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1. Introduction 
 

Flow around a circular cylinder submerged in a wake 

has potential applications in various engineering fields, such 

as offshore piggyback pipelines, shell and tube bundles heat 

exchangers, cooling system for electronic components, 

turbine blades, etc. The tandem configuration of two 

cylinders is classic for analyzing the complex flow features 

around multiple cylindrical structures. Spacing ratio L/d is a 

governing parameter defining the flow around two tandem 

cylinders, where L is the distance from the upstream 

cylinder center to the front stagnation point of the 

downstream cylinder, and d is the upstream cylinder 

diameter. Here we define the downstream cylinder diameter 

as D. For d/D = 1.0, with increasing L/d, the flow around 

two tandem cylinders changes as: overshoot flow (0.5 < 

L/d < 0.7–1.3) where the upstream-cylinder shear layers 

shed vortices behind the downstream cylinder without 

reattaching on it; reattachment flow (0.7–1.3 < L/d < 2.9–

3.3) where the upstream-cylinder shear layers reattach on 

the downstream cylinder; and coshedding flow (L/d > 2.9–

3.5) where the upstream-cylinder shear layers roll in the gap 

between the cylinders without reattachment (Zdravkovich 

1987, Alam et al. 2003a). A bistable nature of the flow 

emerges for a small range of L/d at the boundary between 

the reattachment and coshedding flow regimes, where the 

reattachment and coshedding flows intermittently switch 

from one to the other. This range of L/d is called bistable 

flow regime (Alam 2014). The boundaries between the flow 

regimes are contingent on the freestream turbulent intensity 

and Reynolds number Re = U D/ν, where U is the free  
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velocity and ν is the kinematic viscosity of fluid (Sakamoto 

and Haniu 1988, Alam 2014).  

Naturally, diameters of cylindrical structures in a group 

are not always identical but different. Attention has thus 

been paid to assimilate the effect of d/D > 1.0 or d/D < 1.0 

on aerodynamic forces and flow structures around the 

cylinders. Igarashi (1982) at 1.3 × 10
4 
≤ Re ≤ 5.8 × 10

4 
 

identified overshoot, reattachment, bistable and coshedding 

flow patterns for d/D = 1.47 in a similar fashion to those for 

d/D = 1.0. The L/d ranges for different flow regimes are, 

however, distinct from those for d/D = 1.0, with the L/d 

range of the bistable flow being significantly smaller for 

d/D = 1.47. Sakamoto and Haniu (1994) utilized a small 

cylinder of diameter d around the main circular cylinder of 

diameter D to suppress aerodynamic forces at Re = 6.5 × 

10
4
 by controlling the boundary layer and shear layer 

separated from the surface of the main cylinder. They were 

able to achieve a maximum reduction of 50% in time-mean 

drag C̅D, 85% in fluctuating lift and drag for d/D = 0.06 

when the control cylinder position was at 60
o
 

 
and 120

o
 

measured from the nominal front stagnation point. A control 

cylinder or a control flat plate has been implemented in 

some studies to suppress the fluid forces on a single circular 

or square cylinder and on multiple cylinders (Igarashi 1997, 

Prasad and Williamson 1997, Bouak and Lemay 1998, 

Alam et al. 2002, Tsutsui and Igarashi 2002, Alam et al., 

2003b, Alam et al. 2006, Zhang et al. 2006, Kuo et al., 

2007). Employing hotwire and loadcell measurement 

techniques, Alam and Zhou (2008) at Re = 2.72×10
4
 studied 

the flow around the downstream cylinder for L/d = 5.5 

when d/D was varied from 0.24 to 1.0. They identified two 

frequencies in the wake of the downstream cylinder, one 

associated with the downstream cylinder shedding and the 

other with the upstream cylinder. With decreasing d/D, the 

C̅D increases because of a larger dynamic pressure between 
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the cylinders, and fluctuating lift and drag decline because 

of the impaired strength of vortices from the upstream 

cylinder. The detailed information on the effect of the gap 

vortex impingement on the pressure on the downstream 

cylinder surface and wake structure (e.g., formation length, 

wake width, etc) was missing in their study. Furthermore, 

they did not measure the forces on the upstream cylinder 

while a curiosity arises about how the forces on the 

upstream change with d/D decreasing from 1.0 to 0.24.  

