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1. Introduction 
 

In building design, the maximum displacement of a 

structure is one of the main parameters to compute the 

structural performance which can be estimated with good 

accuracy using the dynamic analysis; however, for many 

structural engineers the dynamic analysis could be 

impractical; in addition, the dynamic analysis requires real 

wind speed records, which are not available in most of the 

cases. For this reason, most of wind design codes suggest 

the use of the static analysis by means of equivalent wind 

loads, which consider the dynamic effects through a factor 

named as dynamic amplification factor (Davenport 1967). 

Some changes and developments in the method to compute 

the equivalent static wind loads, originally presented by 

Davenport and King (1984), have been suggested by 

different authors (Zhou et al. 2000, Repetto and Solari 

2004, Chen and Kareem 2006). These methods use some 

variables such as power spectral density, background 

response, resonant response and others, which a priori 

require an independent calculation process; therefore, the 

task to know the maximum response of a building under 

wind loads can be complicated. Due to the problems 

mentioned above, other authors have proposed simplified 

methods to predict the response of structures (Materazzi et 

al. 2007, Guo et al. 2013, Huang et al. 2013); however, an 

approach to the specific prediction of some important 

design parameter could offer better simplicity and could be 

a useful tool in engineering practice. Therefore, the aim of 

this work is to generate and evaluate a simple mathematical  
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model in order to predict in a practical way the maximum 

along-wind displacement of prismatic buildings under 

dynamic loads. 

For this work, the peak wind response of a considerable 

amount of shear-buildings discretized as Multi-Degree of 

Freedom (MDOF) structures is estimated and stored to a 

database in terms of regional wind speeds, terrain categories 

and structural characteristics such as height, slenderness 

ratio, fundamental period, distributed mass and stiffness 

ratio. Due to the lack of real wind records, several studies 

propose that the use of spectral density models are adequate 

to represent the velocity field of the turbulent wind (Choi 

and Noh 1999, Ding et al. 2006, Bojórquez et al. 2017, 

Payán-Serrano et al. 2017); therefore, the dynamic wind 

loads needed to excite the MDOF structures are generated 

from synthetic records obtained by spectral representation 

with the well-known Shinozuka method (Shinozuka and Jan 

1972), which is a simulation technique that uses a spectral 

density function to represent the amplitude of the waves 

that constitute spectrally a series of time. Finally, the 

mathematical model is obtained from the application of 

regression analysis in the database using variable 

transformation. The theory used to perform all these tasks is 

described below. 

 

 

2. Theoretical framework 
 

The theoretical framework is organized in the following 

way: Section 2.1 describe the vector components of the 

turbulent wind. Section 2.2 exposes the equation to 

calculate the load from wind speeds, which are obtained by 

simulation of the part turbulent of the longitudinal 

component. Section 2.3 shows the differential equation of 
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motion that governs the behavior of the MDOF structures 

and the assumptions adopted by Newmark to solve it. 

Finally, the mathematical technique to obtain the prediction 

models by regression analysis using transformation of 

variables is presented in Section 2.4. 

 
2.1 Turbulent wind 

 

According to Davenport (1963), Solari (1982) and Xu 

(2013) the turbulent wind at a point in the space  (0,0, 𝑧) 
can be decomposed as a mean wind speed U̅(𝑧) with a 

predominant direction x and three perpendicular turbulent 

components (longitudinal u(t), lateral v(t) and vertical w(t)); 

with the longitudinal turbulent component aligned to the x-

axis, forming a horizontal plane with lateral component 

aligned to the y-axis and the vertical component 

perpendicular to the plane and aligned to the z-axis (Fig. 1). 

