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1. Introduction 
 

An open yard in a harbor is subjected to the turbulent 

wind of high velocity. The presence of vegetation is also 

low in and around the open yard which leads to high wind 

erosion. The wind erosion causes the diffusion and drift of 

lighter stored materials in the open yard. These eroded 

particles cause various problems viz., reduced visibility, 

respiratory problems in humans and animals, aesthetic 

displeasure, and hindering evaporation in plants. Many 

wind shelter facilities such as obstacles, fences, windbreak 

forests, halophyte covers, and tillage can be adopted to 

reduce the drift and diffusion of particles. Several 

researchers have examined the performance and optimal 

installation of these facilities to arrest the escaping dust in 

an open area (Grantz et al. 1998, Kim et al. 2005, You et al. 

2006, Dong et al. 2007). 

The solid and porous fences is one of the methods to 

prevent wind erosion and provide better shelter in open 

spaces by reducing the wind velocity in the wake region 

behind the fence (Perera 1981, Kim et al. 2005, You et al. 

2006, Chen et al. 2006, Dong et al. 2007, Song et al. 2007, 

Santiago et al. 2007, Středová et al. 2012, Hong et al. 2015, 

Cheng et al. 2016). 

The wake, region of recirculation caused by the flow of 

fluid, generated behind the fence (Fig. 1) is an important 

application to the environmental problems of turbulent wind 

interaction between fence and pollutants dispersion. This 

region traps the pollutants, eroding soil and also helps in  
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preventing material loss. Hence, the fence can be used in 

controlling erosion problem efficiently and reduce other 

environmental problems like air pollution. The separated 

region formed behind the fence determines the reattachment 

length (i.e. the length of the recirculation zone) which is the 

single most important length scale, which also describes the 

flow pattern, with respect to the relative height of the fence. 

From the separation region to the point of reattachment, the 

velocity component close to the surface decreases, turbulent 

flow prevails and substantial pressure gradient exists in the 

region of reattachment. 

The porosity, defined as the ratio of open to the total 

area of the fence, also affects the flow behind the fence. The 

flow through the pores increases with increasing porosity 

thus reducing the low pressure and turbulence behind the 

fence and also increasing the protected area behind the 

fence. By varying the porosity of the fence different wind 

flow patterns and areas of protection can be established. 

The porous fence causes complex airflow due to the bleed 

flow through the pores in the fence and the displaced flow 

passing over the fence. The flow path behind porous fences 

for porosities above and under critical porosity is shown in 

Fig. 2. Critical Porosity (Pcrit) is defined as the maximum 

fence porosity below which flow separation and reversal 

occurs. Porosity above critical porosity leads to dominant 

flow behind the fence with no flow separation and porosity 

below critical value leads to reversal of flow behind the 

fence resulting in a region of recirculation. In general, 0.20-

0.50 porosity of the fence provides noticeable changes in 

flow circulation behind the fences (Jensen 1954, Tani 1958, 

Raine and Stevenson 1977). The low recirculating wind 

created in the recirculation region behind the porous wind 

fence traps the eroded particles and controls the material 

loss. 
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Abstract.  The wind blowing at high velocity in an open storage yard leads to wind erosion and loss of material. Fence structures can be 

constructed around the periphery of the storage yard to reduce the erosion. The fence will cause turbulence and recirculation behind it which 

can be utilized to reduce the wind erosion and loss of material. A properly designed fence system will produce lesser turbulence and longer 

shelter effect. This paper aims to show the applicability of Support Vector Machine (SVM) to predict the recirculation length. A SVM 

model was built, trained and tested using the experimental data gathered from the literature. The newly developed model is compared with 

numerical turbulence model, in particular, modified k-ε model along with the experimental results. From the results, it was observed that the 

SVM model has a better capability in predicting the recirculation length. The SVM model was able to predict the recirculation length at a 

lesser time as compared to modified k-ε model. All the results are analyzed in terms of statistical measures, such as root mean square error, 

correlation coefficient, and scatter index. These examinations demonstrate that SVM has a strong potential as a feasible tool for predicting 

recirculation length. 
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Fig. 1 Pollution control from open storage yard using the 

fence 

 