Gao et al. (2014) at 1.2 × 10
3 
≤ Re ≤ 4.8 × 10

3 
 

conducted particle image velocimetry (PIV) experiments in 

a water channel for a fixed d/D = 0.66 with L/d = 0.7, 1.9, 

3.1 and 4.5. Three flow patterns identified are reattachment 

flow (L/d = 0.7 and 1.9), bistable flow (L/d = 3.1), and 

coshedding flow (L/d = 4.5). Heat transfer characteristics of 

an isothermal cylinder submerged in the wake of another 

cylinder were studied by Mahir and Altaç (2017) for d/D = 

0.3 to 2 and L/d = 1.5 to 5 at  Re = 100
 
 and 200. They 

identified four flow regimes i.e. overshoot flow, steady 

reattachment flow, front-side-reattachment flow, and 

coshedding flow. The boundaries between these flow 

regimes are dependent on d/D and Re. Recently, Zafar and 

Alam (2018) examined the characteristics of heat transfer 

from a cylinder placed in the wake of another for d/D = 

0.15 - 1.0 at a fixed L/d = 5.5. The surface-averaged heat 

transfer increases and decreases with d/D decreasing from 

1.0 to 0.4 and from 0.4 to 0.15, respectively. The increase in 

heat transfer results from an enhanced shear layer velocity, 

reduced wake-recirculation size, and increased recirculation 

strength. A novel tertiary frequency in heat transfer 

fluctuation is identified, attributed the change of the 

instantaneous phase lag between the primary and secondary 

vortex sheddings.  

Obviously, the previous investigations have improved 

our understanding of the salient features of the flow around 

two tandem different diameter cylinders, there is still scope 

of further investigation to understand the effect of d/D on 

pressure and friction force distributions, wake width, 

formation length, forces, etc. The objective of the present 

work is thus to study the influence of d/D on wake structure 

around the two tandem cylinders, in terms of shedding 

frequencies, global fluid forces, surface pressure, skin 

friction forces, wake width, and formation length at Re = 

200. The d/D is systematically varied as d/D = 0.24, 0.4, 

0.6, 0.8 and 1.0 for L/d = 5.5. 

 

 

2. Problem description 
 

The problem considered in this investigation is shown in 

Fig. 1. Two circular cylinders of different diameters are 

placed in a tandem arrangement. The diameter d of the 

upstream cylinder is varied while the diameter D of the 

downstream cylinder is fixed for diameter ratios of d/D 

=1.0, 0.8, 0.6, 0.4, and 0.24. The spacing ratio L/d
 
= 5.5 is 

constant, where L is the spacing between the center of the 

upstream cylinder to the front stagnation point of the 

downstream cylinder. Two coordinates systems (x′, y′) with 

the origin at the center of the upstream cylinder and (x, y) 

with the origin at the center of the downstream cylinder are 

deployed. 

An incompressible fluid flow is assumed, and the 

Reynolds number is set as Re = 200 based on D and 

freestream velocity U. A rectangular computational 

domain is used for the simulations where Xu = 10D is the 

distance from the center of the upstream cylinder to the 

inflow boundary, Xd = 25D is the distance from the center of 

the downstream to the outflow boundary, and H = 30D is 

the lateral distance between the upper and lower boundaries 

(Fig. 1). Various studies (Mittal et al. 2006, Prasanth and 

Mittal 2008, Qu et al. 2013, Zheng and Alam 2017) have 

shown that the effect of the blockage ratio B = D/H can be 

ignored if B < 5% for Re < 300. Taking this point into 

account, B = 1/30 = 3.3% is adopted in the present study. 

 

 

3. Computational method and validation 
 

The unsteady incompressible viscous fluid flow motion 

is governed by the non-dimensional mass conservation and 

Navier–Stokes equations written as follows. 
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The dimensionless variables are 
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Here u and ν are the streamwise and normal components 

of the velocity, respectively, in the Cartesian coordinate 

system, p is the static pressure, and t is the time. The finite 

volume method in a commercial computational fluid 

dynamics package ANSYS FLUENT was used for the 

solution of these equations on hexahedral grids. Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE) 

scheme was adopted for the velocity pressure coupling 

while the second-order upwind differencing and second-

order central differencing schemes for the discretization of 

convective and diffusive terms, respectively. The temporal 

discretization for the transient solution was performed using 

the second-order backward Euler scheme. 