Due to the irregularities of the surface of the earth, the 

wind acquires a turbulent behavior. The variation of wind 

speed with height is called wind speed profile. The wind 

speed profile corresponding to the mean speed can be 

calculate with an expression known as power law as follows 

U̅(𝑧) = f𝑠�̅�U̅10,II (
𝑧

10
)
𝛼

 (1) 

where f𝑠 is a time scale factor according to Mackey (1970) 

f𝑠 = 0.702 in order to scale 3-second to 10-minute of mean 

wind speeds, �̅� is the roughness factor which is defined in 

Table 1, U̅10,II is the basic wind speed and it is a mean 

wind speed taking at reference height 10 m and terrain 

category II and 𝛼  is an exponent that according to 

Counihanm (1975) depends of the characteristics of 

roughness and it can be approximated by exposed equations 

in Eurocode (2005) for different classifications of terrain 

categories. Therefore, the longitudinal component as a 

function of the height is expressed as 

U(𝑧, 𝑡) = U̅(𝑧) + 𝑢(𝑧, 𝑡) (2) 

where the turbulent part 𝑢(𝑧, 𝑡) can be represented as a 

stationary stochastic processes with mean zero. The 

estimation of 𝑢(𝑧, 𝑡) is the key aspect for having simulated 

wind records. 

 

2.2 Simulated wind loads 
 

The dynamic loads are generated from synthetic records, 

where the turbulent parts of the longitudinal components are 

obtained by spectral representation. 

 

 

Fig. 1 Wind vector decomposition 

The mathematical relationship between the loads and the 

wind speeds is determined by the kinetic energy equation, 

which can be expressed in terms of pressure or force acting 

on a contact area as follows (Holmes 2015) 

F𝑗(𝑡) =
1

2
𝐶𝑑𝜌𝐴𝑗(U𝑗(𝑡) − �̇�𝑗(𝑡))

2
 (3) 

where F𝑗(𝑡) is the wind force at j-th floor, 𝐶𝑑 is the drag 

coefficient, 𝜌  is the density of the air for this study 

𝜌 = 1.25 kg/m
3
, 𝐴𝑗 is the contact area at j-th floor, U𝑗(𝑡) 

is the longitudinal component of the wind defined as the 

sum of the mean velocity and its corresponding turbulent 

part U𝑗(𝑡) = U̅𝑗 + 𝑢𝑗(𝑡) and �̇�𝑗(𝑡) is the velocity of the 

mass lumped at j-th floor. For rectangular prismatic in 

smooth flow, i.e. the turbulence level is low, the drag 

coefficient is a function of the ratio b/d, where b is the 

along-wind, and b is the cross-wind dimension. In turbulent 

boundary-layer flow, the drag coefficients are much lower 

( 𝐶𝑑 ≈ 1 ) than smooth uniform because of the high 

turbulence (Holmes 2015).  

The spectral representation methods appear to be most 

commonly used because they are conceptually 

straightforward. These methods try to define a signal or 

series of time from their spectral characteristics like 

amplitude and phase. The Shinozuka method (Shinozuka 

and Jan 1972) is a spectral representation method based on 

the compact form of Fourier series with a spectral density 

function as the variable responsible for the amplitude of the 

sinusoidal waves that correspond to each frequency. The 

turbulent part 𝑢𝑗(𝑡) of the longitudinal component can be 

generated from spectral representation method proposed by 

Shinozuka and Jan. Considering the case of Np stationary 

stochastic processes 𝑢𝑗(𝑡), 𝑗 = 1,2,3, … , Np ; and discrete 

time 𝑡 = 𝑖∆𝑡 , 𝑖 = 0,1,2, … , N𝑠 , the mathematical 

expression for the generation of synthetic records is as 

follows 

𝑢𝑗(𝑡) =∑ ∑ |H̅𝑗𝑘(𝜔𝑛)|√2∆𝜔 𝑐𝑜𝑠[𝜔𝑛𝑡 + 𝜃𝑘𝑛]
N𝑓

𝑛=1

𝑗

𝑘=1
 (4) 

where 𝑢𝑗(𝑡)  is the turbulent part of the longitudinal 

component at jth point in the space, H𝑗𝑘(𝜔𝑛) is an element 

of the lower triangular matrix 𝐇(𝜔𝑛)  of size NpxNp 

which is defined by the Cholesky factorization process from 

the cross spectral density matrix, 𝜃𝑘𝑛 is an element of the 

random phase angle matrix 𝚯  of size Np x N𝑓  with 

uniform distribution between [0, 2π], 𝜔𝑛  is the discrete 

angular frequency (rad/s), ∆𝜔 is the increment of angular 

frequency and N𝑓 is the amount of values contained in the 

discrete spectral density function. 