 

Fig. 2 Comparison of flow path behind porous fences 

(Xu and Mustafa 2015) 

 

 

In recent years, many investigators focused on the 

efficacy of fences by evaluating the reduction in wind 

velocity in the wake region behind the fence. There are 

numerous experimental studies and numerical simulations 

to study the shelter effect of porous fences. The 

aerodynamics of wind fences mainly depends on mean 

velocity and turbulence intensity which are often given as 

justification for evaluating the shelter effect of the fence 

(Hagen 1976, Dong et al. 2010). For a porous fence farm 

(series of fences placed parallel to each other) the fence 

characteristics like the height of fence, porosity, the distance 

between neighboring fences and porosity distribution 

influences the wind velocity reduction and turbulence 

features (Cornelis and Gabriels 2005, Ferreira 2011). 

However, for an isolated porous wind fence, the most 

crucial parameter is the porosity which influences the 

performance of shelter devices (Grantz et al. 1998, Song et 

al. 2007). Porous fence with 20% porosity showed better 

reduction in leeward mean velocity (Raine and Stevenson 

1977). The experiments on porous fence showcased that 

40% porosity with an optimum fence space to height ratio 

(bottom gap ratio) between 6 to 8 reduced the wind damage 

in the wake region (Papesch 1992). Numerical simulations 

with porous fences with porosity less than 29.9% would 

have recirculation region behind the fence and porosity of 

10.2% gave optimum shelter effect (San et al. 2018). The 

porous fence of porosity 40% was effective for decreasing 

the mean pressure and pressure fluctuation in and around 

the coal piles (Lee and Park 2000). The flow behind a 

porous fence with a bottom gap of 0.1 gives a good shelter 

effect similar to that of the no-gap fence in the large wake 

region behind the fence (Kim and Lee 2002). The study 

comparing different k-ε models recommended RNG k-ε 

model for computation of indoor air flow (Chen 1995). 

Numerical simulation studies using RANS equations with 

the standard k-ε model found that 30% porous wind fence 

seemed most effective in reducing the dust emission (Chen 

et al. 2012). The modified realizable k-ε model performed 

better than standard k-ε model in simulating axisymmetric 

turbulent buoyant plume (Van Maele and Merci 2006). The 

experimental and numerical studies on solid and porous 

wind fences with different bottom gap ratios showed that 

the bottom gap ratio of 0.1 with a porosity of 10% was 

effective in holding the dust particles in the wake region 

and modified k-ε model produced better results than eight 

other turbulence models considered in the study (Janardhan 

et al. 2011). Various forms of the k-ε model turbulent model 

were tested and found the realizable k-ε model simulated 

the field conditions effectively (Bourdin and Wilson 2008). 

Neural network approach was successfully adopted to 

predict wind speed-up over terrain features, specifically, 

isolated hills, double hills, and triple hills (Bitsuamlak et al. 

2006). 

Although the experts have made better improvement in 

analyzing the effect of porosity through experimental and 

numerical studies, there are no definite guidelines on the 

shelter performance of the porous fences. The existing 

CFD, on-site wind measurement and wind tunnel 

simulations are complicated, time consuming and labor-

intensive. Thus, the primary objective of this research is to 

develop a new method which is easy to use and cost 

effective with improved prediction accuracy. In the present 

research, it was chosen to adopt an empirical approach and 

the neural network specifically Support Vector Machine 

(SVM) based approach was found promising. This approach 

has high accuracy and easy to implement. By using SVM 

better generalization can be achieved. SVM adopts 

structural risk minimization principle which rather than 

minimizing the error on training data only it minimizes the 

bound on the generalization error of the model. It has better 

generalization capability and avoids overtraining as 

compared to Artificial Neural Networks (ANN) model. 

Also, SVM outperforms ANN in terms of accuracy and 

stability and therefore it is a viable alternative in cases 

where there is very little margin for error. Further, as and 

when new data is available, better results can be achieved 

by presenting new training examples to SVM. Hence, in 

this present paper, the performance of SVM technique in 

predicting reattachment length is investigated. 

