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1. Introduction 
 

In recent years, more and more light weight and high 

strength materials are applied to tall buildings. These 

structures are generally more flexible and have low 

damping, which may bring about excessive wind-induced 

vibration. For such a case, many control theories and 

auxiliary devices have been proposed or applied to control 

the wind induced vibration of tall buildings.  

One of the commonly used control devices is a tuned 

mass damper (TMD). The TMD is a vibration absorbing 

equipment consisting of mass, springs and damping 

devices. Its frequency can be tuned to match the 

predominant vibration frequency (usually the fundamental 

natural frequency) of the main structure. Accordingly, the 

structural dynamic responses caused by environmental 

excitation, such as strong winds or earthquakes, can be 

significantly reduced. 

Currently, many studies have been devoted to finding 

the optimum parameters of TMD and evaluating its 

efficiency under various types of dynamic excitation. Den 

Hartog (1947) and Brock (1946) have given the optimum 

TMD parameters excited by harmonic external forces in 

order to minimize the displacement of a single degree-of-

freedom (SDOF) main structure. Warburton and Ayorinde 

(1980) have proved the accuracy of simplifying the multi 

degree-of-freedom (MDOF) system with TMD as a SDOF 

system through a large number of numerical examples, such  
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as plates, beams and shells.  

Chang (1999) have proposed the approximate form of 

optimum TMD tuning expressions for wind and 

earthquakeexcitation. Lots of numerical optimization 

algorithms have also been used for obtaining the optimal 

parameters of TMD. Genetic algorithm (GA) is the most 

employed algorithm (Arfiadi et al. 1998, Singh et al. 2002., 

Desu et al. 2006, Pourzeynali et al. 2008, Marano et al. 

2010). Besides, the particle swarm optimization (Leung et 

al. 2008, 2009), bionic algorithm (Steinbuch 2011), and 

harmony search algorithm are also applied for TMD 

optimization (Bekdaş and Nigdeli 2011). 

In addition to TMD, various types of energy dissipation 

devices, such as viscoelastic damper (VED), viscous fluid 

damper and friction damper, have also been used for 

vibration control of structures in recent years (Zhang and 

Soong 1992, Chang and Lin 2004, Hwang et al. 2008, 

Lewandowski et al. 2012). Among these devices, the VED 

is the most commonly used damper in structure for wind 

induced vibration control due to the cost-effectiveness and 

high reliability. 

For the complexity of the dynamic soil structure 

interaction (SSI) analysis, most optimal designs of TMD or 

VED are based on the rigid foundation assumption. 

However, the dynamic responses of high-rise buildings 

founded on relatively soft soil may be different from those 

based on rigid foundations. The studies of Veletsos (1974), 

Avilés (1999) and Medina (2013) have demonstrated that 

the SSI effect significantly modify the structural dynamic 

characteristics, especially the natural frequency, which has a 

great effect on the responses of structures excited by 

earthquakes or winds. On the one hand, the dynamic 

properties of VED and TMD are closely related to the 

natural frequency of the structural system, which will be 

inevitably influenced by the SSI effect. On the other hand, 
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the stiffness and damping changes of the structural system 

caused by the added vibration control devices will affect the 

SSI effect in turn. Accordingly, the dynamic analysis of the 

structure with VEDs or TMD considering SSI effect is a 

complicated coupling problem. The assumption of rigid 

foundation may result in analytical inaccuracy and 

considerable deviation from the original design objective if 

the structures equipped with VEDs or TMD are built on 

relatively soft foundations. 

At present, there are many studies concerning the 

parameter optimal design of TMD or VED used in 

structures for wind induced vibration control based on rigid 

foundation assumptions. However, an integrated optimal 

use of VEDs and TMD in structure considering the SSI 

effect is rarely seen. In this paper, the mathematical model 

of a wind resistant frame structural system equipped with 

both TMD and VEDs within consideration of SSI effect is 

firstly established in frequency domain. Then, the GA is 

used as a numerical searching technique to find the the 

optimal parameters of TMD and VEDs. A pile group 

supported 20-storey frame structure is used as a numerical 

example to demonstrate the optimization procedure for 

different soil conditions. The studies of this paper will 

provide a rapid determination of the optimal parameters of 

TMD and VEDs for wind vibration control of frame 

structures considering the SSI effect. 