The cross-spectral describes the effect of the turbulence 

components at two points at a given frequency. This 

influence is due to the spatial dimension of the vortices in 

the wind field. According to the Cholesky factorization 

process, if the cross spectral density matrix 𝑺0(𝜔)  is 

symmetric positive definite, then 𝑺0(𝜔)  can be 

decomposed as (Veers 1987) 

𝑺0(𝜔) = �̅�(𝜔)�̅�T(𝜔) (5) 
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where 𝑺0(𝜔)  is the cross spectral density matrix for 

angular frequency ω and �̅�(𝜔)  is a lower triangular 

matrix. The process of Cholesky factorization is as follows 

H11(𝜔) =  11
0 (𝜔)1 2 

H21(𝜔) =  21
0 (𝜔) H11(𝜔) 

H22(𝜔) = ( 22
0 (𝜔) − H21(𝜔)

2) 
1 2

 

H31(𝜔) =  31
0 (𝜔) H11(𝜔) 

  

H𝑗𝑘(𝜔) = ( 𝑗𝑘
0 (𝜔) −∑  𝑗𝑙(𝜔)H𝑘𝑙(𝜔)

𝑘 1

𝑙=1
)  H𝑘𝑘(𝜔) 

H𝑘𝑘(𝜔) = ( 𝑘𝑘
0 (𝜔) −∑ H𝑘𝑙(𝜔)

2
𝑘 1

𝑙=1
)  

1 2

 

(6) 

For two points with vertical separation 𝑟𝑦, the  𝑖𝑗
0 (𝜔) 

corresponding elements are obtained by the cross-spectral 

density function  𝑢𝑢(𝑧𝑖 , 𝑧𝑗 , 𝑛) 

 𝑢𝑢(𝑧𝑖 , 𝑧𝑗 , 𝑛) = √ 𝑢(𝑧𝑖 , 𝑛) 𝑢(𝑧𝑗 , 𝑛)√coh(𝑟𝑦 , 𝑛) (7) 

where  𝑢𝑢(𝑧𝑖 , 𝑧𝑗 , 𝑛) is the cross spectral density function 

for two longitudinal turbulent components at space points 

𝑧1 and 𝑧2,  𝑢(𝑧𝑖 , 𝑛) is the single power density spectrum 

at 𝑧𝑖, √coh(𝑟𝑦 , 𝑛) is the root-coherence function and 𝑛 is 

the the frequency in Hz. 

A modification of the wind spectral density function of 

von Karman was presented by Harris (von Karman 1948, 

Harris 1990). This spectral density function has revealed an 

excellent accuracy in high frequency with application to 

wind codes (Lungu and van Gelder 1997). In fact, Xu 

(2013) consider that this is the most mathematically correct 

wind spectrum. The mathematical form of von Karman-

Harris expression is 

 𝑢(𝑧, 𝑛) =
4(𝜎𝑢

2)𝐿𝑢(𝑧) U̅(𝑧)

[1 + 70.8 (
𝑛𝐿𝑢(𝑧)

U̅(𝑧)
)
2

]
5 6

 
(8) 

where 𝜎𝑢  is standard deviations for the turbulence 

components and 𝐿𝑢(𝑧) is the integral length scale, which 

can be approximated by exposed equations in Eurocode 

(2005).  

The root-coherence function defines the statistic 

dependence between two turbulent components at two 

different points. This function tends to zero when the 

separation 𝑟𝑦  increases, in other words, the influence of the 

turbulent winds between two components decreases when 

their separation increases. Davenport (1961) suggested an 

exponential expression as root-coherence function 

√coh(𝑟𝑦 , 𝑛) = 𝑒( 𝐶𝑦𝑟𝑦
𝑛

�̅�
)
 (9) 

where U̅  is the average speed between two points 

calculated as 1 2⁄ [𝑈(𝑧𝑖) + 𝑈(𝑧𝑗)]  and 𝐶𝑦  is a non-

dimensional decay constant, with typical value equals 10. 