 

 

2. Methodology 
 

2.1 Experimental data 
 

The data was obtained from Janardhan et al. (2011) 

from the experiments carried out at National Institute of 

Technology (NITK), Surathkal, India. The wind tunnel used 

for the experiments was a low-speed wind tunnel. The test 

section is rectangular in shape with the cross-sectional area 

of 0.61 m X 0.61 m and total length is 1.2 m. Fig. 3 shows 

the sketch of wind tunnel. Transparent windows are 

provided on both sides of the test section to enable proper 

visualization of the model. Standard Pitot-static tube was 

used for pressure measurement. 
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Table 1 Range of experimental variables 

Variable Range of values 

Porosity (P) 0, 10%, 20% 

Gap ratios (G/H) 0, 0.1, 0.2, 0.3 

Free stream velocity (v) m/s 7.5, 10, 12.5 

 

 

The experiments were conducted with three different 

porosities placed at varying gap ratios. The fence height (H) 

was 0.0254 m and thickness (B) was 0.003 m. The material 

used for the fence is stainless steel. Three free stream 

velocities were considered for the experimental study. The 

geometric values were made dimensionless by the height of 

the fence ‘H’. One of the main advantages is the predictions 

would be independent of scale and Reynolds number (Re), 

which is an essential assumption when applying wind 

tunnel results to a full-scale case. The experimental 

variables considered for the experiment are shown in Table 

1. 

 

2.2 Numerical simulation procedure 
 

A numerical two-dimensional flow field analysis was 

performed. Turbulent and incompressible flow was assumed. 

The CFD analysis was done by using the software ANSYS  

 

 

 

 

Multiphysics. The two-dimensional computational domain 

chosen is shown in Fig. 4. The accuracy of the CFD 

solution is mainly dependent on the boundary conditions 

imposed on the computational domain. The upper and 

ground surface is considered as wall surfaces. On wall 

surfaces, the normal component of velocity is set to zero, 

since, no fluid can pass through the wall. 

In addition, the tangential component of velocity at a 

stationary wall is set to zero because of the no-slip 

condition. All the variables (horizontal and vertical 

components of velocity) are set to zero at the ground and 

the pressure is set to zero at the outlet boundary. Different 

inlet velocities considered for the present study were 7.5, 10 

and 12.5 m/s. At the velocity inlet, these velocities were 

specified along the inlet edge. Pressure at velocity inlet and 

velocity at pressure outlet are not specified at as this would 

lead to mathematical over specification. Rather, these 

parameters adjust itself to match the rest of the flow field. 

The character of the flow is to be estimated i.e., whether 

the flow is laminar or turbulent. The parameter used to 

calculate the flow regime is called the Reynolds number. 

This character is a function of the fluid properties, geometry, 

and the approximate magnitude of the velocity field. 

Reynolds number is calculated by using the formula 

c
e

VL
R




=  (1) 

 

Fig. 3 General layout of the low speed wind tunnel facility at NITK, Surathkal 

 

Fig. 4 Defining the computational domain 
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Fig. 5 Computational domain with non-orthogonal grid 

system 

 

 

Where  

ρ= Density of air, 1.204 kg/m3 

V = Velocity of air, m/s  

Lc = Characteristic length of the geometry in m i.e., the 

height of fence 

μ = Dynamic viscosity of air, 1.825x10-5 kg/m.s 

 

In the present study, turbulent flow over fences was 

assumed. Hence, the Reynolds number based on the fence 

heights and wind velocities ranges from 1.257x104 to 

2.094x104. The wind flow over the fence is assumed to be 

incompressible. 

In the case of CFD using turbulence models all the 

unsteady turbulent eddies are solved with the use of a 

turbulence model. Mathematical models are employed to 

take into account the enhanced mixing and diffusion caused 

by turbulent eddies. For simplicity, only steady, 

incompressible flow is considered. When using a turbulence 

model, the steady Navier-Stokes equation is replaced by the 

Reynolds Averaged Navier-Stokes (RANS) equation. 

