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1. Introduction 
 

Vortex-induced vibration (VIV) of cylindrical structures, 

as a canonical fluid-structure interaction (FSI) problem, has 

been extensively investigated in the past several decades (Ji 

et al. 2011, 2018a, Qin et al. 2017, 2018, Bhat and Alam 

2018). Notably, the VIV of an isolated circular cylinder in 

cross-flow has received much attention (Williamson and 

Govardhan 2004, Sarpkaya 2004, Blevins 1990, Kim et al. 

2018). However, many engineering applications, such as 

bundles of heat exchanges, marine risers, transmission lines, 

undersea pipelines, involve multiple cylinders, and the 

interactions existing between the structures are complicated 

(Alam et al. 2014, Chen et al. 2015a, 2015b, 2018, Kim et 

al. 2016, Alam 2016, Ji et al. 2018b). In the present paper, 

we investigate the VIV of three equilateral-triangular-

arranged circular cylinders subjected to a laminar cross-

flow, and explore the characteristics of vibration responses, 

wakes, and hydrodynamic forces.  

Considering the applications of multiple cylinders, the 

flow around two fixed rigid cylinders has been extensively 

investigated. Zdravkovich (1977) classified the two-

cylinder flow interference into proximity interference, wake 

interference, and combined interference. The proximity 

interference occurs when two staggered (or side-by-side) 

cylinders are close enough to interact with each other or 

when the downstream cylinder is entirely embraced by the 

shear layers separated from the upstream cylinder. The 

wake interference occurs when two cylinders are tandem or 

nearly tandem and relatively far from each other, such that  
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fully developed vortices from the upstream cylinder come 

into being in the gap between the two cylinders. The 

combined interference can be found in an overlapped region 

between proximity and wake interferences. 

King and Johns (1976) investigated the interference 

between two elastically-supported circular cylinders in 

tandem for 1×10
3
 < Re < 2×10

4
, where Re is the Reynolds 

number based on freestream velocity U∞ and cylinder 

diameter D. The upstream cylinder showed typical VIV 

characteristics while the downstream cylinder's vibration 

response was more complicated. Wake galloping vibration 

of the downstream cylinder occurred at a small streamwise 

spacing ratio L/D = 2.5 (L is the cylinder center-to-center 

spacing) and large reduced velocity Ur (> 11) while the 

upstream cylinder vibration was negligible. The wake 

galloping was absent at a larger L/D = 5.5. Hover and 

Triantafyllou (2001) at Re = 3×10
4
 studied the vibration and 

force responses of a two-dimensional cylinder behind a 

stationary upstream cylinder with L/D = 4.75 in a towing 

tank. Large-amplitude wake galloping response sustained 

Ur > 17. When the stagger angle α was increased from 0° 

(tandem) to 12
°
, the normalized transverse vibration 

amplitude Y/D reduced from 1.9 to 1.4, still showing a 

divergent trend. Assi et al. (2006) at 3×10
3
 < Re < 1.3×10

4
 

carried out flume experiments on the wake-induced 

vibration (WIV) of an elastically mounted rigid cylinder in 

the near-wake of an upstream stationary cylinder. Wake 

galloping was observed in the range of 2 < L/D < 5.6. Assi 

et al. (2010, 2013) at 2×10
3
 < Re < 3×10

4
 reported a 

combined vortex resonance and wake galloping response of 

the downstream cylinder when L/D was small. A typical 

vortex resonance response was detected when the spacing 

ratio was as large as L/D = 20.  

Kim et al. (2009) examined the interference between 

two elastically mounted tandem cylinders for Re = 4.3×10
3
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~ 7.4×10
4
, L/D = 1.1 ~ 4.2 with a small increment of ΔL/D 

= 0.1. Five vibration regimes were identified. The 

downstream cylinder showed VIV-like response, while the 

upstream cylinder underwent VIV and galloping at different 

L/D. Alam and Kim (2009) for the same Re range 

systematically investigated flow-induced vibrations of two 

elastically mounted staggered cylinders. Seven vibration 

patterns were observed depending on L/D and α. Alam and 

Meyer (2013) presented a useful map of cylinder responses 

in the parametric range of L/D = 1.1 ~ 6.0 and α = 0
°
 ~ 180

°
 

by compiling the vibration response data of two elastically 

mounted cylinders in cross-flow from the experimental 

studies of Bokaian and Geoola (1984a, 1984b), Kim et al. 

