained by putting 

(n=3,5,7,…) and is given as (Sayyad and Ghugal 2015, 

Xiang and Liu 2016, Becheri et al. 2017) 
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Fig. 1 Coordinate system and geometry of laminated 

composite plates 

The infinitesimal strains associated with the displacement 

field in Eq. (1) are obtained using strain-displacement 

relationship from linear theory of elasticity 
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The integrals used in the above relations shall be 

resolved by a Navier solution and can be expressed by 
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where the parameters 'A and 'B are defined according to 

the type of solution employed, in this case via Navier. 

Hence, 'A and 'B are expressed by 
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where the parameters and  are defined as 
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2.2 Constitutive relations 
 

Laminated composites are typically constructed from 

orthotropic layers containing unidirectional fibers 

embedded in a matrix material. Generally, in a macroscopic 

sense, the lamina is assumed to behave as a homogeneous 

orthotropic material. The constitutive relation for a linear 

elastic orthotropic layer in the local coordinate system is 

derived from Hooke’s law for a plane stress by 
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the stresses and the strains vectors with respect to the plate 

coordinate system. The material constants ijQ are defined in 

terms of the material properties of the orthotropic layer 

given as 

135523441266

2112

2212
12

2112

22
22

2112

11
11

,,

,
1

,
1

,
1

GQ  GQ  GQ                   

 
E

Q  
E

Q  
E

Q
















  (10) 

The laminate is usually made of several orthotropic layers 

with their material axes oriented arbitrarily with respect to 

laminate coordinates. Each layer must be transformed into 

the laminate coordinate system (x, y, z). The stress–strain 

relations in the laminate coordinates of a thk layer are 
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where ijQ are the transformed material constants, are 

expressed as 
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where k is the angle of material axes with the reference 

coordinate axes of each layer and ijQ are the plane stress-

reduced stiffnesses coefficients defined in Eq. (10). 

 

2.3 Governing equations 
 

Hamilton’s principle is used to find the compatible set 

of governing equations and boundary conditions for given 

stresses and strains associated with the present theory. The 

principle can be stated in an analytical form as (Zemri et al. 

2015, Arani and Kolahchi 2016, Kolahchi et al. 2016a,b, 

Bilouei et al. 2016, Zamanian et al. 2017, Zidi et al. 2017, 

Klouche et al. 2017, Amnieh et al. 2018, Youcef et al. 2018, 

Adda Bedia et al. 2019, Chaabane et al. 2019, Karami et al. 

2019c). 
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Where U  is the variation of strain energy; V  is the 

variation of work done by external load applied to the plate; 

and K  is the variation of kinetic energy. They can be 

expressed as 
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Where A is the top surface and q  is the distributed 

transverse load. Substituting Eqs. (1), (3) and (11) into Eq. 

(13) and integrating through the thickness of the plate, Eq. 

(13) can be rewritten as 
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where the stress resultants ),,,( ssb S  M  M  N and the inertia 

constants iI  5,4,3,2,1,0      i   
are defined by the following 

equations 
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(18) 

Substituting expressions for stresses and strains of the 

present theory into the Hamilton’s principle and integrating 

Eq. (17) by parts and collecting the coefficients 

of 000 , w  v  ,u  and  , the governing differential 

equations in terms of stress resultants are obtained as 

follows 
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Substituting stress–strain relations from Eq. (11) into the Eq. 

(18) and integrating through the thickness, the following 

equations are obtained 
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and 
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where ijijijijijij HFEDBA ,,,,, and
s
ijA are the plate stiffness 

defined by 
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3. Boundary conditions and Navier’s solution 
 

The Navier method is applicable to obtain the closed-

form solutions of the partial differential equations in Eq. 

(19) for simply supported rectangular plates. Two different 

types of antisymmetric laminated plates are considered, 

cross-ply (0°/90°)n and angle-ply (45°/-45°)n. 

 The boundary conditions along the edges of the plate for 

antisymmetric cross-ply laminates can be expressed as 
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The boundary conditions in Eq. (23) are satisfied by the 

following expansions 
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 The boundary conditions along the edges of the plate for 

antisymmetric angle-ply laminates can be expressed as 
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The boundary conditions in Eq. (25) are satisfied by the 

following expansions 
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Where and  are defined in Eq. (8), rsrsrs WVU ,, and 

rs  are the unknown coefficients of the respective Fourier 

expansions, and  is the natural frequency of the system. 