 

 

 

2.3 Dynamic analysis 
 

The Newmark method is used to solve the differential 

equation of motion (Newmark 1959). This method is based 

on two assumptions with the aim to solve the equation of 

motion. The assumptions are that the acceleration between 

two times instants could be linear or a mean constant. The 

idealization of a prismatic building as shear-building can be 

represented as a MDOF system (Chopra 2007). The 

governing equation of motion for MDOF structures under 

external loads can be written in matrix form as follows 

𝐌�̈� + 𝐂�̇� + 𝐊𝐱 = 𝐅 (10) 

where 𝐌, 𝐂 and 𝐊 are the mass, damping and stiffness 

matrices, respectively; 𝐱, �̇� and �̈� are the displacement, 

velocity and acceleration vectors, respectively; and 𝐅 is a 

matrix with the force vectors.   

The form of the damping matrix 𝐂 depends of the 

damping characteristic of the structure, which can be 

classical or nonclassical damping. According to Chopra 

(2007), the classical damping is an appropriate idealization 

if similar damping mechanisms are distributed throughout 

the structure; e.g., a multistory building with a similar 

structural system and structural materials over its height. In 

this work the Rayleigh Damping method is used in order to 

build a classical matrix 𝐂. 

For a MDOF system, the equation of motion can be 

rewritten in terms of its possible modes of vibration 𝚽 

�̅��̈� + �̅��̇� + �̅�𝐪 = �̅� (11) 

where 𝐪  is the modal coordinate, �̅� = 𝚽T𝐌𝚽 , 

�̅� = 𝚽T𝐂𝚽 , �̅� = 𝚽T𝐊𝚽  and �̅� = 𝚽T𝐅  are modal 

transformation matrices corresponding to the mass, 

damping, stiffness, and forces matrices, respectively. 

 

2.4 Multiple regression 
 

The regression is a process that try to determine the 

degree of dependence or relationship between two or more 

variables. In the case of an independent variable (predictor) 

and a dependent variable (response), the process is named 

simple regression. When the response depends on the 

influence of two or more predictor variables, the process is 

known as multiple regression. 

The linear model for a classical regression of N  

samples of data with N  independent variables  𝑘, takes 

the next mathematical form 

Y = 𝛽0 + 𝛽1 1 + 𝛽2 2 +⋯+ 𝛽Nv
 N𝑣

+ 𝜖 (12) 

where Y is a vector of dependent variable (response) with 

size N x1,  𝑘  is a vector of independent variable k-th 

with size N x1, 𝛽𝑘 is the coefficient corresponding to the 

variable predictor k-th and 𝜖 is the error. 

 The matrix form of a multiple regression model is as 

follows (Bauer et al. 2005) 

Y = 𝐗Β + 𝜖 (13) 
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where 𝐗  is a matrix of size N x(N + 1)  and Β  is a 

vector of size (N + 1)x1. The reason of adding a column 

in 𝐗 and a row in Β is due to the consideration of the 

coefficient 𝛽0 which can be represented as 𝛽0𝑥0, where 

𝑥0=1. There are several processes for the determination of 

the coefficients; one of the most widely used is known as 

least squares. The expression for estimating the coefficients 

by least squares is as follows 

Β = (𝐗𝐓𝐗) 1𝐗𝐓Y (14) 

The deviation of the values predicted with relate to the 

target values can be measured with the root-mean-square 

error 

RMSE = √
∑ (�̇�𝑖 − 𝑦𝑖)

2Nd
𝑖=1

N − Nv − 1
 (15) 

where �̇�𝑖 is the predicted value i-th and 𝑦𝑖  is the target 

value i-th. 

