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1. Introduction 
 

The accurate assessment of wind-induced load effects 

plays a pivotal role in the structural design of high-rise 

buildings. The wind tunnel physical modeling technique has 

long been recognized as an accurate and comprehensive 

experimental method for estimating wind loads on tall 

buildings, especially those with irregular shapes. The high 

frequency base balance (HFBB) test, which requires only 

simple models cut out of rigid but light weight foam plastic 

(Tschanz and Davenport 1983), has become one of the most 

common wind tunnel testing techniques. The HFBB test is 

capable of simultaneously measuring the aerodynamic wind 

loads that generate building vibrations in two translational 

directions and one torsional direction. For tall buildings 

with significant coupled lateral and torsional responses, the 

estimation of the peak resultant load effects is an extremely 

important issue in the assessment of building performance 

under wind excitation.  

The peak vectorial combination effects can be 

determined through simplified rules, including the square-

root-of-the-sum-of-squares (SRSS) or the complete-

quadratic-combination (CQC) method. Isyumov (1982) 

proposed an approach for estimating the peak resultant load 

effects caused by wind forces in the two sway directions 

and the wind-induced torque by using the SRSS rule with  
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empirical joint action factors. The values of the joint action 

factors range from 0.7 to 1.0, depending on the relative 

magnitudes of the two load components. These results have 

been reflected in the current American and Canadian 

building codes and standards. Nonetheless, this method is 

only suitable for buildings or structures with regular shapes 

and does not account for building specific aerodynamic 

effects. 

Solari and Pagnini (1999) provided an analytical 

evaluation scheme of the vectorial load effects from 

alongwind and crosswind responses. A dodecagon 

representing the envelope of the critical load conditions was 

constructed, in which an elliptical threshold, defined by the 

maximum and minimum values of a single process, was 

enclosed. However, the correlation between the alongwind 

and crosswind load components was neglected, and the 

torsional load effect was not included in the establishment 

of the combined wind load cases for buildings with 

irregular structural configurations. For slender and flexible 

buildings, the AIJ Recommendations (2004) assume that the 

crosswind and torsional forces follow bivariate normal 

distributions in which the correlation between these two 

load components are taken into account. The equivalence 

line of probability can then be interpreted as an elliptical 

curve. An octagon enclosing the elliptical curve serves as an 

envelope to represent the critical load combinations along 

with a reduced value of the maximum alongwind force. In 

terms of the approaches for determining the value of the 

wind load combination factor, Tamura et al. (2008) 

proposed the combination factor for estimating the 

equivalent crosswind load along with the alongwind load 
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that acted simultaneously on medium-rise buildings. Chen 

and Huang (2009) studied the upcrossing theory to evaluate 

the peak resultant response of wind-excited tall buildings 

from correlated three-dimensional responses. Naess et al. 

(2009) developed an efficient method for estimating 

extreme response statistics of the combined load effect 

processes, based on a Monte Carlo simulation. Bartoli et al. 

(2011) demonstrated a copula-based approach for 

evaluating the expected maxima of two or more linearly 

combined processes. Stathopoulos et al. (2013) presented 

load combination factors derived from wind tunnel tests for 

evaluating structural wind loads on rectangular medium-rise 

buildings. Kim et al. (2016) presented wind load 

combination rules based on the concept of combination 

factor using a simplified reference building with four 

columns for atypical supertall buildings. Huang et al. 

(2017) proposed a copula-based approach for determining 

dynamic wind load combinations for tall buildings.  

Most previous studies have focused on the 

determination of the peak resultant load effects for a single 

process. Nonetheless, wind tunnel testing for measurement 

of the wind loads that act on a building should be carried 

out using various wind directions. Therefore, critical load 

cases, resulting from the time series in all wind directions, 

should be identified, and a limited number, accounting for 

governing conditions, may be selected for design. A general 

outline from the Boundary Layer Wind Tunnel Laboratory 

at the University of Western Ontario (2007) specifies that 

the nominal number of load cases covering all combinations 

of two translational moments and one torsional moment for 

all wind directions is 24. It is assumed that the largest load 

effects occur when the load in one principal load direction 

is at its peak together with nominal loads in the other two 

principal directions. Boggs and Lepage (2006) suggested 10 

to 20 or so load cases, in which a critical load combination 

was either defined as the principal component experiencing 

its peak values with other two companion values, or the 

maximum vector resultant values. 

Nonetheless, as far as the authors are aware, most if not 

all of the common practices for obtaining critical wind load 

cases, and the appropriate number of load cases, relies in 

part on subjective engineering judgment. Furthermore, 

because there are no general rules for wind load 

combinations, the estimated extreme wind load effects can 

vary greatly in different combination schemes. It is also 

important to realize that the use of existing combination 

methods may result in inconsistent and subjective 

assessments of the critical wind load effects on buildings. 

This paper presents a computer-based optimization 

approach to determine the peak resultant load cases of 

wind-excited tall buildings with three-dimensional 

correlated wind loads measured in wind tunnel tests. A 

multivariate normal distribution is assumed for random 

wind-induced structural load components in each incident 

wind direction. The equivalence surface of probability can 

then be interpreted as an ellipsoid, corresponding to a 

certain statistical threshold. An optimization-based 

framework is proposed in the search for a convex hull that 

serves as a design envelope. The individual combined load 

cases can be expressed in terms of the coordinates of the 

vertices of the optimized polyhedron. The Pareto front is 

also integrated in this new method to enable the prediction 

of the appropriate number of load cases. A 30-story building 

is used as an illustrative example to demonstrate this 

systematic combination scheme. The accuracy of the 

proposed method with the current combination approach is 

evaluated, and a more precise estimation of wind load cases 

of tall buildings is achieved. 