Substituting this form of solution given by Eq. (24) and Eq. 

(26) and setting transverse load q equal to zero into the 

governing differential equations Eq. (19) results into a  

 

 

system of the algebraic equations which can be written in 

matrix form as follows 

    0][][ 2  MK   (27) 

where ][K , ][M  and    are stiffness matrix, mass 

matrix and amplitude vector, respectively. 

 

 

4. Numerical results and discussions 
 

In this section, various numerical examples are 

presented to verify the validity and efficacy of the present 

"nth-HSDT" in predicting the free vibration responses of 

the simply supported isotropic, orthotropic and laminated 

composite plates. The numerical results obtained for natural 

frequencies will be compared and discussed with those 

obtained by the CPT, FSDT and HSDTs available in 

literature and exact elasticity solution provided by Srinivas 

et al. (1970) wherever applicable. The following material 

properties are considered for the various examples in the 

present study. 

 

Table 1 Comparison of non-dimensional natural frequencies of simply supported isotropic square plate (a=b) 

h/b Theory 
Mode 

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3) 

0.1 FSDT (a) 1.9317 4.6084 8.6162 4.6084 7.0716 10.8093 8.6162 10.8093 14.1908 

 HSDT (a) 1.9317 4.6088 8.6188 4.6088 7.0732 10.8145 8.6188 10.8145 14.2022 

 Present n = 3 1.9317 4.6088 8.6188 4.6088 7.0732 10.8145 8.6188 10.8145 14.2022 

 Present n = 5 1.9327 4.6140 8.6346 4.6140 7.0844 10.8376 8.6346 10.8376 14.2376 

 Present n = 7 1.9339 4.6204 8.6551 4.6204 7.0987 10.8683 8.6551 10.8683 14.2869 

 Present n = 9 1.9349 4.6254 8.6712 4.6254 7.1099 10.8925 8.6712 10.8925 14.3260 

0.2 FSDT (a) 1.7679 3.8656 6.6006 3.8656 5.5879 7.9737 6.6006 7.9737 9.9802 

 HSDT (a) 1.7683 3.8693 6.6176 3.8693 5.5984 8.0030 6.6176 8.0030 10.0362 

 Present n = 3 1.7683 3.8693 6.6176 3.8693 5.5984 8.0030 6.6176 8.0030 10.0362 

 Present n = 5 1.7711 3.8793 6.6372 3.8793 5.6149 8.0255 6.6372 8.0255 10.0589 

 Present n = 7 1.7747 3.8936 6.6710 3.8936 5.6409 8.0702 6.6710 8.0702 10.1197 

 Present n = 9 1.7775 3.9049 6.6985 3.9049 5.6620 8.1072 6.6985 8.1072 10.1715 

0.3 FSDT (a) 1.5768 3.1962 5.1426 3.1962 4.4356 6.0836 5.1426 6.0836 7.4342 

 HSDT (a) 1.5780 3.2059 5.1807 3.2059 4.4605 6.1456 5.1807 6.1456 7.5452 

 Present n = 3 1.5780 3.2059 5.1807 3.2059 4.4605 6.1456 5.1807 6.1456 7.5452 

 Present n = 5 1.5819 3.2153 5.1889 3.2153 4.4706 6.1477 5.1889 6.1477 7.5298 

 Present n = 7 1.5874 3.2324 5.2214 3.2324 4.4977 6.1869 5.2214 6.1869 7.5765 

 Present n = 9 1.5918 3.2464 5.2497 3.2464 4.5207 6.2224 5.2497 6.2224 7.6218 

0.4 FSDT (a) 1.3970 2.6771 4.1505 2.6771 3.6199 4.8521 4.1505 4.8521 5.8537 

 HSDT(a) 1.3996 2.6942 4.2116 2.6942 3.6609 4.9482 4.2116 4.9482 6.0192 

 Present n = 3 1.3996 2.6942 4.2116 2.6942 3.6609 4.9482 4.2116 4.9482 6.0192 

 Present n = 5 1.4037 2.6995 4.2034 2.6995 3.6601 4.9252 4.2034 4.9252 5.9630 

 Present n = 7 1.4102 2.7162 4.2296 2.7162 3.6834 4.9537 4.2296 4.9537 5.9912 

 Present n = 9 1.4155 2.7305 4.2548 2.7305 3.7048 4.9835 4.2548 4.9835 6.0262 
(a) Taken from Shufrin and Eisenberger (2005) 