The hexahedral non-uniform grid system was employed. 

A higher grid density was rendered near the surfaces of the 

cylinders to resolve the viscous boundary layer. Therefore, 

an O-grid was generated in the vicinity of cylinders, with 

the first grid cell height of 0.00375D, consistent with the 

viscous length scale (Schlichting and Gersten 2003). Fig. 2 

shows grids around the two cylinders. The O-grid system 

had 300 evenly spaced grid points in the circumferential 
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direction and 75 grid points in the radial direction. The 

following boundary conditions were enforced at different 

surfaces. 

 𝑢∗ = 0,  𝑣∗ = 0  at the surface of cylinder, 

 𝑢∗ = 1,  𝑣∗ = 0  at the inlet, 

𝜕𝑢∗

𝜕𝑦∗ = 0,  𝑣∗ = 0   at the lateral sides, and  

𝜕𝑢∗

𝜕𝑥∗ = 0,
𝜕𝑣∗

𝜕𝑥∗ = 0   at the outlet. 

The flow is initialized at  𝑡∗ = 0 with inflow 

velocities 𝑢∗ = 1,  𝑣∗ = 0. 

 

3.1 Aerodynamics parameter definitions 
 
The following non-dimensional flow parameters related 

to fluid dynamics are computed. Drag coefficient  𝐶𝐷 =
2𝐹𝑥/(𝜌𝑈∞

2 𝐷), where Fx is the total drag force in the x 

direction, including pressure and friction forces. Lift 

coefficient  𝐶𝐿 = 2𝐹𝑦/(𝜌𝑈∞
2 𝐷), where Fy is the total force 

in the y direction. Pressure coefficient 𝐶𝑝 = 2(𝑝 −

𝑝∞)/(𝜌𝑈∞
2 ), where 𝑝∞  is the freestream pressure. Skin 

friction coefficient 𝐶𝑓 = 2𝜏/(𝜌𝑈∞
2 ), where 𝜏 is the wall 

shear stress. Fluctuating lift and drag coefficients 

𝐶𝐿𝑓 = 2𝐹𝑦,𝑟𝑚𝑠/(𝜌𝑈∞
2 𝐷)  and  𝐶𝐷𝑓 = 2𝐹𝑥,𝑟𝑚𝑠/(𝜌𝑈∞

2 𝐷) , 

where Fy,rms and Fx,rms are the root-mean-square (r.m.s.) of 

lift and drag forces, respectively. Strouhal number St = 

fsD/U∞, where fs is the vortex shedding frequency obtained 

from the power spectrum of fluctuating lift force. 
  

 

Fig. 1 Computational domain, definitions of symbols and 

arrangement of two cylinders 

 

 

Fig. 2 Zoomed-in view of grids around the two cylinders 

Time-mean drag coefficient (C̅D), time-mean friction force 

coefficient (C̅f), time-mean pressure coefficient (C̅p), 

fluctuating lift coefficient (CLf) and fluctuating drag 

coefficient (CDf) are computed for more than 200 vortex 

shedding cycles after the computation is converged. 

 

3.2 Grid validation study 
 

Three different grid systems were tested first in order to 

decide the grid resolution. Grid1 consisted of 33934 nodes 

while grid2 and grid3 of 2grid1 and 3grid1, respectively, 

for a single cylinder (Table 1). A summary of the global 

aerodynamic coefficients (St, C̅D, and CLf) is given in table 1 

for two different time steps. At time step ∆t
*
 = 0.0912, the 

maximum variation in St, C̅D, and CLf is < 2.8% (for CLf) 

between grid1 and grid2, and < 3.3% (for CLf) between 

grid2 and grid3. On the other hand, at time step ∆t
*
 = 

0.0182, the maximum difference is < 1.03% (for St) 

between grid1 and grid2 and < 1.04% (for CLf) between 

grid2 and grid3. Grid2 and ∆t
*
 = 0.0182 were, therefore, 

chosen. The effects of upstream and downstream 

boundaries on flow parameters were examined for grid 2. 