The statistical parameter to measure the degree of 

prediction for a model with simple regression is known as 

coefficient of determination, denoted R2 

R2 = 1 −
∑ (�̇�𝑖 − 𝑦𝑖)

2Nd
𝑖=1

∑ (𝑦𝑖 − �̅�)2
Nd
𝑖=1

 (16) 

where �̅� is the mean of the target values. 

When the number of predictor variables increases, the 

coefficient of determination R2 is not adequate to establish 

which of the models is the best to explain the dependent 

variable. Due to the increase of the number of predictor 

variables, the error decreases and, therefore, it will be 

necessary to work with a measure that takes into account 

the number of predictor variables of the model, this 

coefficient is known as the adjusted coefficient of 

determination Ra j
2  and is calculated as follows 

Ra j
2 = 1 − (

N − 1

N − N − 1
)
∑ (�̇�𝑖 − 𝑦𝑖)

2Nd
𝑖=1

∑ (𝑦𝑖 − �̅�)2
Nd
𝑖=1

 (17) 

One way to increase the level of determination of a 

model is transforming the variables in order to increase the 

linear correlation between them. Some of the most common 

transformation models are shown in Table 1 (Cohen et al. 

2013). 

Box and Cox (1964) proposed a method of power 

transform with the intention of correcting the nonlinearity 

of the relation respect to Y. The model of Box and Cox is 

represented as follows 

Y′ = 𝐗Β + 𝜖 (18) 

 

 

where Y′ must satisfy the following conditions 

Y′ = {
Y𝜆 − 1

𝜆
, 𝜆 ≠ 0

ln (Y), 𝜆 = 0

 (19) 

For the process to select the best λ value is necessary to 

choose a discretized range of possible values, commonly [-2, 

2], and evaluating the error of the regression for each 

possible value of λ. The process ends when the smallest 

error is obtained. Note that the conversion of the response 

variable is given by the transposition of the variable using 

the selected condition. 

 

 

3. Definition of the database 
 

In order to build the prediction model through 

regression analysis, a large response database has been 

constructed by combining some wind and structural 

variables with an acceptable range of possible values allows 

to define a considerable amount of study cases. The Fig. 2 

shows the combination of the selected values for wind and 

structural variables that permits to cover a great amount of 

sensitive buildings to the dynamic effects of the wind. The 

slenderness relation is defined as R𝑒 = H b⁄ , where H is 

the total height of the structure and b  is the plane 

dimension parallel to the direction of the wind. The stiffness 

ratio describes the difference of story stiffness between the 

last and the first level, i.e., R𝑘 = 𝑘last 𝑘first⁄ . The 

distributed mass represents the mass concentration per unit 

area for each floor. According to Eq. (10), the equation of 

motion for MDOF structures is defined indirectly from of 

these structural variables, where the stiffness matrix can be 

estimated by an iterative process where the problem of 

eigenvalues that relates the stiffness, mass and period of a 

structure is solved (Chopra 2007). 

The Newmark method is used to solve the differential 

equation of motion (Newmark 1959). This method is based 

on two assumptions with the aim to solve the equation of 

motion. The assumptions are that the acceleration between 

two times instants could be linear or a mean constant. The 

idealization of a prismatic building as shear-building can be 

represented as a MDOF system with one degree of freedom 

per floor (Chopra 2007).  

With the loads calculated and the structures defined, the 

Newmark method is employed to obtain the dynamic 

response of 1600 structures where each one is exposed to 16 

turbulent wind conditions. The maximum displacements of 

each study case are registered in a database with fields 

associated to the wind and structural variables (see Fig. 3). 