 

 

2. The constitutive model of VED 
  

The five-parameter Fractional derivative Maxwell 

(FDM) model is used in this paper to demonstrate the 

general behavior of the viscoelastic damper. The model was 

first proposed by Makris and Constantinous (1991) and very 

good agreement between the predicted and experimental 

results were obtained over a wide range of frequency. The 

general force-displacement constitutive equation of the 

model can be expressed as 

0 0 0( ) [ ( )] ( ) [ ( )]P t b D P t k u t c D u t     (1) 

where t is the time, P(t) is the damping force, and u(t) is the 

damper deformation. 00 0, , , ,b k c 
are material constants 

with constraint  0 , 1   .The fractional derivative 
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(3) 

The properties of the VED in frequency domain are 

more commonly used in analysis. It can be obtained by 

adopting Fourier transformation
 

  ˆ[ ( )] ( ) ( )D f t i f  F  
(4) 
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(5) 

where  F  is the Fourier transform operator, ˆ ( )f  is 

the Fourier transform of time function f(t). 
Then the linear dynamic properties of materials in the 

frequency domain are characterized by the complex 

modulus and the relationship between force amplitude
ˆ( )P 

 

and displacement amplitude
ˆ( )u 

is obtained, which is:
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(6) 

where 1
( )G 

 and 2 ( )G 
 are the frequency dependent 

storage and loss stiffness of the damper respectively, given 

as follows
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(8) 

The loss factor can be calculated by the following 

equation
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The damping coefficient to a specific excitation 

frequency is defined as 

2 ( )
C( )

G 



  (10) 

The undetermined parameters in Eqs. (7)and (8) can be 

obtained by fitting the experimental results. A total number 

of 26 tests were conducted by Makris and Constantinous 

(1991) in the range of 0.01-50Hz at a fixed room 

temperature (25 degrees Celsius). Parameter α was set equal 

to unity. Parameters b0 and β were determined in a least-

square fit of the elastic stiffness curve, which is defined as 

the square root of the sum of squares of )(G 1  and 

)(G 2 . Constant c0 was then found by fitting the damping 

coefficient curve, which is described as Eq. (10). Finally, 

the obtained parameters are k0=0N/m, c0=15kN/m, 

b0=0.3s
0.6

, α=1 and β=0.6, good agreement is achieved 

between the model and the test results. 

The frequency dependent storage, loss stiffness and 

damping coefficient are shown in Fig. 1. The force 

displacement loop for different excitation frequencies are 

shown in Fig. 2. 
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Fig. 1 Stiffness and damping coefficient of FDM 

 

 

 

Fig. 2 The Force-Displacement loop of FDM 

 

 

3. The mathematical model of the system 
 

A wind resistant frame structural system equipped with 

TMD at the top floor and VEDs at the diagonal of each 

floor is considered. The superstructure is treated as an 

elastic linear system and could be simplified as the shear 

frame model. The mass of the system is lumped at the level 

of each story. The beams and columns are assumed to be 

axially inextensible so that the rotational nodal parameters 

from the equations of motion can be eliminated. Thus, the 

physical model of an N-storey frame structure with TMD 

installed at the top of the structure and VEDs equipped at 

each story considering the SSI effect can be simplified as 

shown in Fig. 3. 

On the basis of the relevant literatures (Bielak 1976, 

Wolf 1989), the pile foundation impedance can be written in 

the frequency domain as follows 

0 0 0( ) ( ) ( )l l lG ia K a iC a   (11) 

 

 

 

 

 

 

Fig. 3 The physical mode of frame structure equipped with 

TMD and VEDs considering SSI effect 

 
 

In which 0 / sa B V  is the dimensionless frequency, 

where Vs represents the soil shear wave propagation 

velocity. The subscripts l is hh, hr, rr respectively. Thus, Khh, 

Krr, Khr represent the swaying, rocking and the coupled 

swaying-rocking stiffness of the springs as illustrated in Fig. 

3. Chh, Crr and Chr represent the dashpots of the swaying, 

rocking and the coupled swaying-rocking of the 

corresponding springs. The frequency dependent numerical 

parameters of pile group dynamic impedance used in this 

paper are calculated by the method proposed by Gazetas et 

al. (1993).
 