Two additional cases (cases 2 and 3) are considered as to 

grid2 (reference case, Xu = 10D, Xd = 25D) as shown in 

Table 2, where Xu is doubled (= 20D) in case 2 and Xd is 

doubled (= 50D) in case 3. The results obtained for cases 2 

and 3 accord well those for the reference case, the deviation 

being less than 0.6% and 0.4%, respectively.  

 

 

Table 1 Grid and time step independence test for a single 

cylinder at Re = 200 

Grid Nodes  ∆t* = 0.0912 

  St  C̅D  CLf 

Grid1 33934  0.194 1.361 0.480 

Grid2 2×Grid1   0.196  1.360  0.467  

Grid3 3×Grid1   0.193  1.347  0.452 

Grid Nodes  ∆t* = 0.0182 

  St  C̅D  CLf 

Grid1 33934  0.195 1.367 0.485 

Grid2 2×Grid1   0.197  1.362  0.487  

Grid3 3×Grid1   0.197  1.361  0.482  

 

 

Table 2 Effects of upstream and downstream boundary 

locations on global parameters for a single cylinder at Re = 

200 

Case Description St C̅D CLf 

1 

Reference(grid2) 

(Xu = 10D, Xd = 25D) 
0.197 

 

1.362 

 

0.487 

 

2 

Xu double 

(Xu = 20D, Xd = 25D) 

 

0.196 1.358 0.484 

3 
Xd double 

(Xd = 10D, Xd = 50D) 
0.197 1.363 0.489 

L  = 5.5d

H = 30D

Xu = 10D

Dd
x

yy′

x′

Xd = 25D

-2 0 2 4 6 8

-2

-1

0

1

2
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y/d
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In view of computational cost and numerical accuracy, 

grid2 with Xu = 10D and Xd = 25D was adopted for the 

extensive simulation. The results (St, C̅D, CLf, time-mean 

base pressure coefficient C̅pb) are validated with those 

available in the literature in Table 3, showing a good 

agreement between the present and literature results. 

 

 

4. Results and discussion 
 

4.1 Lift force histories and flow structures 
 

Fig. 3 shows time histories of CL of the upstream and 

downstream cylinders for d/D = 1.0, 0.8, 0.6, 0.4, and 0.24. 

A single cylinder CL is also included for a comparison 

purpose. Time histories are plotted for a span of non-

dimensional time t
*
 = 450 to 500 beyond the transient state 

of the computation. It can be observed in Figs. 3(a) and 3(b)  

 

 

 

 

 

that the maximum amplitudes of CL for the single and 

upstream cylinders (d/D = 1.0) are CL,max= 0.68 and 0.69, 

respectively. This implies that the vortices generated from 

the upstream cylinder are comparable to those from a single 

cylinder. On the other hand, the CL,max for the downstream 

cylinder is 1.43, almost double of that for the upstream or 

single cylinder.  

The upstream-cylinder generated vortices impinging on 

the downstream cylinder engender such a large CL,max on the 

downstream cylinder. The periodical variation in CL is 

regular, CL,max being independent of time, for the two 

cylinders (d/D = 1.0) and the single cylinder. For d/D = 0.8 

(Fig. 3(c)), the upstream cylinder CL,max = 0.45, about 34% 

smaller than that for d/D = 1.0. The downstream cylinder CL 

variation is not regular but quasi-regular, CL,max varying 

between 1.27 and 1.02. While the upstream cylinder CL,max 

monotonically decreases from d/D = 1.0 to 0.4 (Figs. 3(b)-

3(e)), the regularity of CL variation deteriorates for the  

Table 3 Comparison of global flow parameters for a single cylinder at Re = 200 

 St  C̅D  CLf -C̅pb 

Present 0.197 1.362 0.487 0.958 

Liu et al. (1998) 0.192 1.31 ± 0.049 0.487 0.956 

Chen et al. (1999) 0.197 1.33 ± 0.049 0.509 ─ 

Meneghini et al. (2001) 0.196 1.3 0.495 ─ 

Linnick and Fasel (2005) 0.197 1.34 ± 0.04 0.487 ─ 

Ding et al. (2007) 0.196 1.348 ± 0.05 0.466 ─ 

Mahír and Altaç (2008) 0.192 1.37 ± 0.048 0.493 ─ 

Qu et al. (2013) 0.196 1.316 0.467 0.966 

Ma and Kuo (2016) 0.197 1.35 ± 0.048 0.487 0.971 

Alam (2016) 0.195 1.40 0.488 ─ 

Experiment     

Roshko (1954) 0.18 ─ ─ ─ 

Williamson (1988) 0.197 ─ ─ 0.96 

Norberg (2003) 0.197 ─ 0.495 ─ 

 