 

 

2. Commonly used practices for wind load 
combinations 

 

2.1 Analysis of wind-induced response and equivalent 
static wind loads in HFBB tests 

 

High frequency base balance (HFBB) testing has 

emerged during the past three decades as a powerful tool for 

determining the dynamic responses of tall buildings 

subjected to wind loads (Tschanz and Davenport 1983, 

Boggs and Peterka 1989). In HFBB tests, the time-variant 

base moment components in two translational directions 

and one twisting direction are simultaneously measured and 

are considered to be the aerodynamic loads that act on the 

building. For an n-story building modeled as a three-

degrees-of-freedom system with a lumped mass at each 

floor level, the structural responses can be derived from the 

equation of motion, which is conveniently written in matrix 

notation as (Clough 1993) 

       [ ] [ ] [ ]M x C x K x F+ + =  (1) 

where [M], [C], [K], {x} and {F} are the mass matrix, 

matrix of damping coefficient, stiffness matrix, 

displacements and external forces, respectively. Since Eq. 

(1) represents a set of coupled differential equations to be 

solved, eigenvalue analysis is conducted, in which the 

coupled system can be conveniently transformed into a set 

of uncoupled equations as 

j j j j j j jm c k f  + + =  (2) 

where mj, cj, kj, and fj are the generalized mass, generalized 

damping, generalized stiffness and the generalized force for 

the jth mode as 
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=

=

=
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 (3) 

j is the generalized coordinate that can be expressed as 

   
T

j j x =  (4) 

j is the jth mode shape vector. Since the base moments are 

measured in HFBB tests, the key issue is to link the external 

force or the generalized force to the base moments. 
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Assuming that the structure has a linear mode shape in the 

two swaying directions and a constant mode shape in the 

torsion direction (Boggs and Peterka 1989), the generalized 

force can be expressed by the base moments as 

   

     [ ( ) ( ) ( ) ( ) ( ) ( )]

     [ ( ) ( ) ( ) ( ) ( ) ( )]

( ) ( )
     ( )
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j j
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z z
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z z
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

     

     

   
 

=

= + +
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 (5) 

in which ( )j hz  is the value of jth mode shape vector at 

the top of the building; j is the mode shape correction 

factor; and ,  ,  x yM M M  are measured time series of the 

base moments from HFBB tests.  

Using the HFFB technique, simultaneous base shears, 

moments and torques are measured at the base of an 

aerodynamic building model in a boundary-layer wind 

tunnel, after which the response of the building may be 

calculated for any combination of the building’s mass, 

stiffness, damping and the oncoming wind speed. As the 

aerodynamic wind force is a random function, the base 

moment response spectrum of the building can be 

calculated by random vibration theory in the frequency 

domain as (Zhou et al. 2003) 

2
( ) ( ) ( )M mS f H f S f=  (6) 

where SM is the base moment response spectrum; Sm is the 

input aerodynamic wind load spectrum; H is the mechanical 

admittance function which can be computed as 

( )
( ) ( )

2

2
2 22

1

1 / 4 /o o

H f

f f f f

=
 − +
  

 
(7) 

where fo is the modal frequency of the building and  is the 

critical damping ratio. 

The mean square response moment can be calculated by 

integrating the area underneath the moment response 

spectrum curve given in Eq. (6) as 

22

0 0

( ) ( ) ( )M M mS f df H f S f df
 

= =   (8) 

In general, the mean square response can be approximated 

as the sum of background component and resonant 

component as follows (Davenport 1995) 

2 2 2
M MB MR  = +  (9) 

The background component of the mean square base m

oment response can be considered as quasi-static and is 

given as 

2

0
MB mS ( f )df



=   (10) 

For a lightly damped system, the resonant component 

of the mean square moment response can be simplified 

by the white noise assumption and obtained approximat

ely as 

( ) ( ) ( )
22

0 4
MR m o o m oS f H f df f S f








 =  (11) 

Using the gust response factor approach and dividin

g the peak response in terms of mean, background and 

resonant components, the peak base moment can be re

written as (Kareem and Zhou 2003) 

22
RB M̂M̂MM̂ ++=  (12) 

where the background component ˆ
BM  and the resona

nt component ˆ
RM  could be estimated from Eqs. (8) 

and (9) respectively as 

ˆ
B B MBM g =  (13) 

( )ˆ
4

R R MR R o m oM g g f S f





= =
 

(14) 

in which the background peak factor, gB, can be 

approximated by the peak factor of the oncoming wind 

velocity, the value of which is usually assumed to be about 

3 to 4 (Zhou et al. 1999). For a Gaussian process, the 

resonant peak factor, gR, can be given as (Davenport 1967) 

0

0

0.577
2ln

2 ln
Rg f T

f T
=  +


 (15) 

where T is the observation time (usually 3600 s). 

By means of the HFFB technique, the time history of the 

base moments is first measured, the power spectral density 

of the base moments Sm(f) is then derived. With the derived 

Sm(f) spectrum curve, the RMS values of such base 

moments are then computed using Eq. (8) and the expected 

peak base moments are calculated by Eq. (12). Based on the 

calculated peak base moments, the wind-induced structural 

loads (or the so-called ESWLs) on the building can then be 

given by distributing the peak base moment to the floor 

levels over the building height (Homes 2002, Chen and 

Kareem 2004). Similar to the base moments, the ESWLs 

expressed in terms of total peak floor load, F̂ , can also be 

written into a linear combination of the mean ( F ), the 

background ( ˆ
B BW F ) and the resonant ( ˆ

R RW F ) responses as 

RRBB F̂WF̂WFF̂ ++=  (16) 

where 
2 2 1/2( )

MB
B

MB MR

W


 
=

+
, 

2 2 1/2( )

MR
R

MB MR

W


 
=

+
; ˆ

BF  

is the peak background wind loads and ˆ
RF  is the peak 

resonant wind loads. 