376



 

On the modeling of dynamic behavior of composite plates using a simple nth-HSDT 

 

 

 Material 1: Isotropic plate 
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 Material 2: Orthotropic plate 
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 Material 3: Laminated composite plate 
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The numerical results according to the present study are 

presented and discussed in Tables 1 through 10 as non-

dimensional terms of natural frequencies. 

In the first part of the analysis, a simply supported 

isotropic square and rectangular plates were examined with 

thickness-to-width ratios h/b = 0.1, 0.2, 0.3, 0.4 and for 

different values of the modes of vibration (r, s). The results 

obtained by using the present "nth-HSDT" theory in Tables 

1–3 are compared with the corresponding results based on 

FSDT and HSDT theory provided by Shufrin and 

Eisenberger (2005). In this example the non-dimensional  

 

terms of natural frequencies of the isotropic plates is 

defined by Dhb //)/( 22   , where the constant 

appeared here can be determined as )1(12/ 23  EhD . It 

should be noted that the current results are in excellent 

agreement with the HSDT solutions, especially when the 

parameter nth-order of the shear strain shape function )(zf  

proposed in this analysis is equal to 3. 

In the second part, a comparison of the non-dimensional 

natural frequencies for simply supported orthotropic square 

plates is presented in Table 4 for thickness ratio10 and for 

all modes of free vibration. The non-dimensional form used 

while presenting numerical result of natural frequencies is 

denoted by 11// Qh   . The analytical solutions 

obtained from the present theory are compared with the 

FSDT and HSDT presented by Reddy (1984b) and the 

mixed first-order transverse shear deformation plate theory 

MFPT given by Zenkour (2001), and exact elasticity 

solutions given by Srinivas et al. (1970) for free vibration 

of orthotropic plates. It can be seen that the frequency 

values obtained using present theory are in good agreement 

with those obtained by other theories available in the 

literature. 

Table 2 Comparison of non-dimensional natural frequencies of simply supported isotropic rectangular plate (a/b=1.5) 

h/b Theory 
Mode 

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3) 