Fig. 3 Time histories of lift coefficient CL of (a) single cylinder, (b) d/D = 1.0, (c) d/D = 0.8, (d) d/D = 0.6, (e) d/D = 0.4, 

and (f) d/D = 0.24 
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downstream cylinder as d/D decreases from 0.8 to 0.4 (Figs. 

3(c)-3(e)). It is noted that CL,max  0 for the upstream 

cylinder at d/D = 0.24 (Fig. 3(f)), indicating no vortex 

shedding from the upstream cylinder. The downstream 

cylinder CL, however, again becomes regular with CL,max = 

0.42. The observation is rather different from that at high Re 

= 2.72×10
4
 by Alam and Zhou (2008), where they observed 

vortex shedding from the upstream cylinder for d/D = 

0.24.The shear layers from the upstream cylinder reattach 

on the downstream cylinder, and the flow in the gap is 

quasi-steady. It can be pointed out that the flow past a single 

isolated cylinder is steady for Re < 50 (Berger and Wille 

1972, Gresho et al. 1984). At d/D = 0.24, the effective 

Reynolds number Red (based on d) for the upstream 

cylinder is about 48. This is a reason why there is no vortex 

shedding in the gap for d/D = 0.24. Qin et al. (2017) and 

Wang et al. (2017) at Re = 4.8×10
3 
– 5.5×10

4
 obtained that 

the critical spacing is longer for a smaller d/D, increasing 

from 3.0 to 6.5 as d/D decreases from 1.0 to 0.2. 

Flow structures in the gap and wake are illustrated by 

instantaneous vorticity ω
*

z
= ω

z
×D/U

∞
 contours for d/D = 

1.0, 0.8, 0.6, 0.4, 0.24 and single cylinder in Fig. 4. For the 

single cylinder, a single vortex street is well established, 

symmetric about the wake centerline (Fig. 4(a)), and two 

single vortices shed in one shedding cycle (Fig. 3(a)), one 

negative vortex from the upper surface and one positive 

vortex from the lower surface (Fig. 4(a)). For the two-

cylinder case (Figs. 4(b)-4(e)), the gap vortices generated 

by the upstream cylinder impinge on the downstream 

cylinder surface, followed by interactions with the shear 

layers of the downstream cylinder, which leads to shedding 

of binary vortices from the downstream cylinder (Fig. 4(b)). 

The upstream cylinder sheds vortices in the gap for 0.4 ≤ 

d/D ≤ 1.0 in a similar fashion to the single cylinder. As d/D 

is decreased from 1.0 to 0.4, the vortices in the gap become  

 

 

smaller in size, and a low-frequency modulation of the 

downstream-cylinder wake is found to shift upstream. The 

detailed physics of the modulation has been explained in 

Zafar and Alam (2018). For d/D = 0.24, the shear layers 

separated from upstream cylinder reattach on the front 

surface of the downstream cylinder, and the flow in the gap 

is quasi-steady (Fig. 4(f)), while the vortex shedding occurs 

from the downstream cylinder only. The nature, formation, 

and size of vortices in the wake are quite comparable with 

those in the single-cylinder wake; the CL amplitudes are 

however different from each other due to the placement of 

the small upstream cylinder. 

 

4.2 Global fluid forces 
 

The dependence of C̅D, CDf, and CLf on d/D is presented 

in Fig. 5, where the subscripts 1, 2 and 0 in the figure stand 

for the upstream, downstream and single cylinders, 

respectively. Note that all the force coefficients are 

normalized based on D. As seen in Fig. 5(a), the upstream 

cylinder experiences maximum C̅D1 for d/D = 1.0, albeit 

less than the single cylinder C̅D0, due to an interference 

effect of the downstream cylinder. With d/D decreasing 

from 1.0 to 0.24, C̅D1 declines and C̅D2 boosts. The expected 

decline of C̅D1 is attributed to the reductions of the vortex 

size as well as of the upstream cylinder size. On the other 

hand, the enhancement of C̅D2 with decreasing d/D results 

from the reduced shielding effect by the upstream cylinder. 