Using Eq. (16), the ESWLs can be expressed 

respectively in the alongwind, crosswind and torsional 

directions of a building. For convenience of discussion, the 
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X- and Y-axes denote the alongwind and crosswind 

directions, respectively, and the vertical Z-axis defines the 

torsional direction of the building. In theory, the mean 

component of both the crosswind and torsional wind loads 

should be equal to zero. The alongwind mean force can be 

related to the approaching wind velocity profile and written 

as follows 

2
21

( )
2

x H D

z
F z U BC

H




 

=  
 

 (17) 

where =the air density; HU =the wind speed at the top of 

the building; =the power law exponent; B=the width of 

the building; CD = the drag force coefficient of the building. 

Due to the quasi-static nature of the background 

component of the wind loads, the distribution of which can 

be assumed to follow the distribution of the mean 

alongwind loading profile given in Eq. (17) as (Zhou et al. 

1999) 

y,BxHy,Bx M̂

zdz)z(F

)z(F
)z(F̂



=

0

 

(18a) 

 BHB M̂

zdz)z(F

z)z(F
)z(F̂



=

0  

(18b) 

where
, ,

ˆ ( )
x yBF z


is the peak background wind load, and 

( )F z  is the mean alongwind load.  

For a building having uncoupled mode shapes defined as 

( ), ( ), ( )x yz z z   , the distribution of the resonant 

component of the generalized wind loads follows basically 

the inertial load distribution as shown in Eq. (19(a)) for the 

translational X- or Y- direction and Eq. (19(b)) for the 

rotational direction. 
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(19b) 

where 
, ,

ˆ ( )
x yRF z


 is the peak resonant wind load along the 

height, m(z) is the mass per unit height, I(z) is the rotational 

mass moment of inertia about the vertical axis through the 

center of mass per unit height. For a more general building 

with complex three dimensional mode shapes, the ESWLs 

can be similarly evaluated with due consideration of the 

lateral-torsional mechanical coupling effects as well as the 

intermodal coupling of modal responses (Chan et al. 2010). 

 

2.2 Determination of design wind load cases in one 
wind direction 

 

Once the equivalent static wind loads have been derived, 

as described in Section 2.1, they can further be used to 

estimate the extreme wind load cases. The expected 

extreme values of alongwind and crosswind moment 

responses can be represented in a two-dimensional manner 

by an elliptical threshold. As shown in Fig. 1, the 

coordinates of the elliptical center are given as the mean 

values of the two base moment response components, and 

the magnitudes of the major and minor axes of the ellipse 

are interpreted as the maximum fluctuating parts of two 

response components, respectively, which are equal to the 

product of the standard deviations and the peak factor. By 

further considering the correlation between two wind load 

components by Boggs (2014), an inclined ellipse as shown 

in Fig. 2 presents the extreme wind load conditions. Its 

skewness indicates the correlation coefficient of two wind 

load components. 

 
 

 

 

Fig. 1 Elliptical threshold without consideration of win

d load correlation 

 

 

 

Fig. 2 Elliptical threshold with consideration of wind l

oad correlation 
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Fig. 3 Inner approximation of the elliptical threshold 

(Boggs 2014) 

 

 

After an elliptical threshold is developed, extreme wind 

load cases should be identified subsequently. The design 

wind loads are required to be presented in the form of 

equivalent static loads with a limited number for 

consideration (Xie et al. 1999). In theory, every point on the 

threshold can be regarded as a probable extreme wind load 

combination; but it is not practical to consider all of them. 

Instead, to interpret the limited number of the wind load 

cases, the approximation rule should be proposed, which 

can be generally categorized into the inner and outer 

approximation for the elliptical threshold. In the context of 

the inner approximation, two principles are established for 

the selection of the critical load combinations: one is called 

principal-companion loads (Type A and B in Fig. 3), and 

another is called the maximum vector resultant (Type C in 

Fig. 3) (Boggs 2014). Those load combinations can be 

considered as the vertices of the inner polygon of the 

ellipse. 
 

2.3 Consideration of wind directionality 
 

With respect to the wind directional effects, all elliptical 

thresholds corresponding to each incident wind direction 

measured in HFBB test should be considered, which 

dramatically increases the difficulty to select the critical 

load cases from all the ellipses. 

To overcome this difficulty, one approach is to directly 

use the wind load combinations located on the integrated 

elliptical threshold expressed by the heavy line in Fig. 4 as 

the design wind load cases. In theory, every point on the 

integrated envelope in Fig. 4 can be regarded as a 

statistically-derived extreme wind load combination; but it 

is not easily to mathematically define the integrated 

threshold enveloping all ellipses. Furthermore, it is neither 

necessary nor practical to consider all of the possible points 

on the integrated envelope. 

Another approach is to construct a polygon which serves 

as a design envelope of all elliptical thresholds in Fig. 5. 

Each wind load case is interpreted as a vertex on the 

polygon, and can be determined by best preserving the 

shape of the integrated elliptical boundary with some 

increases of the reliability level due to outer approximation. 

Those vertexes are the representatives of the principle wind 

load component with the positive or negative companion 

load component, or the maximum resultant load effects. 

This paper aims at developing an automated and more 

accurate approach in defining the extreme wind load 

combinations using the polygonal design envelope in 2-

dimensional manner and the polyhedral design envelope in 

3 dimensions. 

 

 

3. Two-dimensional optimization framework for 
development of design envelope 

 
3.1 Development of elliptical threshold for two load 

components 
 

For each incident wind direction, an elliptical threshold 

is first developed in which the correlation obtained from the 

statistical analyses of the time series between each two base 

moment responses is taken into account. 