(2009), Alam and Kim (2009). It was found that galloping 

(upstream cylinder) and/or wake galloping (downstream 

cylinder) vibrations existed only in a small 'mushroom-like' 

region L/D = 1.23 ~ 3.5 and α = 0
°
 ~ 20

°
. Qin et al. (2018) 

examined vibration responses of two freely vibrating 

tandem cylinders of different natural frequencies for L/D = 

1.5 and 2.0. A critical Ur in the galloping vibration regime 

was identified where the vibration amplitude of the 

downstream cylinder drastically jumps and that of the 

upstream cylinder drops. The jump/drop was linked to a 

lock-in of the vortex shedding with the fifth harmonics of 

the downstream cylinder natural frequency. Kim and Alam 

(2015) examined the flow-induced vibrations of two side-

by-side cylinders and identified four vibration patterns 

depending on L/D. 

As to three cylinders, Yu et al. (2016) at Re = 100 and 

150 numerically investigated the VIV of three tandem 

cylinders with a cylinder mass ratio m
*
 = 1.27, L/D = 4.0 

and Ur = 2 ~ 13. Compared to that of two tandem cylinders, 

the maximum transverse amplitude was increased by about 

25% with the maximum streamwise amplitude reaching 

1.3D. The displacement trajectories of three cylinders 

showed “bounded random movements” even in two-

dimensional flows. Chen et al. (2018) numerically studied 

the VIV of three tandem cylinders for a wide parametric 

space of L/D = 1.2 ~ 5.0 and Ur = 3 ~ 80. All three cylinders 

were constrained to vibrate in the transverse direction. 

Galloping-like vibration existed for a small L/D (= 1.2) and 

VIV-like response occurred in moderate and large L/D (= 

1.5 ~ 5.0). Behara et al. (2017) numerically investigated the 

VIV of three cylinders in a triangular arrangement at Re = 

60 ~ 160, with one cylinder upstream and the other two 

downstream cylinders side-by-side. The transverse center-

to-center distance of two downstream cylinders was 3.0D 

and the streamwise distance between the centers of the 

upstream and downstream cylinders was 5.0D. Three 

cylinders were free to vibrate in both streamwise and 

transverse directions. Due to the large L/D, the response of 

the upstream cylinder was similar to that of an isolated 

cylinder, showing initial and lower branches. However, 

three branches, i.e., initial, upper and lower, were observed 

on the downstream cylinders.  

Based on the above review, it can be seen that the VIV 

of three cylinders in the equilateral triangular arrangement 

involves complex flow dynamics but has been scarcely 

investigated. In this paper, we focus on the VIV of three 

equally-spaced cylinders at a small spacing ratio L/D = 2.0, 

where the interaction between the cylinders is fierce. The 

rest of this paper is organized as follows. In Section 2, the 

adopted numerical method and its validation are given. In 

Section 3, vibration amplitude and frequency, 

hydrodynamic forces and equilibrium position of three 

equilateral-triangular-arranged circular cylinders 

undergoing VIV are presented, together with the near-wake 

patterns. In Section 4, the main conclusions are provided. 

 

 

2. Numerical methodology and validation case 
 

The numerical simulations are carried out by using an 

in-house CFD code – CgLES_IBM. The governing 

equations for the fluid flow are the incompressible Navier–

Stokes equations. The two-step predictor-corrector 

procedure is adopted for the decoupling of the flow 

governing equations. The resultant pressure Poisson 

equation is solved by using the BiCGSTAB scheme, 

together with the geometric multi-grid preconditioner. The 

second-order Adams-Bashforth time marching scheme is 

employed to calculate a new velocity field. 

The dynamics of the elastically supported circular 

cylinders is simplified as a mass-damper-spring system. The 

governing equations for cylinder motion are based on 

Newton's Second Law and are simply solved by using the 

standard Newmark-β method with the second-order 

temporal accuracy. In this study, the cylinders are free to 

oscillate in the cross-flow direction. 