Further explanations behind the decline and boost will be 

given later with the aid of pressure distributions and skin 

friction forces on the cylinder surfaces.  

Interestingly, C̅D2 < C̅D1 < C̅D0 for d/D  0.6 while C̅D1 < 

C̅D2 < C̅D0 for d/D < 0.6. It is worthy of examining how the 

total drag force coefficient C̅Dtotal (= C̅D1+C̅D2) varies with 

d/D. Fig. 5(b) depicts the variation in C̅Dtotal with d/D.  

 

Fig. 4 Contours of instantaneous vorticity 
*

z  = ω
z
×D/U

∞
 for (a) single cylinder, (b) d/D = 1.0, (c) d/D = 0.8, (d) d/D = 

0.6, (e) d/D = 0.4, and (f) d/D = 0.24. Solid and dashed lines represent positive and negative vorticities, respectively 

x/D

y/
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D
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Interestingly, although C̅D2 boosts with decreasing d/D, 

the C̅Dtotal dwindles with decreasing d/D. The C̅Dtotal < C̅D0 

and > C̅D0 for d/D < 0.58 and > 0.58, respectively, which 

explains why a smaller cylinder is used to control the flow 

over a large cylinder. This information may be very useful 

in engineering practice where different-sized structures are 

designed for coshedding flow regimes.  

The CDf behaves differently from the C̅D, where CDf1 and 

CDf2 both follow the same trend, declining with decreasing 

d/D (Fig. 5(c)). While CDf2 > CDf1 and CDf1 < CDf0 for the 

entire d/D range, CDf2 > CDf0 for d/D > 0.4 only. The 

difference between CDf2 and CDf1 is larger at a larger d/D 

because of a stronger impingement of alternating large-

sized vortices on the downstream cylinder. As to CLf, similar 

characteristics of CLf2 and CLf1 are discernible to those of 

CDf2 and CDf1 (Figs. 5(c) and 5(d)) That is, the vortex 

impingement plays the same role in CLf2 as in CDf2. Again, 

the decline of CLf2 is connected to smaller d accompanied 

by smaller vortex size. 

 

4.3 Pressure and shear forces 
 

The drag force is composed of the pressure and shear 

forces acting on the cylinder surface. The pressure drag 

results from the variation in the pressure around the 

cylinder while tangential shear stresses acting on the surface 

produce the skin friction drag. Fig. 6(a) presents 

distributions of time-mean pressure coefficient C̅p along the 

surface of the downstream cylinder for different d/D. It is  

 

 

observed that C̅p at the front stagnation point (° = 0) is 

0.028, 0.155, 0.235, 0.214, and 0.08 for d/D = 1.0, 0.8, 0.6, 

0.4, and 0.24, respectively, increasing for 0.6 ≤ d/D ≤ 1.0 

and then decreasing for d/D < 0.6. It is less for d/D = 1.0, 

owing to a wider wake by the upstream cylinder (Fig. 4(b)); 

more information will be rendered later. It is again much 

less for d/D = 0.24 because of the symmetric standing 

recirculation at the front of the downstream cylinder (Fig. 

4(f)). The C̅p for 0.4 ≤ d/D ≤ 1.0 decreases from θ = 0° to 

87-90° (depending on d/D) and then increases. On the other 

hand, that for d/D = 0.24 increases up to θ = 33° which is 

followed by a decrease for θ = 33° to 90° and an increase 

for θ > 90°. The minimum pressure coefficient C̅p,min occurs 

at 90°, 88.40°, 87.61°, 87.58°
 
and 87.56°

 
for d/D = 1.0, 0.8, 

0.6, 0.4, and 0.24, respectively. With decreasing d/D, the 

point of C̅p,min postpones. It is interesting to note that the 

base pressure coefficient C̅pb (at θ = 180°) = -0.418, -0.462, 

-0.545, -0.620, and -0.675 for d/D = 1.0, 0.8, 0.6, 0.4, and 

0.24, respectively, the magnitude of C̅pb increasing. The 

observation indicates that the pressure difference between 

the front and back surfaces enhances with decreasing d/D, 

explaining why C̅D2 augments with d/D decreasing (Fig. 