 

 

 

Fig. 4 Wind load combinations considering wind directio

nality (Boggs 2014) 

 
 

 

Fig. 5 Polygonal envelope for elliptical thresholds 
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It is assumed that the two base moment responses follow a 

bivariate normal distribution, as proposed in the AIJ 

Recommendations (Tamura et al. 2003a), and the joint 

probability density function (PDF) is written as (Lin 1976) 

( ) ( )

2

2 2

2

1
( , )

2 1

2
 exp ;

2(1 )

                                                   ( , , , ; )

norm norm
i j

norm norm norm norm
i i j j

p M M

M M M M

i j x y i j

 







= 

−

 
− + 

− 
− 

 

= 

 (20) 

where ρ is the correlation coefficient of the base moment 

responses 
iM  and 

jM ; norm

iM  and norm

jM  are the two 

normalized base moment responses, given by 

,

i j

j jnorm normi i
i j

M M

M MM M
M M

 

−−
= =  (21) 

where 
iM , 

jM  and 
iM , 

jM  are the mean values and 

standard deviations of the base moment responses. 

Concerning the correlation coefficient, the distribution 

forms an elliptical isopleth with a sloped major axis, as 

shown in Fig. 2. The magnitudes of the major and minor 

axes of the elliptical threshold denoted as a and b are 

expressed as (Kasperski 1992) 

2

1
2(1 ) ln ln ( , )

2 1

norm norm
i ja p M M

 

  
  = + −
  

−   

 (22) 
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 
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  

−     
(23) 

The statistical maxima of one specific response in a no

rmalized form is defined by 

ˆ
ˆ

i

norm i i
i

M

M M
M g



−
= =  (24) 

in which g is the peak response factor. The coordinate of 

another response component along with the specific 

maximum response becomes (Kasperski 1992) 

norm
jM g=  (25) 

The cumulative density function (CDF) that represents the 

confidence level of the elliptical threshold can be expressed 

as 

2

2 2

2

( , )
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1
 

2 1

( ) 2 ( )
  exp
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norm norm

norm norm norm norm

norm norm norm norm
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(26) 

To obtain the explicit formula of the CDF in terms of the 

peak factor, the Cartesian coordinates are transformed into 

polar coordinates (Fenn 2001). By further substituting Eq. 

(24) and Eq. (25) into Eq. (26) and evaluating the integral 

from minus infinite to the two normalized base moments, 

the probability of the two normalized base moment 

response corresponding to a particular level of confidence 

reflected by an associated peak factor g can be written as 

2( , ) 1 exp( 0.5 )norm norm
i jP M M g= − −  (27) 

The exceedance probability based on the assumption of 

Gaussian processes for two base moment responses 

becomes 

21 ( , ) exp( 0.5 )norm norm
E i jP P M M g= − = −  (28) 

The elliptical threshold is thus considered a statistical 

boundary that depicts the extreme wind load combinations 

in terms of the specified value of the peak factor. The 

ellipses corresponding to all incident wind directions are 

then integrated to form the closed statistical boundary of the 

two base moment responses, which represents all of the 

critical wind loads based on the entire set of test data, as 

shown in Fig. 7.  
 

 

Fig. 6 Elliptical isopleth of two base moment response

s in a normalized form 

 
 

 

Fig. 7 Integrated elliptical threshold of two base moment 

response components for all incident wind directions 

 

 

norm

iM

 

norm

jM  

norm

iM̂

 

norm
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b 

O 
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When developing the base moment ellipses corresponding 

to different wind directions, we have incorporated the 

appropriate transformations to convert the climate data to 

the reference wind speed used in the wind tunnel study. 

Given with the meteorological data of the local wind 

climate, different design wind speeds can be adjusted for 

different wind directions corresponding to an equal 

probability of occurring can be established. Using a 

probability approach, the desired value of base moment 

ellipse for each wind direction can be computed via the up-

crossings method (Isyumov et al. 2014). 
 

3.2 Optimization framework for obtaining 2D design 
envelope 
 

In this section, a method will be developed for selection 

of a finite number of discrete critical load cases 

representing the integrated design wind load envelope. In 

search for the optimal design envelope that encompasses the 

critical wind load cases as its vertices, one major goal of 

this study is to develop a numerical optimization technique 

for the definition of a polygonal envelope that encloses the 

integrated elliptical thresholds while attaining as far as 

possible the minimum deviation. 

 
3.2.1 Design variables 
The formulation of this optimization problem starts with 

the determination of the design variables that are varied 

during the optimization process. For polygonal 

approximation with n vertices, the design variables are 

defined as the coordinates of each vertex ((x1, y1), (x2, 

y2), …, (xn, yn)) in 2. 

 
3.2.2 Objective functions 
In this proposed optimization framework for obtaining 

the polygonal threshold as a representative of the design 

envelope, the objective function is delineated by 

minimizing the area of the polygonal envelope. The reason 

is that the polygon with the smallest area in an outer 

approximation indicates that the difference between the 

polygonal and the integrated elliptical thresholds has been 

reduced to a minimum in terms of the shape distortion. The 

optimized polygonal envelope can thus be considered to be 

a practical representation of the statistically-derived 

elliptical thresholds and the overestimation of the critical 

wind load combinations is minimized. 

A simple means of numerical calculation of the area of a 

convex polygon is to split the polygon into several triangles 

and calculate the sum of their areas. Each line segment of 

the polygon can be chosen as a base, and any inner point of 

the polygon can be chosen as an apex. Supposing that the 

line segment k connects two adjacent vertices (xk, yk) and 

(xk+1, yk+1) and that (xo, yo) denotes any inner point of the 

polygon, the formula for the area above can be written as 

half of a 3×3 determinant (Fenn 2001) 

1 1

1
1

1
2

1
o k

o o

k k

k k

x y

S x y

x y
−

+ +

=  (29) 

By calculating the sum of the areas of all of the 

collective triangles, the total area of the polygon with n 

lines is given as 

( 1,2,..., )
o kpolygon

n

S S k n
−= =  (30) 

The objective function of the optimization problem can 

thus be defined as minimizing the value of Spolygon through 

optimization of the coordinates of each vertex of the 

polygon by 

o kpolygon
n

Minimize S S
−=   (31) 

 

3.2.3 Constraint functions 
Constraints are defined as restrictions that must be 

satisfied to ensure the feasibility of a design requirement. 