The fluid-structure interaction is simulated by using the 

immersed boundary (IB) method which was first introduced 

by Peskin (1972) in the simulation of blood flow around the 

flexible leaflet of a human heart. In the framework of the IB 

method, the flow governing equations are discretized on a 

fixed Cartesian mesh, which generally does not conform to 

the geometry of moving solids. As a result, the boundary 

conditions at the fluid-cylinder interface cannot be imposed 

directly. Instead, an extra body force is added into the 

momentum equation by using interpolation and distribution 

functions to take such interaction into account. For the sake 

of conciseness, details of the methodology are not 

presented, and readers are referred to our previous work (Ji 

et al. 2012, Chen et al. 2015a) for details. 

In the simulations of VIV of three equilateral-triangular-

arranged circular cylinders, the streamwise and transverse 

lengths of the computational domain are both 200D, as 

shown in Fig. 1. The three cylinders are indexed as 1, 2 and 

3, respectively. To improve the accuracy of the numerical 

results, the cylinders are covered by a rectangle region 8D × 

8D discretized by a uniform mesh with a grid spacing of 

D/64 in the streamwise and transverse directions. Beyond 

the region, a stretched mesh is adopted to keep the total grid 

number within an affordable range. A similar configuration 

was applied in our previous simulations (Chen et al. 2015b, 

2018). The boundary conditions are set as follows. A 

Dirichlet-type boundary condition is adopted at the inflow 

and a Neumann-type boundary condition is employed at the 

outflow. The top and bottom walls are set as free-slip 

boundaries. The non-dimensional time step ΔtU∞/D is 

0.004. In the simulations, the cylinders start to vibration  
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from the rest. Each simulation is carried out for more than 

100 oscillation cycles after the vibrations are statistically 

stable. Other parameters are m
*
 = 2.0, L/D = 2.0, Re = 100 

and the structural damping ratio  = 0.  

 

 

 

 

 

 

 

 

The adopted non-dimensional grid spacings (x/D, 

y/D) and time step (ΔtU∞/D) are checked for VIV of three 

equally-spaced circular cylinders with L/D = 2.0, Ur = 6.0, 

m
*
 = 2 and  = 0. Table 1 shows only marginal difference ( 

1.3%) between the results with x/D (= y/D) = 1/64 and 

Table 1 Comparison of the VIV of three circular cylinders with ΔtU∞/D = 0.004 and different grid spacings. 𝐶𝑑̅ is the 

time-averaged drag coefficient. 𝐶𝑑
′  and 𝐶𝑙

′  are the r.m.s. of drag and lift coefficients, respectively. Ay/D is the 

normalized vibration amplitude in the transverse direction. St is the Strouhal number. The values in parentheses indicate 

the differences in percentage. The results of Cylinder 3 are not listed as identical to those of Cylinder 2 

 x/D (= y/D) 𝐶𝑑̅ 𝐶𝑑
′  𝐶𝑙

′ Ay/D St 

Cylinder 1 

1/32 1.136(2.2) 0.252(0) 0.748(7.6) 0.648(0.2) 0.122(1.6) 

1/64 1.156(0.4) 0.247(0.8) 0.702(1.0) 0.641(1.2) 0.124(0) 

1/128 1.161 0.252 0.695 0.649 0.124 

Cylinder 2 

1/32 1.432(3.2) 0.555(5.9) 0.718(9.3) 0.688(2.1) 0.122(1.6) 

1/64 1.405(1.3) 0.530(1.1) 0.662(0.8) 0.672(0.3) 0.124(0) 

1/128 1.387 0.524 0.657 0.674 0.124 

Table 2 Comparison of the VIV of three circular cylinders with x/D (= y/D) = 1/64 and different time steps. 