0.1 FSDT (a) 1.4082 2.6491 4.6084 4.1303 5.2656 7.0716 8.1942 9.1982 10.8093 

 HSDT (a) 1.4082 2.6491 4.6088 4.1306 5.2662 7.0732 8.1965 9.2015 10.8145 

 Present n = 3 1.4082 2.6491 4.6088 4.1306 5.2662 7.0732 8.1965 9.2015 10.8145 

 Present n = 5 1.4087 2.6510 4.6140 4.1348 5.2728 7.0844 8.2110 9.2191 10.8376 

 Present n = 7 1.4094 2.6532 4.6204 4.1400 5.2811 7.0987 8.2297 9.2422 10.8683 

 Present n = 9 1.4099 2.6549 4.6254 4.1441 5.2875 7.1099 8.2444 9.2603 10.8925 

0.2 FSDT (a) 1.3164 2.3612 3.8656 3.5117 4.3405 5.5879 6.3282 6.9717 7.9737 

 HSDT (a) 1.3166 2.3620 3.8693 3.5145 4.3457 5.5984 6.3433 6.9917 8.0030 

 Present n = 3 1.3165 2.3620 3.8693 3.5145 4.3456 5.5984 6.3432 6.9916 8.0030 

 Present n = 5 1.3182 2.3666 3.8793 3.5232 4.3575 5.6149 6.3621 7.0122 8.0255 

 Present n = 7 1.3203 2.3727 3.8936 3.5353 4.3748 5.6409 6.3937 7.0489 8.0702 

 Present n = 9 1.3219 2.3774 3.9049 3.5449 4.3887 5.6620 6.4195 7.0789 8.1072 

0.3 FSDT (a) 1.2010 2.0526 3.1962 2.9336 3.5439 4.4356 4.9536 5.3986 6.0836 

 HSDT (a) 1.2016 2.0553 3.2059 2.9412 3.5569 4.4605 4.9879 5.4425 6.1456 

 Present n = 3 1.2016 2.0553 3.2059 2.9412 3.5569 4.4605 4.9879 5.4425 6.1456 

 Present n = 5 1.2042 2.0610 3.2153 2.9499 3.5669 4.4706 4.9967 5.4495 6.1477 

 Present n = 7 1.2076 2.0696 3.2324 2.9649 3.5867 4.4977 5.0278 5.4839 6.1869 

 Present n = 9 1.2103 2.0764 3.2464 2.9771 3.6032 4.5207 5.0547 5.5142 6.2224 

0.4 FSDT (a) 1.0851 1.7818 2.6771 2.4742 2.9436 3.6199 4.0090 4.3419 4.8521 

 HSDT(a) 1.0864 1.7871 2.6942 2.4879 2.9662 3.6609 4.0643 4.4115 4.9482 

 Present n = 3 1.0864 1.7871 2.6942 2.4879 2.9662 3.6609 4.0643 4.4115 4.9482 

 Present n = 5 1.0894 1.7924 2.6995 2.4936 2.9705 3.6601 4.0584 4.3999 4.9252 

 Present n = 7 1.0937 1.8018 2.7162 2.5086 2.9892 3.6834 4.0839 4.4269 4.9537 

 Present n = 9 1.0972 1.8096 2.7305 2.5214 3.0055 3.7048 4.1081 4.4534 4.9835 
(a) Taken from Shufrin and Eisenberger (2005) 
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The last analysis represents the largest part that is 

generally devoted to the study of the free vibration behavior 

in the case of simply supported multilayered square 

laminated composite plates. Non-dimensional natural 

frequencies 2
2 //)/( Eha   of various cross-ply and 

angle-ply laminated composite plates are obtained and 

compared with the other theories, considering the effects of 

thickness ratio (a/h), fiber angle )( and The number of 

layers (N) with the same thickness. The natural frequencies 

obtained by using the present theory of two-layer 

antisymmetric cross-ply (0°/90°) square plates are reported 

in Table 5. In order to verify with another type of laminates, 

the non-dimensional natural frequencies of four-layer 

symmetric cross-ply (0°/90°/90°/0°) square plates are 

demonstrated in Table 6. As well, to extended the present 

analytical method, the next example reported in Table 7 

shows the non-dimensional natural frequencies of eight-

layer antisymmetric cross-ply (0°/90°)4 square plates for 

different values of thickness ratio (a/h) and for the different 

modes of vibration (r, s).All the results obtained in this 

section are compared with corresponding values of the first 

order shear deformation theory FSDT and higher order  

 

 

shear deformation theory HSDT which are included in the 

Reddy’s (1985) reference, and the numerical results given 

by Senthilnathan et al. (1988) based on the simplified 

higher-order shear deformation plate theory SHSDT to 

predict the vibration responses of simply supported 

laminated composite plates and the results generated by the 

classical plate theory CPT. It should be noted that the "nth-

HSDT" considered involves four independent variables as 

against five in case of FSDT and HSDT, hence the present 

theory does not require shear correction factor. It can be 

clearly seen that all types of thick laminates plates (a/h is 

taken from 2 to 5); the FSDT underestimates the natural 

frequencies when compared to the HSDT and SHSDT, but 

can generally, be considered acceptable for moderately 

thick laminates plates. It is also observed that the CPT 

overestimates the natural frequencies of laminated plates 

due to neglect of the transverse shear deformation effect for 

thin plates. It can be noticed in our case that the increase in 

the thickness ratio has a significant effect on the behavior of 

free vibration of the square laminated composite plates as 

he can considerably increase the non-dimensional natural 

frequencies. However, the analysis of Tables 5-7 reveals 

that the results obtained using present theory are in  

Table 3 Comparison of non-dimensional natural frequencies of simply supported isotropic rectangular plate (a/b=2) 

h/b Theory 
Mode 

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3) 