( ) ( )2

,

1
. ij turbulenceV V V V V V 


= − +  +  (2) 

Where τij,turbulence is known as the specific Reynolds 

stress tensor which contains 6 variables. These unknowns 

are modelled in various ways by turbulence models. In 

order to check the suitability of the turbulence models, 

different models were chosen and the study was conducted 

on one of the porous fence for a gap ratio of 0 with a wind 

speed of 10 m/s. Modified k- ε model (Packwood 2000) 

suited well for our test conditions which slightly 

underestimated the recirculation region but compared to 

other models the length was agreeable with the 

experimental results. Similar work with different turbulence 

models and same modified k- ε model was found agreeable 

(Kim and Lee 2002, Bourdin and Wilson 2008, Packwood 

2000, Purthviraj et al. 2011). 

The mesh generated for numerical analysis is non-

orthogonal mesh system (unstructured quadrilateral grids) 

with higher nodal density along the ground and upper 

surface in order to attain higher resolution. Fig. 5 shows the 

mesh details near and far from the fence. The mesh density 

is enhanced around the fence and along the bottom surface 

of the flow domain. Various mesh sizes were tested on one 

of the porous fence for a gap ratio of 0 with a wind speed of 

10 m/s to get grid independent results. The grid 

independence was observed for a mesh size of about 

583735 elements. Similarly, for different fence models the 

number of elements ranged from 168020 to 583735. 

 

2.3 Support Vector Machine (SVM) 
 

SVMs are powerful statistical learning artificial 

algorithms used for classification or regression (Samui 2008, 

Burges 1998, Cristianini and Shawe-Taylor 2000, Vapnik 

1998, Vapnik 1999). It has been successfully applied in the 

field of hydrology (Chen and Yu 2007), construction 

engineering (Ni et al. 2005), image recognition (Yang et al. 

2002), ocean modelling (Harish et al. 2015, Mandal et al. 

2012) and many more fields. The basic idea of the SVM is 

to map the input space into a high-dimensional by non-

linear transformation. The SVM is capable of generalizing 

and resolving problems involving small samples, non-

linearity and high-dimensional input space (Kecman 2001). 

A brief description about Support Vector Regression 

(SVR) theory is given. The alternative loss function are 

introduced to solve the regression problems by SVM. The 

regression model can be linear or non-linear. Linear models 

consist of three loss functions viz., Huber, quadratic and e-

intensive loss functions. For non-linear models, the data 

must be mapped to higher dimensional space where linear 

regression is performed. The kernel approach is utilized to 

address the dimensionality issue. It is essential to know 

about the problem and the distribution of noise in SVR 

modelling. Huber loss function is a good alternative in the 

absence of such knowledge (Cristianini and Shawe-Taylor 

2000, Cortes and Vapnik 1995). 

Consider a set of training samples {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1, 2, . . . 

𝑛, 𝑥𝑖∈𝑅𝑑, 𝑦𝑖∈𝑅, where 𝑥𝑖 is an input vector, 𝑦𝑖 is the 

corresponding output value, and 𝑛 is the number of training 

samples. The regression problem is to choose a function 

that predicts the real estimation of 𝑦 as nearly as could be 

expected, with a precision of 𝜀. Therefore, the purpose of 

the SVM is to seek the optimum regression function 

( )f x wx b= +  (3) 

where, 𝜔∈𝑅𝑛 and 𝑏∈𝑅, 𝜔 is an adjustable weight vector, 𝑏 

is the scalar threshold; 𝑅𝑛 is 𝑛-dimensional vector space, 

and 𝑥 is one-dimensional vector space.  

It is clear from the statistical theory that the regression 

function is determined by the minimization of the objective 

function in SVM. The parameters of the regression function 

(𝜔 and 𝑏) are evaluated by minimizing the regularized risk 

function as follows: 

Minimize 

 

(4) 

Subject to 
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𝑦𝑖 − [(𝜔⋅𝑥𝑖) + 𝑏] ≤ 𝜀 + 𝜉i 

 

 

(5) 

where 𝐶>0 is a penalty factor, 𝜉 and 𝜉∗ are slack variables. 