5(a)). The reason behind the C̅pb magnitude increasing will 

be given later. 

Skin friction coefficient C̅f is considered as an important 

parameter, determining the flow separation and heat transfer 

from the surface. It is well-known that the attached and 

separated flow regions corresponds C̅f > 0 and C̅f < 0, 

respectively, with C̅f = 0 at the separation point. Fig. 6(b)  

 

Fig. 5 Dependence on d/D of (a) time-mean drag coefficient (C̅D), (b) total time-mean drag coefficient (C̅Dtotal), (c) 

fluctuating drag coefficient (CDf ), and (d) fluctuating lift coefficient (CLf ). The subscripts 1, 2 and 0 stand for the 

upstream, downstream and single cylinders, respectively 
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shows C̅f distributions on the surface of the downstream 

cylinder. For d/D = 1.0, the C̅f escalates for θ < 50°, as the 

flow in the boundary layer accelerates due to a favorable 

pressure gradient. The trends of C̅f  for d/D ≥ 0.4 are the 

same, albeit the peak magnitude grows with a decrease in 

d/D. For d/D = 0.24 where the shear layers from the 

upstream cylinder reattach on the downstream cylinder, C̅f < 

0 for θ < 27° indicating the reattachment of the upstream-

cylinder-generated shear layer at θ = 27°. A large favorable 

pressure gradient at 27° < θ < 66° results in an accelerated 

flow, hence causing a rapid growth of C̅f. As already stated, 

C̅D increases with decreasing d/D, contributed by C̅f 

increasing. The increase in pressure for 85°-90° < θ < 

130°corresponds to decreasing C̅f with θ. The separation 

point of the flow where C̅f = 0 (widely accepted definition 

of the boundary layer separation) occurs at 117
 
< θ < 126° 

depending on d/D. Fig. 6(c) shows the variation of time-

mean separation point sθ with d/D while the inset in Fig. 6b 

shows the zoomed-in view of C̅f used for estimating sθ . 

The sθ  sharply drops from d/D = 1.0 to 0.8, followed by a 

linear decrease for d/D  0.8. 

 

4.4 Correspondence between drag enhancement and 
flow structure 

 

As observed earlier, C̅D2 enhances with decreasing d/D. 

Here we would try to correlate this enhancement with the 

flow structure. Vortex formation length LF and wake width 

W  are two important  parameters describing the 

characteristics of vortex formation and vortex street. They 

are obtained from contour plots of fluctuating streamwise 

velocity 
 Uuu rmsrms /* as shown in Fig. 7(a). The  

 

 

streamwise distance from the cylinder center to the 

maximum *
rmsu  point is defined as the vortex formation 

length LF (Bloor 1964, Gerrard 1966, Alam and Zhou 

2007). On the other hand, W is defined as the transverse 

separation between the two maxima of *
rmsu  (Alam et al. 

2011, Bai and Alam 2018). Fig. 7(c) shows the dependence 

on d/D of LF2/D (left axis) and -C̅pb2 (right axis) for the 

downstream cylinder. As seen, the LF2/D has a strong link 

with -C̅pb2, when d/D decreases from 1.0 to 0.24, - C̅pb2 

increases from 0.418 to 0.675 and LF2/D shrinks from 9.0 to 

1.63. That is, -C̅pb and LF2/D are inversely related, albeit not 

straightforward. The wake width W1/D of the upstream 

cylinder has a correspondence with the front stagnation 

pressure coefficient C̅ps2 of the downstream cylinder (Fig. 

7(d)). With decreasing d/D, W1/D shrinks from 0.90 to 0.54 

for 0.4 ≤ d/D ≤ 1.0 which is accompanied by C̅ps2 increasing 

from 0.028 to 0.235 for 0.6 ≤ d/D ≤ 1.0 and decreasing for 

d/D ≤ 0.4. For d/D = 0.24, as the vortex shedding did not 

take place in the gap between the cylinders, there is no 

wake width. Thus, both LF2 and W1 can determine the C̅D2. 

In general, a shorter formation length corresponds to a 

higher magnitude of the base pressure, hence a higher drag. 