They are associated with certain physical phenomena in the 

optimization problem. In this framework, a polygonal 

approximation is undertaken to obtain the design envelope, 

in which the design problem involves constraints to 

guarantee that the estimated load cases remain at a certain 

confidence level while being representative of all peak 

resultant load effects. The variable bounds are also required 

to set the feasible region of each design variable. 

 
Constraints for outer approximation 
The outer approximation of the polygon based on the 

elliptical thresholds is used in this optimization framework 

to avoid underestimating the peak resultant loads and ensure 

a certain confidence level. The elliptical thresholds  for 

the wind direction s need to be contained in the polygonal 

subset denoted as . Mathematically, such a restriction can 

be given implicitly for an HFBB test under s = 1, 2,…,d 

number of incident wind directions as follows 

 2 2 2 2( , ) 2 (1 )s sx y x xy y g = − + = − 
 

),...,2,1( ds =  

(32) 

where  is the correlation coefficient for the selected two 

base moment responses for the wind direction s. To 

explicitly express Eq. (32), linear mapping is conducted so 

that each elliptical threshold can be transformed to a unit 

circle S1 by 

S1    (33) 

where  can be obtained from eigenvalue analysis of 

the covariance matrix of the normalized base moment r

esponses by 

( , ) ( , , , ; )norm norm
i j s s

s
Cov M M i j x y i j    = = 
 

D  (34) 

in which D is the unit diagonal matrix. After linear mapping, 

each elliptical threshold is eventually transformed into a 

unit circle centered at the origin. It is known that the circle 

S1 is enveloped by the polygon when all points on the 

lines of the polygon are outside a circle in which the 

distance from the center of the circle should not be less than 
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its radius. The general equation of a line of the polygon  

through two adjacent vertices (xk, yk) and (xk+1, yk+1) can be 

written in a compact form as (Fenn 2001) 

k kA X b =  (35) 

where X=(x,y) and A=(a1,a2) are non-zero. A and b can be 

expressed in terms of the vertex coordinates, which are 

treated as design variables in the optimization problem as 

1 1 1

1 1

,1 ;k k k k k k
k k

k k k k

y y x y x y
A b

x x x x

+ + +

+ +

 − −
= = 

− − 

 (36) 

To ensure an outer approximation of the design polygon 

that encloses the transformed circular threshold, the 

distance from the origin to each line segment of the polygon 

after linear mapping  cannot be less than the radius 

equal to 1 as 

'

'
distance 1  ( 1,2,..., ; 1,2,..., )

k

k
s

b
k n s d

A

 
 

=  = = 
 
 

 (37) 

 
Constraints for convexity 
Because not all the vertices on the concave polygon are 

representative of extreme wind load conditions, the second 

type of constraint keeps the polygonal design envelope 

convex so that every vertex, as one critical load 

combination, can be selected for practical use. A polygon  

is said to be convex if, for any two points in , the line 

segment joining the two points is contained in  (Audin 

2003). One simple means to ensure that a convex polygonal 

load envelope is generated is to make all vertices of the 

polygon lie on one side of any line segment of two 

consecutive vertices of the polygon. As shown in Fig. 9, for 

any pair of two adjacent vertices denoted as f and h on , 

 is a convex polygon if all of the other vertices are found 

to lie in a half-plane of the line segment joining f and h in 

compliance with the following requirements 

( )( ) 0 ;

      ( 1,2,..., ; , 1,2,..., ; , )

k f k k h kA X b A X b

k n f h n f h line k

 −  − 

= = 
 (38) 

 
 

 

Fig. 8 Linear mapping for outer approximation 

 

 

Fig. 9 Restrictions for convexity of the polygon 

 
 

Side constraints 
To avoid undue conservatism in the determination of a 

critical load case, the coordinates of each vertex of the 

polygonal design envelope must be limited within the 

statistical minimum and maximum values determined by 

( ),max , ,
ii i MM M g i x y =  =  (39) 

Therefore, the upper and lower bounds for the 

normalized base moment responses at the vertex of k are 

defined as 

( )1,2,..., ; , ,kig x g k n i x y −   = =  (40) 

 
3.2.4 Optimization algorithms 
The minimization of the area of the convex polygonal 

design envelope with n vertices enclosing the elliptical 

thresholds corresponding to the number of d incident wind 

directions can be summarized as follows 

Minimize   ( 1,2,..., )
o kpolygon

n

S S k n
−= =  (41a) 

( )( )

( )

'

1 ;        ( 1, 2,..., ; 1, 2,..., )
'

0;

        ( 1,2,..., ; , 1,2,

Subject to:

 

..., ; , )

 ;            1,2,..., ; , ,

bk
k n s d

Ak
s

A X b A X bk f k k h k

k n f h n f h line k

g x g k n i x yki 

 
 

 = = 
 
 

 −  − 

= = 

−   = =

 

(41b) 

Once the optimization problem is formulated with the 

objective function and the design constraints explicitly 

expressed in terms of vertex coordinates as design variables, 

the optimization solution can then be sought by the 

sequential quadratic programming (SQP) method.  

 

 

x 

y 

O 

k k+1 

kk bXA =  

h f 
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Fig. 10 Optimal polygonal design envelope for 2-dimens

ional wind load combinations 

 

 

The SQP method starts with an initial design X0, and a 

new and improved design point is then obtained as 

X1=X0+α0X0 based on the properly chosen move limits. The 

optimal search direction is given in terms of the Hessian 

matrix of the Lagrangian function which is updated by the 

BFGS formula in the optimization process (Belegundu and 

Chandrupatla 2011). The gradient vectors are evaluated at 

the new design point and the above sequential process for 

formulation and solution of approximate QP problems is 

repeated until the minimum area of the convex polygon is 

attained while satisfying all of the specified design 

constraints. 