𝜀 is the insensitive loss function and can be described in the 

following way 

 
(6) 

The dual optimization problem can be further presented 

by utilizing Lagrangian multipliers and maximizing the 

objective function. 

Maximize: 

 

(7) 

Subject to 

 

(8) 

where the α𝑖, 𝛼∗𝑖 are called Lagrangian multipliers. The 

samples with non-zero Lagrangian multipliers are called as 

support vectors and if the multipliers are equal to zero then 

the training object will become irrelevant to the final 

solution. 

The input data must be mapped into higher dimension 

space using non-linear mapping functions when linear 

regression is not fitting into the dataset. A non-linear 

transformation (𝑥) replaces the input 𝑥 in (7), and the 

regression function can be written as 

 

(9) 

where nsv is the number of support vectors and 𝑘(𝑥𝑖,𝑥𝑗) = 

𝜙(𝑥𝑖)⋅𝜙(𝑥𝑗), 𝑘(𝑥𝑖,𝑥𝑗) is a kernel function. Kernel functions 

can be selected based on Merce’s condition (Vapnik et al. 

1996, Vapnik 2013). Some of the kernel functions used in 

the present study are tabulated in Table 2 (Gunn 1998). 

 

 

 

 

 

 

2.3.1 SVM for predicting the recirculation length 
As mentioned previously, there are numerical and 

experimental methods to determine the recirculation length 

behind a fence. This study attempts to utilize SVM for the 

prediction of recirculation length. For the present study, 

experimental data are divided into 75% training set and 

25% testing set. 

In the case of SVM training, five types of kernel 

functions were used, namely, radial bias function (rbf), 

exponential radial basis function (erbf), spline, b-spline and 

a polynomial function. The kernel specific parameters 

during the training process are chosen by trial and error 

approach. The optimal parameters of different kernel 

functions of SVM are briefed in Table 3. In rbf and erbf 

kernel, the optimal width () obtained are 1 and 3 

respectively. The obtained optimal values of d (degree) for 

both polynomial and b-spline kernel function is 1. It is 

found that nsv is 100% for all SVM models, which 

indicates that there is no noise in the data set. 

The capability of the approach is determined using 

statistical measures namely Correlation Coefficient (CC), 

Root Mean Square Error (RMSE) and Scatter Index (SI), 

which are defined as 

 

(10) 

 

(11) 

 
(12) 

Where, Oi and Pi are the observed and predicted 

recirculation length respectively, n is the number of data set 

used and and  are average observed and predicted 

recirculation length respectively. 

 

 

3. Results and discussions 
 

The comparison between experimental and numerical 

values of recirculation length can be seen in Fig. 6. It is  

Table 2 Different kernel functions 

Kernels Functions 

Polynomial 
 

rbf 
 

erbf 
 

spline 
 

b-spline 
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evident from the graph that the modified k-ε turbulence 

model performs better with a R2 of 0.9801. The non-

orthogonal grid is more preferable in a modified k-ε model 

for predicting the flow field. The modified k-ε model tends 

to slightly overestimate the prediction. The modifications in 

the model tries to solve some standard k-ε problems like 

violation of Schwartz inequality for shear stress where there 

are large strain rates (Santiago et al. 2007). The 

experimental measurements very near to the fence is not 

available. Hence, the validity of the modified k-ε model 

cannot be tested near the fence and the results obtained 

from the numerical study has to be verified carefully. The 

Shelter effect was high for low porosity fence (Sagrado et 

al. 2002, San et al. 2018). In general, the alterations for the 

adverse pressure gradient flows improved the prediction in 

the modified k-ε turbulence model. 

The performance of predicting the recirculation length 

using SVM and numerical model is assessed in terms of 

statistical measures as shown in Table 4. All kernels showed 

good correlation between the observed and predicted 

recirculation length with CC more than 0.9045 and 0.8974 

for training and testing respectively. By comparing all the 

kernels it was observed that the b-spline kernel shows good 

performance with CC more than 0.9946 and 0.9529, RMSE 

less than 0.3383 and 0.8624, SI with 0.0314 and 0.0755 for 

training and testing respectively. The comparison of 

experimental and SVM model for training and testing 

dataset is shown in Fig. 7. 