 ΔtU∞/D 𝐶𝑑̅ 𝐶𝑑
′  𝐶𝑙

′ Ay/D St 

Cylinder 1 

0.006 0.155(0.5) 0.242(2.9) 0.689(2.3) 0.633(2.0) 0.124(1.6) 

0.004 1.156(0.4) 0.247(0.8) 0.702(0.4) 0.641(0.8) 0.124(1.6) 

0.002 1.161 0.249 0.705 0.646 0.126 

Cylinder 2 

0.006 1.399(0.5) 0.526(1.3) 0.650(0.5) 0.662(1.2) 0.124(1.6) 

0.004 1.405(0.1) 0.530(0.6) 0.662(2.3) 0.672(0.3) 0.124(1.6) 

0.002 1.406 0.533 0.647 0.670 0.126 

Table 3 Comparison of the VIV of three circular cylinders in an isosceles triangle arrangement. Ax/D is the normalized 

vibration amplitude in the streamwise direction 

 𝐶𝑑
′  𝐶𝑙

′ Ax/D Ay/D St 

Cylinder 1 
B17 0.256 0.175 0.031 0.571 0.154 

Present 0.260(1.6) 0.173(1.1) 0.030(3.2) 0.572(0.2) 0.154(0) 

Cylinder 2 
B17 0.506 0.729 0.458 0.922 0.146 

Present 0.500(1.2) 0.740(1.5) 0.450(1.7) 0.913(1.0) 0.146(0) 

Cylinder 3 
B17 0.510 0.723 0.455 0.928 0.145 

Present 0.509(0.2) 0.753(4.1) 0.446(2.0) 0.913(1.6) 0.146(0.7) 

 

Fig. 1 The computational domain and boundary conditions 
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1/128, indicating the numerical results with x/D (= y/D) 

= 1/64 is grid-independent. Although the results with 

different ΔtU∞/D show no consistently convergent trend, the 

difference is sufficiently small (< 2.3%) at ΔtU∞/D = 0.004, 

as listed in Table 2. Based on the above, x/D (= y/D) = 

1/64 and ΔtU∞/D = 0.004 are adopted in the following 

study. 

For validating the numerical methodology, the VIV of 

three circular cylinders in an isosceles triangle arrangement 

was simulated and the results were compared with those in 

Behara et al. (2017) (hereafter referred to as B17). The 

adopted parameters are same with those in B17. The center-

to-center distance of the downstream cylinders is 3D while 

the streamwise spacing between the upstream cylinder and 

downstream cylinders is 5D, with Re = 100, Ur = 6.41, m
*
 = 

10 and  = 0. The computational domain size is Lu = 8D, Ld 

= 50D and H = 25D. It can be seen from Table 3 that the 

present results show excellent agreements with those in 

B17, with the maximum deviation being lower than 4.1% 

for 𝐶𝑙
′. 

 

 

3. Results and discussions 
 
3.1 Regime partitions 
 
The non-dimensional vibration amplitude A/D is defined 

as A/D = √2yrms/D, where yrms is the root-mean-square 

(r.m.s.) of transverse displacement. Figs. 2 and 3 show 

dependence on Ur of A/D, time-mean drag 𝐶𝑑̅, fluctuating 

drag 𝐶𝑑
′ , time-mean lift 𝐶𝑙̅, and fluctuating lift 𝐶𝑙

′ of the 

three cylinders. The magnitude of A/D, 𝐶𝑑̅, 𝐶𝑑
′ , 𝐶𝑙̅, and 𝐶𝑙

′ 

each is the same for the two downstream cylinders at 

different Ur except for Ur = 7.4 ~ 7.8. The Ur-dependent 

response can be divided into five regimes, i.e. Regime I at 

Ur ≤ 3.2, Regime II at 3.2 < Ur ≤ 5.0, Regime III at 5.0 < Ur 

≤ 6.4, Regime IV at 6.4 < Ur ≤ 9.2 and Regime V at Ur > 

9.2, which have distinct characteristics of A/D and 

hydrodynamic forces.  

Regime I is featured by no-vibration of the three 

cylinders. The 𝐶𝑑̅ of the upstream cylinder is smaller than 

that of the downstream cylinders each. Small attractive 𝐶𝑙̅ 
exists, and 𝐶𝑑

′  and 𝐶𝑙
′ are very small.  

In Regime II, the upstream cylinder keeps stationary 

while the downstream ones undergo a fast growth of A/D 

with increasing Ur. The 𝐶𝑑̅ decreases and increases for the 

upstream and downstream cylinders, respectively. 