0.1 FSDT (a) 1.2227 1.9317 3.0762 3.9611 4.6084 5.6580 8.0453 8.6162 9.5468 

 HSDT (a) 1.2227 1.9317 3.0763 3.9614 4.6088 5.6588 8.0475 8.6188 9.5505 

 Present n = 3 1.2227 1.9317 3.0763 3.9614 4.6088 5.6588 8.0475 8.6188 9.5505 

 Present n = 5 1.2231 1.9327 3.0788 3.9653 4.6140 5.6663 8.0615 8.6346 9.5692 

 Present n = 7 1.2236 1.9339 3.0818 3.9702 4.6204 5.6758 8.0796 8.6551 9.5939 

 Present n = 9 1.2240 1.9349 3.0841 3.9739 4.6254 5.6831 8.0938 8.6712 9.6133 

0.2 FSDT (a) 1.1521 1.7679 2.7023 3.3847 3.8656 4.6183 6.2313 6.6006 7.1916 

 HSDT (a) 1.1522 1.7683 2.7036 3.3872 3.8693 4.6244 6.2457 6.6176 7.2134 

 Present n = 3 1.1522 1.7683 2.7036 3.3872 3.8693 4.6244 6.2457 6.6176 7.2134 

 Present n = 5 1.1535 1.7711 2.7094 3.3954 3.8793 4.6373 6.2642 6.6372 7.2344 

 Present n = 7 1.1551 1.7747 2.7171 3.4068 3.8936 4.6565 6.2951 6.6710 7.2728 

 Present n = 9 1.1563 1.7775 2.7231 3.4158 3.9049 4.6719 6.3203 6.6985 7.3044 

0.3 FSDT (a) 1.0608 1.5768 2.3188 2.8385 3.1962 3.7449 4.8862 5.1426 5.5497 

 HSDT (a) 1.0612 1.5780 2.3227 2.8454 3.2059 3.7602 4.9191 5.1807 5.5972 

 Present n = 3 1.0612 1.5780 2.3227 2.8454 3.2059 3.7602 4.9191 5.1807 5.5972 

 Present n = 5 1.0632 1.5819 2.3294 2.8538 3.2153 3.7704 4.9282 5.1889 5.6033 

 Present n = 7 1.0660 1.5874 2.3398 2.8681 3.2324 3.7919 4.9588 5.2214 5.6388 

 Present n = 9 1.0681 1.5918 2.3482 2.8797 3.2464 3.8098 4.9852 5.2497 5.6703 

0.4 FSDT (a) 0.9664 1.3970 1.9934 2.4004 2.6771 3.0969 3.9585 4.1505 4.4546 

 HSDT(a) 0.9673 1.3996 2.0008 2.4130 2.6942 3.1230 4.0118 4.2116 4.5302 

 Present n = 3 0.9673 1.3996 2.0008 2.4130 2.6942 3.1230 4.0117 4.2116 4.5300 

 Present n = 5 0.9698 1.4037 2.0064 2.4188 2.6995 3.1266 4.0066 4.2034 4.5157 

 Present n = 7 0.9734 1.4102 2.0175 2.4332 2.7162 3.1464 4.0318 4.2296 4.5431 

 Present n = 9 0.9762 1.4155 2.0268 2.4454 2.7305 3.1639 4.0557 4.2548 4.5704 
(a) Taken from Shufrin and Eisenberger (2005) 
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excellent agreement with SHSDT proposed by 

Senthilnathan et al. (1988) for various values of thickness 

ratio (a/h) when the parameter nth-order of the shape 

function )(zf takes a value of 3. 

To prove the credibility and precision of the present 

theory, another example is added for a range of a simply 

supported angle-ply laminated composite plates for 

different values of the thickness ratio (a/h). The results of 

non-dimensional natural frequencies are presented in Tables 

8 and 9 for both laminates, two-layer (45°/-45°) and eight-

layer (45°/-45°)4 square antisymmetric angle -ply, 

respectively. All the individual layers have equal thickness. 

The obtained results are also compared with those proposed 

by Senthilnathan et al. (1988) using the SHSDT and CPT 

theories and those given by Reddy (1985) using the FSDT 

and HSDT theories. It is found that the present results are in  

 

 

 

 

good agreement with the results provided by Reddy’s 

HSDT and Senthilnathan et al. (1988) using the SHSDT for 

all values of the thickness ratio. 