All models were run in DELL INSPIRON with 

Intel® coreTMi5 CPU@2.67 GHz, 4 GB RAM and 64 bit 

windows 7 operating system. The numerical model took 10 

hours to solve one configuration of fence with a single 

velocity and gap ratio. The SVM model took about less than 

a minute to model the complete dataset. From the 

comparison between the b-spline kernel SVM and  

 

 

 

 

 

numerical models it is clear that the numerical model has a 

better prediction capability with a CC of 0.993. But, the 

RMSE and SI are higher as compared to the b-spline kernel 

SVM model. Even though the prediction is better with a 

numerical model, the computation time required is very 

high than the SVM model. Thus, the SVM model with b- 

spline kernel can be considered as an alternative to the 

numerical model when time is a constraint and when lower 

RMSE and SI are required. Furthermore, the SVM model 

has good generalization capacity to avoid overtraining, and 

can always be updated to get better results by presenting 

new training examples as new data become available. Thus, 

the SVM model can be regarded as a very effective method 

to predict the recirculation length behind a porous wind 

fence. 

For convenient comparison, the experimental and 

predicted results from both the models are plotted in Fig. 8. 

It can be seen that the results from the SVM method are in 

good agreement with the experimental results. The SVM 

model with b-spline kernel function has shown a similar 

pattern compared to experimental data. Further, the 

prediction by the modified k-ε model is slightly 

overestimated than the experimental results. 

 

 

Fig. 6 Comparison of experimental and numerical values 

Table 3 Optimal parameters for SVM models with different kernel functions 

Kernel nsv C ε  d 

Polynomial 27 3 0.0012 - 1 

rbf 27 1000 0.0003 1 - 

erbf 27 1500 0.0002 3 - 

spline 27 300 0.0015 - - 

b-spline 27 10 0.0012 - 1 

Table 4 Optimal parameters for SVM models with different kernel functions 

 Training Testing Numerical simulation 

Kernel CC RMSE SI CC RMSE SI CC RMSE SI 

b-spline 0.9946 0.3383 0.0314 0.9529 0.8624 0.0755 

0.993 1.663 0.152 

spline 0.9999 0.0478 0.0044 0.9220 1.3780 0.1206 

erbf 0.9999 0.0646 0.0060 0.9470 1.0398 0.0910 

Poly 0.9045 1.6832 0.1561 0.8974 1.5720 0.1376 

rbf 0.9807 0.6436 0.0597 0.9279 1.0726 0.0936 
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4. Conclusions 
 
This present study reports a new and influential 

approach for predicting the recirculation length using SVM 

for the first time in the literature. After learning from a set 

of selected training data, involving porosity, gap ratio and 

velocity collected from the previous literature, the SVM can 

be utilized to predict the recirculation length behind the 

fence.  

The SVM modelling is primarily driven by the 

appropriate selection of the kernel function for satisfactory 

results. In this paper, few kernel functions are compared and 

it is found that b-spline is better able to predict the 

recirculation length with an acceptable degree of accuracy.  

The comparison of experimental with b-spline kernel 

SVM and numerical model showed that the even though the 

numerical model predicted the recirculation length with 

high CC the RMSE and SI was also high compared to the 

SVM model. Further, taking into consideration the time for 

solving the problem it is clearly evident that SVM can 

predict the recirculation length with good accuracy in lesser 

time.  

The statistical parameters of RMSE, and 𝑅2 show that 

the proposed SVM model results have the best accuracy and 

can predict recirculation length very close to experiment  

 

 

 

results. The use of SVM is very advantageous for the 

prediction of the recirculation length because it can perform 

non-linear regression efficiently for high-dimensional data 

sets. Furthermore, its solution is global. The satisfactory 

predictions of the recirculation length by the model indicate 

that SVM is a useful modelling tool for engineers and 

research scientists at solving complex flow fields. Lastly, 

although SVM model could be used as an alternative tool to 

predict recirculation length, it requires experimental data for 

changing flow fields and configuration of the test model. 

Also, CFD simulations can be a good comparative tool with 

the developed numerical model. 
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