On the other hand, a smaller W1 may give rise to a higher 

C̅ps2, hence a higher C̅D2. It is interesting to note that 

increasing C̅ps2 for 1.0 ≥ d/D ≥ 0.6, complemented by the 

impaired W1, buoys up C̅Dtotal > C̅D0, while the decreasing 

C̅ps2 for d/D < 0.6 makes C̅Dtotal < C̅D0 (Fig. 5(b)). The 

maximum time-mean streamwise velocity 
 Uuu /*

max
 

around the downstream cylinder (Fig. 7(b)), representing 

shear layer velocity, may also be connected to C̅D2. Roshko 

(1954) obtained shear layer velocity us from empirical  

 

 

Fig. 6 (a) Time-mean pressure coefficient C̅p along cylinder surface, (b) time-mean friction coefficient C̅f along cylinder 

surface, and (c) time-mean separation angle sθ variation with d/D 
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the relationships between W2, 
*

maxu  and K as a function of 

d/D. The relationship signifies that one can measure shear 

layer velocity by measuring C̅pb. The difference between K 

and 
*

max
u  is less than 5%, with the maximum difference 

occurring at d/D = 0.6. The W2  and 
*

max
u  are inversely 

related, decreasing and growing with d/D. The variation in 

C̅D2 follows that in 
*

maxu  while the relationship between 

C̅D2 and W2 is opposite (Alam and Zhou 2008) 

 

 

5. Conclusions 
 

Numerical simulations have been conducted to study the 

fluid flow around two tandem circular cylinders of diameter 

ratios d/D = 1.0, 0.8, 0.6, 0.4 and 0.24 at L/d = 5.5 for Re = 

200. The main conclusions are summarized as follows. 

For d/D ≥ 0.4, the upstream cylinder sheds vortices in 

the gap and the downstream cylinder in the wake. The wake  

vortices are binary coupled by pairing up with the gap  

 

 

vortices. On the other hand, at d/D = 0.24, there is no vortex 

shedding from the upstream cylinder in the gap due to the 

effective Re falling below 48, a quasi-steady flow 

prevailing in the gap with the upstream-cylinder shear 

layers reattaching on the downstream cylinder. 

Fluid forces C̅D, CDf, CLf, and C̅Dtotal show strong 

dependence with d/D. With d/D decreasing from 1.0 to 0.24, 

C̅D1 declines and C̅D2 boosts. The expected decline of C̅D1 is 

attributed to the reduction in the vortex size as well as of the 

upstream cylinder size. On the other hand, the enhancement 

of C̅D2 with decreasing d/D results from the reduced 

shielding effect by the upstream cylinder. The C̅Dtotal also 

decreases with decreasing d/D, following C̅D1. CDf  and CLf 

both show declining trends with decreasing d/D.  

An in-depth understanding of the flow as well as C̅D2 

enhancement with d/D decreasing is obtained through 

measurements of C̅p, C̅pb2, C̅ps2, C̅f, sθ , 
*

max
u , K, W1, W2 

and Lf2. With decreasing d/D, (i) an increased difference 

between -C̅pb2 and C̅ps2 leads to the enhanced C̅D2, mostly 

contributed by a rapid increase in - 2PbC , (ii) C̅f  on the 

side surface increasing, playing a role in the enhancement 

 

Fig. 7 Contour plots, for d/D = 0.8, of (a) fluctuating streamwise velocity *

rmsu  to illustrate the definitions of vortex 

formation length and wake width, (b) time-mean streamwise velocity 
*u to illustrate the maximum velocity in shear 

layer, (c) dependence on d/D of vortex formation length LF2/D and base pressure coefficient 
2pbC of the downstream 

cylinder, (d) the relationship between the wake width W1/D of the upstream cylinder and the front-stagnation pressure 

coefficient 
2psC of the downstream cylinder, and (e) dependence on d/D of the downstream-cylinder wake width W2/D, 

shear layer velocity parameter (K), and maximum shear layer velocity *

max
u  
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of C̅D2, (iii) sθ  shifts toward the front stagnation point, 

again contributing to C̅D2 enhancement, (iv) LF2 and W2 

decline, inversely related to C̅D2, and (v) 
*

max
u  and K both 

augment, following C̅D2. 
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