In the last example, a comparison of non-dimensional 

natural frequencies with the thickness ratio a/h=10 is shown 

in Table 10 for a simply supported antisymmetric angle-ply 

square laminated composite plates for a different number of 

layers, with the lamination scheme (45°/-45°) and (30°/-

30°). The results obtained from the present method are 

compared with the other higher order theories predicted by 

Reddy (1979), Bert and Chen (1978) and Maiti and Sinha 

(1996). It is also pointed out from the numerical results 

presented in Table 10 that the present nth-order theory in 

the particular case where (n = 3), predicts good values of 

natural frequencies as compared to that obtained by Bert 

and Chen (1978). 

 

Table 4 Comparison of non-dimensional natural frequencies of simply supported orthotropic square plate (a/h = 10) 

 
r s Exact (a) HSDT (b) FSDT (b) MFPT (c) 

Present 

 n = 3 n = 5 n = 7 n = 9 

 1 1 0.0474 0.0474 0.0474 0.0474 0.0476 0.0477 0.0477 0.0478 

 1 2 0.1033 0.1033 0.1032 0.1032 0.1039 0.1041 0.1042 0.1043 

 2 1 0.1188 0.1189 0.1187 0.1187 0.1197 0.1199 0.1202 0.1204 

 2 2 0.1694 0.1698 0.1691 0.1691 0.1721 0.1725 0.1729 0.1732 

 1 3 0.1888 0.1888 0.1883 0.1883 0.1898 0.1901 0.1905 0.1908 

 3 1 0.2180 0.2184 0.2175 0.2175 0.2196 0.2202 0.2211 0.2218 

 2 3 0.2475 0.2477 0.2465 0.2469 0.2520 0.2525 0.2532 0.2538 

 3 2 0.2624 0.2629 0.2619 0.2614 0.2675 0.2682 0.2692 0.2700 

 1 4 0.2969 0.2969 0.2959 0.2949 0.2979 0.2985 0.2993 0.3000 

 4 1 0.3319 0.3330 0.3311 0.3299 0.3340 0.3350 0.3367 0.3382 

 3 3 0.3320 0.3326 0.3310 0.3297 0.3407 0.3416 0.343 0.3441 

 2 4 0.3476 0.3479 0.3463 0.3446 0.3533 0.3542 0.3554 0.3563 

 4 2 0.3707 0.3720 0.3696 0.3677 0.3774 0.3785 0.3805 0.3821 
(a) Taken from Srinivas et al. (1970), (b) Taken from Reddy (1984b), (c) Taken from Zenkour (2001) 

Table 5 Comparison of non-dimensional natural frequencies of simply supported two-layer antisymmetric cross-ply 

(0°/90°) square laminates 

 
a/h CPT (b) FSDT (a) HSDT (a) SHSDT (b) 

Present    

 n = 3 n = 5 n = 7 n = 9 

 2 8.606 5.191 5.699 5.717 5.7170 5.4833 5.429 5.4182 

 4 10.424 7.975 8.294 8.354 8.3546 8.2247 8.2023 8.2037 

 5 10.720 8.757 9.010 9.087 9.0871 8.9872 8.9717 8.9744 

 10 11.153 10.355 10.449 10.567 10.5680 10.5329 10.5287 10.5309 

 12.5 11.208 10.622 10.686 10.813 10.8135 10.7900 10.7871 10.7887 

 20 11.269 10.941 10.968 11.105 11.1051 11.0953 11.0942 11.095 

 25 11.283 11.020 11.037 11.176 11.1768 11.1704 11.1697 11.1702 

 50 11.302 11.127 11.132 11.275 11.2751 11.2734 11.2733 11.2734 

 100 11.306 11.155 11.156 11.300 11.3001 11.3000 11.3000 11.3000 
(a) Taken from Reddy (1985), (b) Taken from Senthilnathan et al.(1988) 
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Table 6 Comparison of non-dimensional natural frequencies of simply supported four-layer symmetric cross-ply 

(0°/90°/90°/0°) square laminates 

 
a/h CPT (b) FSDT (a) HSDT (a) SHSDT (b) 