The superstructure is founded on a square pile group 

embedded in a homogeneous, viscoelastic and isotropic 

half-space. It is assumed that the pile heads are clamped by 

the rigid pile cap which is considered as a rigid square plate 

of negligible thickness. The pile group parameters are 

denoted as follows: the pile length L and pile sectional 

diameter d , centre-to-centre spacing between adjacent piles 

S, cap mass m0 and cap moment of inertia I0, and the 

foundation half width B. The moment of inertia of the floor 

and cap can be calculated by the expressions I=mb2/3 and 

I0=m0B
2/3 respectively (pile cap and structure mass is 

uniformly distributed over square area). 

Firstly, the equilibrium equations of the system can be 

written in the time domain as follows
 

VED TMD++ ( )f t  Mu Cu Ku F p  (12) 
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(14) 

where 
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(16) 

In the above equations, the symbols M, C, K denote the 

mass, damping, and stiffness matrices of the system, 

respectively. MTMD, CTMD and KTMD are the mass, damping 

and stiffness of the TMD and uTMD represents the horizontal 

displacement of the TMD. The p(t) and u(t) are both (N+3)-

dimensional vectors that represent the time history of the 

wind load and the displacement of the system, respectively.

H represents the height vector of the structure and uh(t) and 

ur(t) represent the horizontal and rocking displacement of 

the cap.  

If the structure is equipped with only one VED denoted 

as the damper number i, which is mounted between two 

successive stories j and j+1, then the force interaction 

vector F (t) could be written in the following form
 

1( )= ( ) [0, , , , ,0,0,0] ( )T T
i j i j i i it t F f F f f t    F F L  (17) 

where 1[0, , 1, 1, ,0,0,0]i i iL L    L is the ith 

damper allocation vector of dimension N+3, fi(t) is the 

damper force in time domain. 

For a structure with m dampers, the force interaction 

vector is given as follows
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Eq. (17) can be written in frequency domain by Fourier 

transformation
 

T T 2
1 2 0

1 1 1

( )= ( ) ( ) cos ( )[ ( ) ( )]i i i i

m m m

i i i

f G iG     
  

    F F L L LU
 

(19) 

where ( )U  represents the Fourier transform of u(t). 0

represents the installation angle of VED. 
The equilibrium equations can be expressed in the 

frequency domain due to the frequency dependency of 

constitutive parameters of VED and the impedance function 

of pile group 
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The symbols in the above matrices are expressed as 

follows
 

0

1

( , )
N

T TMD s

i

M m M i i


  M  (24) 

1

( , ) ( )
N

T TMD top s

i

E M H i i i


  M H

 
(25) 

2 2
0 i

1

[ ( , ) ( ) ]
n

T TMD top s

i

I H I i i i I


    M M H
 

(26) 

T
1

2
0

1

( ) ( )cosi i

m

d
i

G  


K L L

 

(27) 

T 2 2
0

1

( )
( ) cosi i

m

d
i

G 
 



C L L

 

(28) 

where Ms, Ks and Cs represent the matrix of the mass, 

stiffness and damping of the superstructure, E is a column 

vector of order N with each element being equal to unity. 

Htop represents the height of top floor from the cap, 
)(U

and
)(P

are the corresponding Fourier transformation of 

u(t) and p(t).
 

Rayleigh proportional damping is considered in the
 

research. Thus, the damping matrix of the structure Cs can 

be expressed as linear combination of mass and stiffness 

matrices of the building
 

s s s  C M K
 

(29) 

where α and β are the Rayleigh damping coefficient. 

The equilibrium equations can be solved in frequency 

domain programmatically and the time-history response of 

the structure are then obtained by inverse Fourier transform. 
 
 
4. Simulation of the along-direction fluctuating wind 
load 
 

Under the premise of satisfying practical precision in 

engineering, wind speed time history could be assumed as 

follows: (1) the average wind speed of any point does not 

change with time; (2) fluctuating wind speed time history is 

a stationary random process with mean value of 0; (3) wind 

speed time history is spatial correlated. 