This optimization framework is applied to obtaining 

wind load combinations regarding two load components. In 

the proposed framework, subjective judgment can be 

successfully avoided with the aid of this automated 

optimization technique. All the critical wind load conditions 

are more accurately presented through the optimal design 

envelope that best preserve the shape of the elliptical 

thresholds. Fig. 10 shows an eight-sided octagonal design 

envelope that best superscribes all elliptical thresholds with 

the least area of the octagonal envelope.  

 
 
4. Three-dimensional optimization framework for d
evelopment of the design envelope 
 

4.1 Development of the ellipsoidal threshold for three 
load components 
 

In Section 3, an optimization framework is proposed for 

the determination of wind load combinations in two 

dimensions. Indeed, wind loads that simultaneously act on 

tall buildings typically contain three load components: two 

lateral and one torsional. Because each load component 

does not reach its peak value at the same instant as the 

others, it is more significant to consider simultaneously the 

three-dimensional wind load combinations for structural 

design. 

 

To obtain the peak resultant load effects for each incid

ent wind direction, the ellipsoidal threshold is construct

ed at the beginning in a manner similar to the develop

ment of the elliptical threshold described in Section 3.1. 

The multivariate normal distribution is assumed for two 

translational and one torsional base moment responses 

by 

1

1/21.5

1 1
( ) exp( )

2(2 )

Tp X X X


−= − 


 (41) 

where X and Σ denote variables for the normalized base 

moment responses and their covariance matrix, respectively, 

as 

1

[ ]; 1

1

xy x

norm norm norm
x y xy y

x y

X M M M



 

 

 

 

 

 
 

=  =  
 
  

 (42) 

Given the correlation coefficient, the multivariate 

normal distribution in Eq. (41) forms an ellipsoidal contour 

surface with a tilted major axis. The extreme wind load 

combinations for the three-dimensional base moment 

responses are then depicted as the ellipsoidal threshold. The 

lengths of the semi-principal axes are correlated with the 

value of the peak factor g. To explicitly express the 

relationship between the above two factors, a linear 

mapping from the general ellipsoid to a standard one 

centered at the origin and aligned with the axes is conducted 

by 

 
(43) 

where  can be obtained from eigenvalue analysis of the 

covariance matrix of the normalized base moment 

responses by 

   ( ) ( )Cov X Cov X   =  (44) 

in which the covariance matrix for the transformed 

variables [ ]norm norm norm
x yX M M M

   =  is diagonal.  The 

equation for the standard ellipsoid then becomes 

( ) ( ) ( )
2 2 2

2

2 2 2
norm norm norm

norm norm norm
x y

x y

M M M
g




    

  

+ + =  (45) 

The CDF that represents the confidence level of the ell

ipsoidal threshold can be expressed as 

2

2

2 2

2 2

( )1 1
( ) exp

2 2

( ) ( )
              

norm norm norm norm

norm norm

norm
x

x y x

norm norm
y norm norm norm

x y

y

M
P X

M M
dM dM dM








   

 

   

 

  
  =  − + 

 

 
   + 


 (46) 
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To obtain the explicit formula of the CDF in terms of the 

peak factor, the Cartesian coordinates are transformed into 

polar coordinates and the CDF can be rewritten as a 

function of the peak factor g as 

2

2
2

( ) ( ) 2 ( ) 1

g
g

P X P X g e


−
= =  − −  (47) 

where Φ is the cumulative probability for the standard 

normal distribution. 

 
4.2 Optimization framework for obtaining three-

dimensional design envelope 
 

Once the ellipsoidal thresholds that correspond to wind 

approaching from all azimuths are established, an envelope 

enclosing all ellipsoidal thresholds can be developed for 

design purposes. A specified number of discrete critical load 

cases is determined by searching for the optimal design 

envelope interpreting critical wind load cases as its vertices. 

In this section, a numerical optimization technique is 

extended in three dimensions for direct definition of a 

convex polyhedron that encloses the ellipsoidal thresholds 

that correspond to all incident wind directions while 

providing the best fit to the original statistical boundary 

developed in Section 4.1. 

 
4.2.1 Design variables 
Consider a polyhedron with m triangular surfaces and n 

vertices; the design variables are defined as the coordinates 

of each vertex ((x1, y1, z1), (x2, y2, z2), …, (xn, yn, zn)) in 3. 

 
4.2.2 Objective functions 
For three-dimensional wind load combinations, the 

objective function is delineated as minimizing the volume 

of the polyhedral envelope. A simple method of numerical 

calculation of the volume of a convex polyhedron with an 

irregular shape is to split it into several tetrahedrons and 

calculate the sum of their volumes. Each triangular face can 

be chosen as a base, and any inner point of the polyhedron 

can be chosen as an apex. Suppose three adjacent points (xk, 

yk, zk), (xk+1, yk+1, zk+1) and (xk+2, yk+2, zk+2) interpret one 

surface k of the polyhedron and (xo, yo, zo) denotes the inner 

point, the volume of the tetrahedron O-k is (Fenn 2001) 

1 1 1

2 2 2

1

6o k

k o k o k o

k o k o k o

k o k o k o

x x y y z z

V x x y y z z

x x y y z z
− + + +

+ + +

− − −

= − − −

− − −

 (48) 

By adding together the volumes of all of the collective 

tetrahedrons, the total volume of the polyhedron with m 

surfaces can be determined, and the objective function can 

thus be defined as minimizing the value of the total volume 

through optimization of the coordinates of each vertex of 

the polyhedron by 

1

m

polyhedron o k
k

Minimize V V −
=

=   (49) 

 

4.2.3 Constraint functions 
In this optimization framework, constraint functions are 

used to ensure that the approximated polyhedron encloses 

all of the ellipsoidal thresholds determined by the time 

series of 3D ESWLs while retaining the convexity of the 

polyhedron. 