Repulsive 𝐶𝑙̅  is examined on the downstream cylinders 

while the upstream cylinder 𝐶𝑙̅ = 0. The 𝐶𝑑
′  and 𝐶𝑙

′ of the 

upstream cylinder are invariant while those of the 

downstream cylinders behave differently, 𝐶𝑑
′  escalating 

and 𝐶𝑙
′  growing for Ur = 3.2 ~ 4.0 followed by a 

declination for Ur = 4.0 ~ 5.0. The 𝐶𝑑̅, 𝐶𝑙̅ and 𝐶𝑑
′  each 

reaches its maximum at the border (Ur = 5.0) of this regime 

while the 𝐶𝑙
′ is maximum at Ur = 4.0. 

With increasing Ur from Regime II to III, A/D of the 

upstream cylinder soars while A/D of the downstream 

cylinders shows a mild growing. Interestingly, the 

variations in A/D, 𝐶𝑑̅, and 𝐶𝑙
′ of the upstream cylinder in 

Regime III are quite similar to those of the downstream 

cylinder in Regime II. Repulsive 𝐶𝑙̅  persists for the 

downstream cylinders, decreasing with Ur, while 𝐶𝑙̅ = 0 for 

the upstream cylinder.  

Fundamental changes are observed as Ur is increased 

from Regime III to IV, with A/D, 𝐶𝑑̅, 𝐶𝑑
′ , 𝐶𝑙̅, and 𝐶𝑙

′ all 

dipping for the three cylinders at Ur = 6.6. In Regime IV, 

the downstream cylinders’ A/D keeps constant while the 

upstream cylinder’s A/D augments linearly. The 𝐶𝑑̅, 𝐶𝑑
′ , 

and 𝐶𝑙
′ level off for the upstream cylinder and decrease for 

the downstream cylinders. The 𝐶𝑙̅ , albeit small in 

magnitude, becomes attractive for the downstream 

cylinders. Note that at and around Ur = 7.5, the 𝐶𝑙̅ of either 

downstream cylinder is positive, indicating that the 

balanced positions of two downstream cylinders shift 

towards the same direction. As a result, the vibration 

amplitudes of two downstream cylinders are unequal. 

Asymmetric vibrations of two side-by-side cylinders were 

also found in Chen et al. (2015a, b). 

Regime V, following Regime IV, is separated by drastic 

jumps in all parameters (A/D, 𝐶𝑑̅, 𝐶𝑑
′ , 𝐶𝑙̅, and 𝐶𝑙

′) at the 

border. In Regime V, the upstream cylinder’s A/D 

diminishes with increasing Ur while the downstream 

cylinders’ A/D enlarges. This galloping-like vibration of the 

downstream cylinders, named as wake-induced galloping 

(WG), has been reported in the VIV of two tandem 

cylinders at high Reynolds numbers with low m
*
 (Assi et al. 

2010) and high m
*
 (Alam and Meyer 2013). It was also 

found in the VIV of three tandem cylinders at low Reynolds 

numbers (Chen et al. 2018).  

In general, it can be seen that the regimes have 

distinctive characteristics in both vibration amplitude and 

hydrodynamic forces, and the boundaries between two 

adjacent regions are well-defined. 
Fig. 4 shows the normalized vibration frequencies fy/fn 

of three cylinders as a function of Ur, where fy is the 

dominant frequency of the displacement, obtained from the 

fast Fourier transform of the cylinder displacements. 

 

 

 

 

Fig. 2 Dependence on Ur of vibration responses of three 

cylinders 
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The variation of the normalized vortex-shedding 

frequency fv/fn = StUr is also superimposed for comparison, 

where fv and St (= 0.13) are, respectively, the vortex-

shedding frequency and Strouhal number of three stationary 

cylinders with L/D = 2 and Re = 100. In Regime I, fy closely 

follows fv, owing to no-vibration of the cylinders. The fy/fn 

of the downstream cylinders jumps at Ur = 3.5 and levels 

off approximately at fy/fn = 0.75 in Regimes II and III. 