The Davenport spectrum is adopted as the wind speed 

power spectrum in this paper. This spectrum is based on 

more than 90 strong wind records measured at different 
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locations and different heights. The empirical formula could 

be expressed by Eq. (30) 

2 2
10

2 2 3/4

4
( )

(1 )
v

kx v
S f

f x



 (30) 

where, k represents the ground surface roughness 

coefficient, f represents the frequency of the fluctuating 

wind and 10v
represents the wind speed at 10 m from the 

ground. x denotes the turbulence integral scale coefficient, 

given as follows
 

10

1200
f

x
v

  (31) 

The Auto-regressive (AR) model method is used to 

simulate the multidimensional wind speed (Paola1998), the 

column vector of fluctuating wind speed time history v(X, 

Y, Z, t) for M spatial correlated points is given as Eq. (32)
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where, 1 1 1[ , , ] , [ , , ] , [ , , ]T T T
M M Mx x y y z z  X Y Z , 

(xi, yi, zi) is the coordinate of the ith spatial point; p is the 

order of AR model; t is the time step of simulating wind 

speed time history; k is the autoregressive coefficient 

matrix of AR model, which is an M×M square matrix; 

k=1,…, p; N(t) is the vector of independent random 

process, it can be obtained by Eq. (33) 

( ) ( )t t N L n  (33) 

where 1 2( ) [ ( ), ( ), ( )]TMt n t n t n tn , ni(t) is a normal 

distribution with mean value of 0 and variance of 1, i=1,…, 

M ; L is a lower triangular matrix of order M, which can be 

obtained by the Cholesky decomposion of RN expressed as 

Eq. (36). 
The relationship between the covariance R and regress 

coefficient  of random wind process can be expressed as 

follows 
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where   is a (p+1)M×M matrix, I is an M×M identity 

matrix; Op is an M×(p+1)M matrix, with all elements valued 

at 0. R is a (p+1)M×(p+1)M autocorrelation Toeplitz matrix, 

given as follows 
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where, Rij is an M×M identity matrix, it can be obtained by 

Wiener-Khintchine function 

0
( ) ( )cos(2 )ij ijR S f f d   



 
 (38) 

If i=j, Sij(f) represents the auto-power spectral density 

function of the fluctuating wind. 

If i≠j Sij(f) represents the cross-power spectral density 

function of the fluctuating wind which can be obtained by 

the following expressions 

( ) ( ) ( ) ( )ij ii jj ijS f S f S f r f 
 

(39) 

where, Sii(f) or Sjj(f) can use the Davenport spectrum 

proposed above, rij(f) represents the spatial-temporal 

correlation of the wind time history. 

Regress coefficient matrix   can be obtained by 

solving liner equations given by Eq.(34). In order to gain a 

stable result, Gauss Jordan elimination method is used. RN 

can be obtained by Cholesky factorization. Then N(t) can be 

obtained, and Eq. (32) could be rewritten as 
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     

        
     

        

  (40) 

By solving the above equitation, we can obtain M 

temporal and spatial related wind speed time history with 

time interval t .  

Then, the final wind speed at the height z is the 

combination of average wind speed ( , )v z t  and the 

fluctuating wind speed 

( , ) ( , )V z t v v z t   (41) 

According to Davenport, the average wind speed can be 

obtained by the following equation 

b b

v z

v z


 

  
   

(42) 

where bv
represents the wind speed at a standard height bz

.
 

 

 
5. The integrated optimization process 
 

5.1 The numerical example 
 

In this section, the optimization process is demonstrated by 

a 20-storey frame structure with uniform mass and stiffness 

distribution. The superstructure is supported by a square pile 

group foundation embedded in a homogeneous, viscoelastic 
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and isotropic half space. The width, depth and height of the 

structure are 30 m, 30 m, and 90 m respectively. The pile group 

foundation is assumed to be embed in three different types of 

soil: soft soil with 100 m/s shear wave velocity, medium soil 

with 250 m/s shear wave velocity, dense soil with 500 m/s 

shear wave velocity. The parameters of the superstructure are 

shown in Table 1. The parameters of the pile group foundation 

and soil are shown in Table 2. 

The TMD is mounted on top floor and the VEDs are 

installed on the diagonal of each story with an installation 

angle π/4. The general parameters of the viscoelastic 

element obtained from experiment data have already been
 

displayed in the previous section. The Rayleigh damping 

ratio is used for the superstructure with the first two modal 

damping ratios being equal to 0.02.
 