 

Table 1 Transformation of variables 

Model Name 
Transformation of the 

variable Y 

Transformation 

of the variable X 

Linear 

model 
Conversion 

Exponential Z = log𝑏(Y) 𝐗 = 𝐗 Z = 𝐗Β + 𝜖 Y = 𝑏𝑍 

Logarithmic Y = Y 𝐖 = log𝑏(𝐗) Y = 𝐖Β+ 𝜖 Y = Y 

Log-log Z = log𝑏(Y) 𝐖 = log𝑏(𝐗) Z = 𝐖Β + 𝜖 Y = 𝑏𝑍 
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4. Prediction models 
 

The maximum displacements obtained in the dynamic 

analyses are the dataset employed for the generation of 

prediction models by multiple regression methods. The 

height, slenderness ratio, fundamental period of the MDOF 

system, distributed mass, stiffness ratio, terrain categories 

and basic wind speed represent the independent variable or 

predictors and the maximum displacement is the dependent 

variable or response. Table 2 shows the mathematical 

models obtained from the regression analysis with 

transformation of variables of the dataset; in addition, the 

prediction efficiency of each mathematical model is 

presented in terms of the adjusted coefficient of 

determination and the root-mean-square error. It was 

observed that the variable transformations help to produce a 

better linear relationship between the predictor and response 

variables. The regression model with log-log transformation 

has the best degree of prediction. Graphically, this is 

confirmed in Fig. 4 where the log-log model presents the 

lowest dispersion to the ideal line Y=Target, i.e., values 

emitted by the mathematical model (predictions of the 

model) are closest to the maximum displacement values 

stored in the database (target values). 

 

 

 

 

 

4.1 Evaluation and validation of the log-log prediction 
model 

 

In order to evaluate the performance of the log-log 

model, which was generated from results of several 

dynamic analyses using simplify structure systems, two 

complex structures are subjected under wind effects, The 

selected buildings to the evaluation were designed by 

Federal Emergency Management Agency of USA (FEMA 

2000) for 9- and 20-story structures in Boston city with 

consideration of controlled wind loads. The buildings are 

modeled with elastic beam-column elements connected by 

zero-length elements, which work as rotational springs to 

represent a nonlinear behavior. The springs follow a 

bilinear hysteretic response, which is an idealization of 

elastic and plastic deformations by two lines based on the 

Modified Ibarra Krawinkler Deterioration Model (Lignos 

and Krawinkler 2011). The panel zones are explicitly 

modeled with eight elastic beam-column elements and one 

zero-length element, which serves as rotational spring to 

represent shear distortions in the panel zone. A leaning 

column with gravity loads is linked to the frame by truss 

elements in order to consider the effect of contribution of 

these loads in the lateral displacements also known as P-

Delta effects. OpenSees (McKenna 2011) is the used  

 

Fig. 2 Variables to define the structures and dynamic wind loads 

 

Fig. 3 Representation of the database with the records of the maximum displacements of each study case 
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software to model and analyze the structure response of the 

selected buildings because OpenSees has a fully 

programmable scripting language for defining models, 

solution procedures and post-processing. A schematic 

representation of the models is presented in Figs. 5(a)-5(c). 

The dynamic wind loads are generated from simulated 

records with attention of the wind conditions described by 

the American Society of Civil Engineers for Boston city in 

Standards (ASCE 2006). The wind loads are applied to the 

OpenSees models in order to produce the dynamic response 

and to determinate the maximum displacement. Figs. 6-7 

show the time series corresponding to the structural 

response of 9- and 20-story buildings. 

 

 

 

In Table 3, the maximum dynamic response are 

compared with the prediction values calculated with the 

log-log model. It is observed that the prediction values are 

close to the maximum displacements reported by the 

dynamic analysis, also a better prediction for the building 

with 20-story is exposed, this is due to the fact that some  

structural characteristics of the building with 9 floors are 

not within the range of values considered in the database. 