However, the fy/fn of the upstream cylinder jumps at Ur = 

4.2. In Ur = 3.5 ~ 4.0, the upstream cylinder’s vibration 

frequency is half of the downstream ones. In Regime IV, 

three vibration frequencies are equivalent, keeping around 

fy/fn = 0.8. In the early part of Regime V (Ur = 9.5 ~ 12.0), 

the upstream cylinder vibrates at a lower frequency than the 

downstream cylinders. In the rest part (Ur > 12.0), the three 

cylinders again vibrate at the same frequency. 

 

 

 

 

Fig. 5 presents the variations of the equilibrium 

positions  ̅/D of three cylinders versus Ur. The distance 

between the  ̅/D of two downstream cylinders increases in 

Regime II due to the repulsive 𝐶𝑙̅, and keeps about 2.18D 

in Regime III. However, in Regime IV, the distance is 

slightly smaller than the initial spacing because of the small 

attractive 𝐶𝑙̅. After Ur ≥ 9.5, the  ̅/D of two downstream 

cylinders become much closer to each other in Regime V. 

Although the 𝐶𝑙̅  of downstream cylinders declines with 

increasing Ur, the lateral shifts of the  ̅/D increase. This 

can be attributed to the fact that in this study Ur is altered by 

reducing the spring stiffness. 

Fig. 6 depicts the phase lags between the cylinder 

vibrations versus Ur. The phase lag (𝜑2,3) between the 

oscillations of Cylinders 2 and 3 is in anti-phase in Regimes 

II and III but in in-phase in Regimes IV and V. 

 

Fig. 3 Dependence on Ur of hydrodynamic forces on three cylinders 

 

Fig. 4 The normalized vibration frequencies (fy/fn) of three cylinders. The dashed line denotes the normalized vortex-

shedding frequency (fv/fn) of three stationary cylinders at L/D = 2 
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The 𝜑2,3  does not exist in Regime I owing to no-

vibration of the cylinders. The phase lag (𝜑1,2) between the 

oscillations of Cylinders 1 and 2 exists only in Regime IV 

and a part of Regime V with Ur = 13 - 15, showing a 

generally increasing trend with Ur. Due to the inequivalent 

vibration frequencies of Cylinders 1 and 2, 𝜑1,2 ceases to 

exist in other regimes. 

 

3.2 Hydrodynamic force and vibration features 
 
3.2.1 Regime I 
The hydrodynamic forces and vibration response are in 

the flip-flopping (FF) pattern. As shown in Figs. 7(a) and 

7(b), the Cd and Cl of two downstream cylinders show a 

waxing-and-waning variation. This feature is related to the 

flip-flopping gap-flow which biases towards one of the 

downstream cylinders and changes its direction 

intermittently and randomly. Figs. 7(e) and 7(f) show the 

normalized vorticity contours in the near wake at Ur = 3.0. 

At the instant of Fig. 7(e), the gap-flow slightly deflects 

toward Cylinder 2. However, at the instant of Fig. 7(f), the 

gap-flow flips over. The switching of the gap-flow can be  

 

 

 

 

reflected by the variation of the vibration response and the 

fluid forces. The cylinder toward which the gap flow is 

deflected has a larger Cd, smaller fluctuating Cl and smaller 

fluctuating y/D, and vice versa. The flip-over time scale is 

highly dependent on the Reynolds number from hundreds of 

vortex-shedding periods in turbulent flow (Kim and Durbin 

1988) to several vortex-shedding periods in laminar flow 

(Kang 2003). In this case, the power spectral density (PSD) 

of the lift coefficient suggests that the flip-over time scale is 

about fl1 / (fl2 – fl1) ≈ 7 vortex-shedding periods, where fl1 (= 

0.10668) and fl2 (= 0.12099) are the first and second 

dominant frequencies of Cl, respectively. 

 

3.2.2 Regime II 
At a larger Ur, in Regime II, the displacement histories 

of two downstream cylinders are in an anti-phase pattern, as 

shown in Figs. 8(a) and 8(d). No perceivable vibration is 

observed on the upstream cylinder. The upstream shear 

layers alternately reattach on the gap-side surface (Figs. 