The Davenport along wind speed spectrum is used to 

generate the wind history and the duration of wind load is 

set to 800s. The fluctuating wind speed history on each 

floor of the building can be calculated through the method 

proposed in Section 4. Fig. 4 gives the time history of along 

wind speed on top floor.  

 
 

Table 1 Parameters of the superstructure
 

Floor M (kg) K (kN/m) I (kN·m
2) H (m) 

1~4 3.2×105 3.5×108 4.52×107 4.5 

5~10 3.2×105 3.0×108 4.52×107 4.5 

11~16 3.2×105 2.5×108 4.52×107 4.5 

17~20 3.2×105 2.2×108 4.52×107 4.5 

 
 
 

Table 2 Parameters of pile and soil
 

Model Parameter Symbol Value Unit 

Pile  

pile configuration n×n 5×5 - 

cap mass mb 1.5×105 kg 

cap half side width B 15 m 

cap moment of 

inertia 
Ib 1.13×107 kg×m2 

pile diameter d 1 m 

pile length L 30 m 

pile space S 7.5 m 

pile Young’s 

modulus 
Ep 2.4×104 Mpa 

pile density b  2.5×103 kg/m3 

pile Poisson’s ratio b  0.25 - 

Soil 

Mass density s  2×103 kg/m3 

Poisson’s ratio s  0.4 - 

shear velocity Vs 
100 /250 

/500 
m/s 

 
 

Fig. 5 gives the comparison of the target spectrum and the 

simulation result. It can be seen from the figures that the 

simulation result can well match the target spectrum. The 

wind load on each floor can be obtained easily within 

consideration of the windward surface of the building.
 

 
 

5.2 The optimization procedure 
 

Wind-induced serviceability is an important problem to be 

concerned in the structural design. It’s considered to ensure the 

comfort of people. The comfort of the people is mainly 

dependent upon the acceleration of the building under wind 

load. Many countries have corresponding codes limiting the 

maximum wind-induced acceleration of the structure to meet 

the need of serviceability. 

Consequently, the acceleration at the top of the building is 

chosen as the control objective in this research. The 

optimization problem can be defined as a procedure of finding 

the minimum acceleration at the top of the building in different 

parameter combinations of VEDs and TMD. Theoretically, the 

optimal solution for such a problem can be obtained by 

enumerable search of every possible combination of 

parameters since the design space is discrete.  

 

 

 

 

Fig. 4 Time history of wind velocity on the 20th floor of 

the building 

 
 
 

 

Fig. 5 The comparison of target spectrum and the 

simulation result 
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However, the practical implementation of this method is not at 

all effective due to large number of feasible design 

combinations. In order to solve the problem more effectively, 

the GA is adopted as a numerical searching technique to find 

the optimal results. The GA is an optimization technique 

simulating the evolutionary process based on the principles of 

natural biological evolutionary process where the stronger 

individuals are likely to be winners in a competing 

environment (Furuya et al. 1998). For the past few years, the 

GA has been successfully applied to a wide range of 

engineering applications and proved to be very effective in 

solving the discrete space optimization problems for its 

features of evolutionary, multi-point, direct and parallel 

searching.  

In this study, binary code with 0 and 1 is employed to 

represent the parameters of TMD (KTMD, MTMD, TMD ) 

and the parameter of VED (c0). The design variables can be 

encoded by mapping in a certain range using an n-bit of binary 

unsigned integer. The GA starts with an initial population, 

which comprises Ng randomly created binary strings. 
The main optimization procedure is illustrated as Fig. 6. 

The evolution starts from a population of randomly 

generated individuals (KTMD, MTMD, TMD
, c0). The 

population in each iteration is called a generation. In each 

generation, the fitness of every individual in the population 

is evaluated. The more fit individuals are stochastically 

selected from the current population, and each individual’s 

genome is modified (recombined and possibly randomly 

mutated) to form a new generation. The new generation of 

candidate solutions is then used in the next iteration of 

the algorithm.
 

 
 
 

 

Fig. 6 The flow chart of the optimization process 

 
 
 

The algorithm terminates when either a maximum number 

of generations has been produced or a satisfactory fitness 

level has been reached for the population. 

In the application of GA, one population consists of 100 

chromosomes (Ng=100), and each chromosome of the 

population is a string of size 16n. Selection is based on 

roulette wheel selection, the crossover operation is 

performed with a crossover probability of 0.8 and mutation 

operates with a mutation probability of 0.01. 