Another evaluation of the prediction of the log-log 

model is shown in Table 4, which presents the maximum 

along-wind displacement of structures reported by other 

studies and the respective value predicted by the log-log 

regression model. It is observed that the log-log regression  

Table 2 Models of general regression to direct calculate the maximum displacement 

Regression Models (Mathematical expressions) Ra j
2  RMSE 

Classical 
Y = −349.54 − 2.9336H + 72.717Re − 0.53583M − 25.273R𝑘 + 186.82T0

− 46.251Ct + 3.66U10,II 
0.597 319 

Exponential 
logY = 0.75819 − 0.0035034H + 0.10048Re − 0.00067961M − 0.032531R𝑘

+ 0.34136T0 − 0.059699Ct + 0.0054277U10,II 
0.884 171 

Logarithmic 
Y = 357.87 − 768.6H + 719.11Re − 792.43M − 48.677R𝑘 + 994.85T0

− 215.89Ct + 1334.6U10,II 
0.561 333 

Log-log 
logY = 0.79758 − 0.88589logH + 1.0029logRe − 1.0003logM − 0.062754logR𝑘

+ 2.0108logT0 − 0.27755logCt + 2.0561logU10,II 
0.985 59 

Box-Cox 
Y(𝜆=0.0821) = 1.5112 − 0.012313H + 0.34762Re − 0.0023676M − 0.11362R𝑘

+ 1.1648T0 − 0.20783Ct + 0.018778U10,II 
0.962 130 

    

Table 3 Maximum dynamic displacements and predictions estimated by the log-log model 

Building Structural characteristic and wind  

condition 

Max 

displacement 

Prediction 

 

Error 

9-story  

structure 

H=37 m, Re=0.8, Md=488 kg/m2, Rk=0.7; T0=2.5 s, Ct=4, and 

U10,II=180 km/h. 
73.91 mm 80.64 mm 

6.73 mm 

(9.10 %) 

20-story  

structure 

H=81 m, Re=2.6, Md=488 kg/m2, Rk=0.7; T0=2.9 s, Ct=4, and 

U10,II=180 km/h. 
173.02 mm 178.89 mm 

5.87 mm 

(3.39 %) 

 

Fig. 4 Relationship between targets and prediction values 
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5. Conclusions 
 

The Shinozuka and Newmark methods were employed 

to simulate synthetic wind records and to obtain the 

dynamic response of 1600 shear-buildings discretized as 

Table 4 Maximum along-wind displacements reported by other studies and predictions estimated by the log-log model. 

Paper Structural characteristic and wind  

condition 

Max 

displacement 

Prediction Error 

Huang and 

Chen (2007) 

H=200 m, Re=5, Md=1000 kg/m2, Rk=1; T0=4.71 s, Ct=2, and 

U10,II=165 km/h. 
180 mm 190 mm 5.55 % 

Venanzi et 

al.(2014) 

H=180 m, Re=6, Md=509 kg/m2, Rk=1; T0=4.87 s, Ct=4, and 

U10,II=168.12 km/h. 
476 mm 462 mm 2.29 % 

  

 

(a) 9-story structure (b) 20-story structure (c) Panel zone detail 

Fig. 5 Schematic representation of the building modeling on OpenSees 

 

Fig. 6 Dynamic response at roof level of the 9-story structure 

 

Fig. 7 Dynamic response at roof level of the 20-story structure 
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MDOF structures, respectively. With the results, a database 

with fields related to the maximum response, basic 

structural characteristics and regional wind conditions was 

built. With the aim to generate prediction models, the 

database was analyzed with classical regression and 

regression with transformation of variables. The regression 

model with log-log transformation had the best degree of 

prediction with an adjusted coefficient of determination of 

98.5%. In order to validate the log-log model generated 

from analysis results with simplified structural systems, two 

buildings, 9- and 20-story structures were analyzed. In this 

validation, it was observed that the prediction model 

provides similar maximum dynamic values compared with 

the complex structures; however, it was notable a better 

performance of the prediction model for the building with 

20-story due to the fact that some structural characteristics 

of the building with 9-story are not within the range of 

values considered in the variables of the database. In 

addition, a comparison between the prediction of the log-

log model and the maximum displacement of some 

buildings reported in other papers was presented. Here, it 

was observed that the log-log regression model is able to 

predict with an acceptable accuracy the peak demand, 

therefore, the regression data generated from the application 

of the Shinozuka and Newmark methods are adequate. The 

evaluation and validation of the log-log model allows to 

determine that its prediction values are reliable when the 

eolic and structural characteristics are within the range of 

values considered in the database. 
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