Present    

 n = 3 n = 5 n = 7 n = 9 

 2 15.902 5.492 5.576 6.0017 6.0017 5.8765 5.8876 5.9180 

 4 17.989 9.369 9.497 10.230 10.2032 10.2119 10.2816 10.3440 

 5 18.298 10.820 10.989 11.770 11.7710 11.8020 11.8776 11.9418 

 10 18.737 15.083 15.270 15.940 15.9405 15.9792 16.0317 16.0733 

 12.5 18.792 16.120 16.276 16.828 16.8288 16.8598 16.8998 16.9313 

 20 18.852 17.583 17.668 17.993 17.9938 18.0096 18.0289 18.0440 

 25 18.866 17.991 18.050 18.301 18.3010 18.3118 18.3249 18.3350 

 50 18.885 18.590 18.606 18.738 18.7381 18.7410 18.7445 18.7473 

 100 18.889 18.751 18.755 18.852 18.8526 18.8534 18.8543 18.8550 
(a) Taken from Reddy (1985), (b) Taken from Senthilnathan et al.(1988) 

Table 7 Comparison of non-dimensional natural frequencies of simply supported eight-layer antisymmetric cross-ply 

(0°/90°)4 square laminates 

 
a/h CPT (b) FSDT (a) HSDT (a) SHSDT (b) 

Present    

 n = 3 n = 5 n = 7 n = 9 

 2 15.441 5.623 5.9263 5.9263 5.9263 5.8274 5.8519 5.8896 

 4 17.585 9.9843 10.080 10.080 10.0800 10.1091 10.1892 10.2576 

 5 17.903 11.565 11.618 11.618 11.6183 11.6668 11.7512 11.8204 

 10 18.351 15.681 15.673 15.673 15.6735 15.7203 15.7766 15.8201 

 12.5 18.407 16.541 16.530 16.530 16.5303 16.5670 16.6096 16.6423 

 20 18.469 17.657 17.649 17.649 17.6496 17.6679 17.6884 17.7039 

 25 18.483 17.949 17.944 17.944 17.9441 17.9565 17.9703 17.9807 

 50 18.502 18.363 18.362 18.361 18.3622 18.3656 18.3693 18.3721 

 100 18.507 18.472 18.471 18.470 18.4717 18.4725 18.4735 18.4742 
(a) Taken from Reddy (1985), (b) Taken from Senthilnathan et al.(1988) 

Table 8 Comparison of non-dimensional natural frequencies of simply supported two-layer antisymmetric angle-ply 

(45°/-45°) square laminates 

 
a/h CPT (b) FSDT (a) HSDT (a) SHSDT (b) 

Present    

 n = 3 n = 5 n = 7 n = 9 

 2 6.882 5.520 6.283 6.337 6.3368 5.9386 5.8326 5.8021 

 4 13.505 9.168 9.759 9.759 9.7593 9.5004 9.4444 9.4367 

 5 13.885 10.335 10.840 10.839 10.8398 10.6285 10.5855 10.5818 

 10 14.439 13.044 13.263 13.263 13.2631 13.1772 13.1621 13.1629 

 12.5 14.509 13.550 13.704 13.704 13.7040 13.6444 13.6342 13.6350 

 20 14.587 14.179 14.246 14.246 14.2463 14.2206 14.2164 14.2169 

 25 14.605 14.338 14.383 14.382 14.3828 14.3660 14.3632 14.3636 

 50 14.629 14.561 14.572 14.572 14.5723 14.5680 14.5673 14.5674 

 100 14.635 14.618 14.621 14.621 14.6212 14.6201 14.6200 14.6200 
(a) Taken from Reddy (1985), (b) Taken from Senthilnathan et al.(1988) 
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5. Conclusions 
 

A simple refined nth-higher-order shear deformation 

theory is used to analyze the free vibration of isotropic, 

orthotropic and laminated composite plates. By effecting a 

modification in the kinematic of the displacement field, 

with the insertion of an undetermined integral term, the 

number of independent unknowns and governing equations 

of motion is reduced to four. The present theory satisfies the 

shear stress-free boundary conditions on the top and bottom 

surfaces of the plate and obviates the need of a transverse 

shear correction factor. Analytical solutions for simply 

supported thick to thin cross-ply and angle-ply laminated 

composite plates are solved using Navier’s solution  

 