The ranges of KTMD, MTMD, TMD
, c0 for the optimization 

process is set as follows
 
based on the practical engineering 

1 10.01 0.1TMDM M M 
 

(43) 

1 10.1 2TMD     (44) 

0.01 0.5TMD   (45) 

00 0.5i
ic K   (i=1, 2, 3...N) (46) 

The response of superstructure without any control 

devices is firstly calculated as a comparison. Table 3 gives 

the peak response values and natural frequencies of the 

system without control devices for different soil types. For 

hard soil condition, the natural frequency of the system is 

almost the same as fixed base condition and the natural 

frequency decreases with soil softening. Fig. 7 gives the 

maximum acceleration and displacement of each floor for 

different soil types. It can be seen from figure that with the 

decrease of soil stiffness, the peak values of displacement 

and acceleration both increase. 

Two cases of wind resistant system are considered as 

follows: 

Case 1: Structure-TMD; 

Case 2: Structure-TMD-VEDs. 

The proposed design procedures illustrated by Fig.6 are 

applied to the system and the results are summarized as 

follows. 

Fig. 8 shows the generation history of the optimization 

process of Case 2 for hard soil and soft soil conditions. The 

maximum acceleration of the top floor converges into its 

optimal value after approximately 250 generations. 

Table 4 gives the optimal parameters of TMD for Case 1 

under different soil conditions.  

 

 

Table 3 The peak response value and natural frequencies of 

the system without control devices for different soil types 

 
Fixed 

base 

Hard 

soil 

Medium 

soil 

Soft 

soil 

Peak Displacement (m) 0.14 0.15 0.22 0.28 

Peak Acceleration (m/s2) 0.79 0.81 1.10 1.26 

Frequency(rad/s) 1.98 1.96 1.89 1.75 

 

 

 

The soil-pile-structure
system

The fluctuating wind

load

Caculate the objective

function value

Evaluate the individual

fitness

Meet the suspension

conditions

The genetic progress

(selection, crossover, mutation)

Generate the next

generation

Return the optimal

individuals

The initial parameter set

of the problem

(KTMD, MTMD,┧TMD,GVEDi~N)

Initialize the population

Yes

No

Code the parameter set
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(a) The displacement 

 
(b) The acceleration 

Fig. 7 The maximum displacement and acceleration of 

each floor without control devices
 

 

 

The reduction amplitude in the table is defined as the ratio 

of reduction amount of acceleration or displacement to the 

original ones for structures without any control devices. 

Therefore, the devices have a better control effect if the 

reduction amplitude is higher. 

The results given in Table 4 demonstrate that:  

(1) The optimal parameters of TMD for hard soil 

condition are almost consistent with that for fixed base 

condition. It suggests that if structures are founded on hard 

soil, the SSI effect can be ignored and the optimal 

parameters of TMD obtained on assumption of rigid base 

are feasible ;  

(2) The optimal frequency of the TMD ωTMD is close to 

the natural frequency of the system, which is in agreement 

with the existing conclusions. Thus, the correctness of the 

optimization algorithm is verified;  

(3) With soil softening, the optimal frequency of the 

TMD decreases due to the decrease of the natural frequency 

of the system caused by the SSI effect. It explains that the 

optimization procedure can sensitively capture the change 

of the dynamic characteristic of the system;  

(4) Although the TMD can greatly reduce the structural 

acceleration and displacement for all soil conditions. 

According to the Chinese code, the allowable maximum 

acceleration of building under wind load is 0.25m/s
2
. It 

seems that the optimization results cannot meet the 

requirement for all soil conditions if the structure installed 

with TMD only. 

Table 5 gives the optimal parameters of TMD for Case 2 

under different soil conditions and Figs. 9-11 give the 

corresponding optimal distribution of VEDs at each floor.  

Obviously, the integrated use of TMD and VEDs in 

structure have a better control of the top floor acceleration 

for all soil conditions compared with the structure installed 

with TMD only. The accelerations are also restricted to the 

allowable ranges for all soil conditions. The optimal 

frequency of the TMD has an increase compared with Case 

1. The phenomenon describes that the VEDs provide 

additional stiffness of the system, which leads to an increase 

of the natural frequency of the system. Consequently, the 

optimization procedure captures the changes and gives the 

optimal results adaptable to the system. The optimal mass 

of TMD also has a large extend of decrease compared with 

Case 1. 