 
Constraints for outer approximation 
Similar to the two-dimensional case, the outer 

approximation is used to avoid underestimating the peak 

resultant loads. This type of constraint is defined so that 

each ellipsoidal threshold  corresponding to wind 

direction s is contained in the polyhedral subset denoted as 

. After the linear mapping by Eq. (43), the restriction can 

be given implicitly for s=1,2,…,d incident wind directions, 

as follows 

 

( 1,2,..., )s d=  

(50) 

To explicitly express the above constraint function, each 

standard ellipsoidal threshold is further transformed to a 

unit sphere S2 centered at the origin by 

S2  (51) 

It is known that the sphere S2 is enveloped by the 

polyhedron when the distance from the center of the 

sphere to each surface of the polyhedron is not less than its 

radius. The general equation of a surface k of the 

polyhedron  through three adjacent vertices (xk, yk, zk), 

(xk+1, yk+1, zk+1) and (xk+2, yk+2, zk+2) can be written in 

compact form as (Fenn 2001) 

k kA X b =  (52) 

where X=(x,y,z) and A=(a1,a2,a3) are non-zero. A and b can 

be expressed in terms of design variables as 

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

1 2 2 1

1 2 2 1

1 2 2 1

;

T

k k k k k k k k

k k k k k k k k k

k k k k k k k k

T
k k k

y y z z y y z z

A z z x x z z x x

x x y y x x y y

b A X

+ + + +

+ + + +

+ + + +

 − − − − −
 

= − − − − − 
 − − − − − 

= 

 (53) 

The constraint function for surface k of the polyhedron 

and the ellipsoidal threshold  can be written as 

distance

''

''
1 ( 1,2,..., ; 1,2,..., )

k

k
s

b
k m s d

A

 
 

=  = = 
 
 

 (54) 

 
Constraints for convexity 
This type of constraint keeps the polyhedral design 

envelope convex so that each vertex, as a representative of 

one critical load combination, can be selected for practical 
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use. The polyhedron  is said to be convex if all of its 

vertices are located at the same side of each surface of the 

polyhedron. The constraint function is then defined that the 

sign convention should be kept the same for the function 

values of each vertex, and the function is checked with 

every two adjacent vertices. For instance, for any two 

vertices f and h on the polyhedron, the constraint function 

can be expressed as 

( )( ) 0 ;

         ( 1, 2,..., ; , 1, 2,..., ; , )

k f k k h kA X b A X b

k m f h n f h surface k

 −  − 

= = 
 (55) 

 
Side constraints 
The coordinates of each vertex v of the polyhedral 

design envelope serving as design variables must be limited 

within the statistical minimum and maximum values of 

normalized base moment responses by 

( )1,2,..., ; , ,vig x g v n i x y −   = =  (56) 

 
4.2.4 Optimization algorithms 
The minimization of the volume of the convex 

polyhedral design envelope with m triangular surfaces and n 

vertexes enclosing ellipsoidal thresholds corresponding to 

the number of d incident wind directions can be 

summarized as follows 

Minimize   
1

m

polyhedron o k
k

V V −
=

=   (57a) 

Subject to:  

''

''
1 ( 1,2,..., ; 1,2,..., )

k

k
s

b
k m s d

A

 
 

 = = 
 
 

; 

( )( ) 0 ;  

    ( 1, 2,..., ; , 1, 2,..., ; , )

k f k k h kA X b A X b

k m f h n f h surface k

 −  − 

= = 
 

( )   1,2,..., ; , ,vig x g v n i x y −   = = . 

(57b) 

Once the optimization problem is formulated with the 

objective function and the design constraints are explicitly 

expressed in terms of the design variables, the nonlinear 

optimization solution can then be sought by SQP method.  

This optimization framework is applied to 

systematically obtain the three-dimensional wind load 

combinations. Particularly, it will benefit the determination 

of the design wind load cases for tall buildings with 

complex structural configurations, for which three load 

components are equally important. Traditional methods are 

no longer deemed a feasible way to go since the critical 

loads are impossible to be determined simply by 

observations. Once the optimal design envelope is obtained 

with the specified number of load cases, the coordinates of 

each vertex will be representative of a critical wind load 

case for structural design. Results for a practical building 

are discussed in Section 5. 

5. Illustrative examples 
 

5.1 A 30-story building and the wind tunnel test 
 

A study of a 30-story residential building was carried 

out to illustrate the effectiveness of this proposed 

optimization-based wind load combination approach. The 

floor plan of the building is shown in Fig. 11. A wind tunnel 

test was conducted at the CLP Power Wind/Wave Tunnel 

Facility (WWTF) of the Hong Kong University of Science 

and Technology. A 1:300 scale rigid model shown in Fig. 12 

was subjected to approaching wind profiles of the 50-year 

return period for 36 attacking wind angles at 10° intervals 

for the 360° azimuth and was examined in the HFBB test to 

obtain the aerodynamic base moments of the structure. 

Once the finite element model was set up for this 

building, an eigenvalue analysis was carried out to obtain 

the natural frequencies as well as the three-dimensional 

coupled mode shapes, as presented in Fig. 13. The first 

natural frequencies for three fundamental modes were 0.306 

Hz, 0.368 Hz and 0.737 Hz, respectively. After determining 

the dynamic properties of the building, a dynamic analysis 

of the structure in the time domain was conducted to obtain 

the base moment responses in two translational directions 

and one torsional direction, corresponding to a duration of 

3600 s. 