 

 

 

 

technique. The results of natural frequencies obtained by 

present theory are compared with those obtained by other 

theories available in the literature. Through all several 

problems studied, It is clear that the proposed model is not 

only accurate but also provides an elegant and efficient 

approach for vibration behavior of isotropic, orthotropic and 

laminated composite plates. It can be concluded that the 

present "nth-HSDT" theory give a same numerical results of 

natural frequencies as compared to HSDT, SHSDT theories 

and even with the results investigated by Bert and Chen 

(1978). Other effects can be considered in future such as 

magnetic field (Bayones and Abd-Alla 2018). An 

improvement of the present formulation will be considered 

in the future work to consider the thickness stretching 

Table 9 Comparison of non-dimensional natural frequencies of simply supported eight-layer antisymmetric angle-ply 

(45°/-45°)4 square laminates 

 
a/h CPT (b) FSDT (a) HSDT (a) SHSDT (b) 

Present    

 n = 3 n = 5 n = 7 n = 9 

 2 6.882 5.848 6.283 6.314 6.3140 6.0598 6.0417 6.0648 

 4 13.765 10.842 10.991 10.990 10.9905 10.9644 11.0486 11.1293 

 5 17.207 12.892 12.972 12.971 12.9720 12.9956 13.1007 13.1927 

 10 25.052 19.289 19.266 19.265 19.2660 19.3446 19.4480 19.5294 

 12.5 25.128 20.196 20.888 20.888 20.8885 20.9586 21.0443 21.1108 

 20 25.212 23.259 23.239 23.238 23.2388 23.2800 23.3269 23.3626 

 25 25.231 23.924 23.909 23.909 23.9091 23.9384 23.9711 23.9960 

 50 25.257 24.909 24.905 24.904 24.9046 24.9131 24.9224 24.9294 

 100 25.264 25.176 25.174 25.174 25.1745 25.1767 25.1791 25.1809 
(a) Taken from Reddy (1985), (b) Taken from Senthilnathan et al.(1988) 

Table 10 Comparison of non-dimensional natural frequencies of simply supported multilayered antisymmetric angle-

ply (°/-°)n square laminates, (a/h = 10) 

Configuration Theory 
Number of layers   

2 4 6 

(45°/-45°)n Ref (a) 15.714 18.609 18.295 

 Ref (b) 13.040 18.460 19.290 

 Ref(c) 14.482 17.411 18.326 

 Present n =3 13.2631 18.3221 19.0248 

 Present n =5 13.1772 18.4757 19.1207 

 Present n =7 13.1621 18.5895 19.2314 

 Present n =9 13.1629 18.6681 19.3148 

(30°/-30°)n Ref (a) 15.001 17.689 18.002 

 Ref (b) 12.680 17.630 18.230 

 Ref(c) 13.941 16.642 11.471 

 Present n =3 12.9283 17.6618 18.3353 

 Present n =5 12.8578 17.7972 18.4218 

 Present n =7 12.8476 17.8981 18.5205 

 Present n =9 12.8502 17.9679 18.5948 

(a) Taken from Reddy (1979), (b) Taken from Bert and Chen (1978), (c) Taken from Maiti and Sinha (1996) 
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influence by employing quasi-3D shear deformation 

theories (Bessaim et al. 2013, Bousahla et al. 2014, Belabed 

et al. 2014, Hebali et al. 2014, Bourada et al. 2015, Hamidi 

et al. 2015, Larbi Chaht et al. 2015, Draiche et al. 2016, 

Bouafia et al. 2017, Bennoun et al. 2016, Benahmed et al. 

2017, Sekkal et al. 2017b, Abualnour et al. 2018, Bouhadra 

et al. 2018, Younsi et al. 2018, Benchohra et al. 2018,  

Karami et al. 2018c,d, Boukhlif et al. 2019, Khiloun et al. 

2019, Zarga et al. 2019, Zaoui et al. 2019, Boutaleb et al. 

2019, Bendaho et al. 2019) and the wave propagation 

problem (Yahia et al. 2015, Boukhari et al. 2016, 

Benadouda et al. 2017, Ait Atmane et al. 2017, Karami et al. 

2017, Fourn et al. 2018). 
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