 

 

 

(a) Hard soil 

 

(b) Soft soil 

Fig. 8 Generation history of the maximum acceleration 

of top floor
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Figs. 12 and13 give comparisons of acceleration and 

displacement among different control cases for three types 

of soil. It is evident from these figures that the integrated 

optimal design of TMD and VEDs has a best control of the  

 

 

 

 

 

 

 

 

 

 

 

system for all soil conditions. For structures with lower 

stiffness and damping, the combined use of TMD and VEDs 

seems a good choice for wind induced vibration control. 

 

Table 4 The optimal parameters of TMD for Case 1 

Soil types 
Mass 

TMD
M (kg)

 

Damping ratio 

TMD


 

Stiffness  

TMDK ( kN/m)
 

Frequency 

TMD (rad/s)
 

Amax  

(m/s2) 

Reduction 

amplitude 

Fixed base 2.19×105 0.26 8.40×105 1.96 0.24 69.6% 

Hard soil 2.18×105 0.25 8.33×105 1.95 0.25 69.1% 

Medium soil 2.23×105 0.26 8.14×105 1.91 0.28 74.5% 

Soft soil 2.68×105 0.28 7.89×105 1.71 0.34 73.1% 

Table 5 The optimal parameters of TMD for Case 2 

Soil types 
Mass 

TMDM (kg)
 

Damping ratio 

TMD  
Stiffness  

TMDK ( kN/m)
 

Frequency 

TMD (rad/s)
 

Amax   

(m/s2) 

Reduction 

amplitude 

Fixed base 2.85×104 0.30 1.26×105 2.10 0.13 83.5% 

Hard soil 2.87×104 0.29 1.24×105 2.08 0.13 84.0% 

Medium soil 9.79×104 0.41 3.82×105 1.98 0.15 86.3% 

Soft soil 9.04×104 0.30 3.45×105 1.95 0.16 87.3% 

 

Fig. 9 The optimal distribution of the VEDs for Hard soil case (Vs=500 m/s)
 

 

Fig. 10 The optimal distribution of the VEDs for Medium soil case (Vs=250 m/s)
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Fig. 11 The optimal distribution of the VEDs for Soft soil case (Vs=100 m/s)
 

   

(a) Hard soil (b) Medium soil (c) Soft soil 

Fig. 12 The comparison of acceleration for different cases
 

   

(a) Hard soil (b) Medium soil (c) Soft soil 

Fig. 13 The comparison of displacement for different cases
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6. Conclusions 
 

The structural analysis considering SSI effect is usually 

realized by finite element software such as ABAQUS or 

ANSYS in the practical construction design and large 

amount of soil element needs to be established to get 

relatively accurate results. For optimization problems, it 

will takes a considerable amount of time. 

The superstructure computational model can be 

idealized as a multiple-degree-of-freedom system with 

lumped masses in series linked by line elements for 

structures with relatively uniform mass and stiffness 

distribution. In the past few decades, there has been a more 

in-depth academic research on soil impedance function. 

Accordingly, the numerical parameters of soil impedance 

can be conveniently applied to equations of SSI system in 

frequency domain. Based on genetic algorithm, a rapid 

determination of the best parameters of TMD and VEDs for 

wind vibration control of frame structures considering the 

SSI effect can be obtained in frequency domain . 

A 20-storey pile group supported frame structure is 

used as a numerical example to demonstrate the 

optimization process proposed in this paper. Through the 

numerical analysis, some conclusions can be draw from the 

investigation: 

• The acceleration and displacement response of the 

structure excited by along-direction fluctuating wind 

without any control device have a tendency of increase with 

the soil softening. 

• The optimal frequency of TMD is close to the 

natural frequency of the system. With the decrease of the 

soil stiffness, the best control frequency of TMD decreases 

as a result of the decline of the natural frequency of the 

system caused by the SSI effect.  

• The optimization procedure can sensitively capture 

the changes of the dynamic characteristic of the system and 

give the best parameters for structural vibration control. 

• The integrated optimal use of TMD and VEDs has a 

better control of the structural acceleration and 

displacement compared with the case that the structure 

installed with TMD only. 
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