The ellipsoidal threshold at each incident wind direction, 

based on the multivariate normal distribution, was derived 

from the time history samples. In terms of evaluating the 

peak fluctuating responses that affect the size of the 

ellipsoid, the background and resonant peaks are 

determined separately and then combined for total 

responses as 

2 2
, ,( ) ( )b M b R M RM g g = +  (58) 

The peak background factor  is typically taken as 3.5, 

and the peak resonant factor is calculated from the 

Davenport’s formula as (Davenport, 1967) 

2ln 0.5772 / 2ln ( 1,2,3)R i ig f f i = + =  (59) 

 

 

 

Fig. 11 Floor plan for a 30-story building 
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Fig. 12 The HFBB test for a 30-story building 

 

 

 

Fig. 13 Mode shapes of a 30-story building 

 

 

where  stands for the frequency of the structure at mode i; 

 represents the observation time duration that is generally 

3600s. In this example, the first three modes are utilized for 

determination of peak resonant responses. 

The proposed optimization-based framework was used 

to search for the minimum volume of the polyhedral design 

envelope with a given number of load cases that encloses 

the ellipsoidal thresholds corresponding to all wind 

directions. The Pareto front was then established to 

determine the appropriate number of wind load cases. 

5.1 Results and discussion 
 

Fig. 14 presents the ellipsoidal statistical boundary of 

the three-dimensional base moment responses at the 

incident wind direction of 300°. The dots represent the 

time history data of the base moment responses at 300°. 

The proposed three-dimensional optimization-based 

framework is then used to search for a convex polyhedral 

design envelope to contain all ellipsoidal thresholds while 

minimizing the shape distortion of the ellipsoidal thresholds.  

The SQP method is used to systematically obtain the 

optimal design envelopes as an approximation of the 

probable extreme wind load combination interpreted as 

ellipsoidal thresholds, as shown in Fig. 15 for a range of 8 

to 28 load cases. The coordinates of each vertex in the 

optimal design envelope are representative of a set of 

critical wind load cases. 

Because the volume is considered to be an index for the 

examination of the departure of the approximated 

polyhedron from the original integrated statistical boundary, 

the least difference concerning the volumes implies that the 

approximated design envelope provides the best 

representation of the maximum combined wind load cases 

that are closest to the actual ones acting on the building. In 

general, the consideration of more load cases leads to a 

design envelope with a lesser volume. Therefore, the 

volumes for the increasing number of load cases of the 

design envelopes show a descending trend (Fig. 16), which 

indicates that the conservativeness for structural design is 

decreased. However, the magnitudes of the decreases in the 

volumes lead to convergence when the number of load 

cases is equal to 24. It should be recognized that a notable 

decrease in the volume corresponding to 24 load cases is 

captured because the design envelope with 24 vertices can 

be considered a better shape approximation, in which one 

prominent maximum or minimum load component along 

with the other two companion positive or negative load 

components are all taken into account.  

For this building, the optimized design envelope with 24 

wind load cases is recommended since this design envelope 

gives the smallest volume of the envelope. 

 

 

 

Fig. 14 Ellipsoidal threshold at the wind angle of 300° 
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(a) (b) 

(c) (d) 

(f) (e) 

 

Fig. 15 Optimized design envelopes: (a) With 8 wind load cases, (b) With 12 wind load cases, (c) With 16 wind load 

cases, (d) With 20 wind load cases, (e) With 24 wind load cases and (f) With 28 wind load cases 

 

Fig. 16 The Pareto front for volumes of envelopes 
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Table 1 24 design wind load cases determined by the 

optimization-based approaches 

Number 
Design wind load cases 

Mx(MN•m) My(MN•m) Mz(MN•m) 

1 77.4 -26.8 17.7 

2 230.7 187.3 17.3 

3 -242.4 129.8 17.7 

4 -343.5 -86.9 17.7 

5 304.8 -92.4 11.7 

6 397.4 185.2 11.1 

7 147.9 476.0 11.2 

8 -79.4 476.1 9.1 

9 -434.8 286.9 11.3 

10 -536.4 -62.2 2.1 

11 -227.9 -363.7 11.6 

12 -69.1 -363.7 9.0 

13 397.3 -85.6 -12.8 

14 397.4 287.0 7.8 

15 82.1 476.1 -2.1 

16 -358.3 401.1 3.4 

17 -536.4 3.6 -2.5 

18 -536.3 -117.8 -1.2 

19 -176.7 -363.7 3.2 

20 206.1 -307.1 -7.2 

21 53.8 -219.9 -19.1 

22 202.2 28.6 -19.1 

23 -67.9 -66.9 -19.1 

24 -142.4 -187.5 -16.7 

 

 

A further increase in the number of wind cases from 24 to 

28 does not appear to reduce the volume of the design 

envelope. It is evident that this optimization-based 

framework is capable of determining a set of peak resultant 

wind load cases as well as its number while achieving the 

accurate prediction of the critical wind loads by best 

representing the shape of the ellipsoidal thresholds with the 

aid of the optimization technique. 

 
 
6. Conclusions 
 

This study addressed the development of a combination 

scheme for obtaining the critical load cases of tall buildings 

on the basis of wind tunnel tests. Once the statistical 

boundary for the base moment responses is derived, an 

optimization framework is proposed for the systematic 

determination of the design wind load cases. Because there 

are as yet no universal rules to stipulate the number of wind 

load cases needed for design, an equilibrium analysis of the 

Pareto optima is also applied to discover a possibly 

equitable number of wind load cases. Results on a 30-story 

residential building have shown that this optimization 

technique provides a powerful tool for the assessment of 

extreme wind load effects. Not only is this technique 

capable of the systematic determination of critical wind 

load combinations without any subjective judgment, it also 

provides more accurate prediction of wind load cases while 

maintaining the conservativeness derived from statistical 

analysis. 
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