8(b) and 8(e)) and freestream-side surface (Figs. 8(c) and 

8(f)) of the downstream cylinders, matching the rhythm of 

vortex-shedding and transverse oscillations. The vortices  

 

Fig. 5 The equilibrium positions of three cylinders 

 

Fig. 6 The phase lag between the oscillations of three cylinders. 𝜑1,2 and 𝜑2,3 represent the phase lags between 

Cylinders 1 and 2 and between Cylinders 2 and 3, respectively 
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shed from the gap-side are rather weaker and smaller than 

those from the other side and quickly disappear in a short 

downstream distance. In the far wake, only two rows of 

parallel vortices are observed. With the increasing Ur, the 

symmetricity of the wake is improved, from the staggered 

vortex-shedding at Ur = 4.0 to the aligned one at Ur = 5.0. 

Upon closer inspection, it can be found that the vortex-

shedding at Ur = 4.0 is in the 2C pattern, i.e., one pair of co-

rotating vortices shed from the freestream-side of a 

downstream cylinder in one oscillation period. The 

freestream side of the other downstream cylinder sheds 

another pair of co-rotating vortices. The co-rotating vortices 

merge in a short distance, which leads to the staggered 

vortex-shedding pattern in the far wake (Figs. 8(b) and 

8(c)). As a result, the displacement spectrum of the 

upstream cylinder shows a dominant frequency at fy = 0.087 

which is half of the dominant frequency of the downstream 

cylinders at fy = 0.174. However, at Ur = 5.0, the 2S pattern 

– two single vortices simultaneously shed from the 

freestream-side – occurs and a symmetric vortex-shedding 

is established. 

 

3.2.3 Regime III 
In this regime, the vibration of two downstream 

cylinders is out of tune and the wake is irregular. Fig. 9(a)  

 

 

shows the time histories of the displacement of three 

cylinders at Ur = 6.4. It can be seen that the displacements 

of the downstream cylinders show a beating-like variation 

while the upstream cylinder displays a swaying envelope. 

Clearly, the short‐time mean position of the upstream 

cylinder oscillates at a period much longer than the vortex-

shedding period. The upward or downward deflection of the 

short‐time mean position matches the beating of the 

downstream cylinders. As shown in Fig. 9(a), when the 

short‐time mean position of Cylinder 1 downshifts (closer 

to Cylinder 3), Cylinder 3’s vibration amplitude augments 

while Cylinder 2’s diminishes, and vice versa. Although the 

vibration frequencies of the downstream cylinders, 

averaged over a long time-span, are identical (see Fig. 9(b)), 

the short-time vibration frequencies of the downstream 

cylinders are different. Fig. 9(c) displays the amplitude 

spectra of three cylinders within the timespan between the 

two vertical dashed lines in Fig. 9(a). Obviously, Cylinders 

1 and 3 have the same dominant frequency at fy = 0.119 

which is smaller than the dominant frequency of Cylinder 2 

at fy = 0.127. A possible reason is that during this period the 

balanced position of Cylinder 1 is downward-shifted and 

thus Cylinder 1 and Cylinder 3 are more like in a tandem 

arrangement. The vibration of Cylinder 3 seems to be 

captured by the vortex-shedding from Cylinder 1, as shown  

 

Fig. 7 Time histories of (a) drag coefficient, (b) lift coefficient and (c) displacement of two downstream cylinders at Ur = 

3.0. (d) Power spectrum density (PSD) of the lift coefficients of downstream cylinders. (e)-(f) Vorticity contours at 

instants 1 and 2, marked in (a)-(c), when the gap flow deflects to Cylinder 2 and Cylinder 3, respectively. Arrows in (e), 

(f) indicate the gap flow directions 
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in Fig. 10. On the other hand, Cylinder 2 is less influenced 

by the wake of Cylinder 1 and has a different vibrating 

frequency. 

 

3.2.4 Regime IV 
In Regime IV, as shown in Fig. 11, the oscillations of 

two downstream cylinders are in in-phase and show a 30
°
 

phase difference with the oscillation of the upstream 

cylinder. Three cylinders have the same dominant vibration 

frequency and behave much like rigidly coupled bodies.  

 

 

 

The vortex-shedding from the cylinders is a 2T pattern 

(see instants ii and iv in Fig. 11), that is, two triplets of 

vortices, with two co-rotating and one counter-rotating from 

a side, alternately generate in one vibration cycle. However, 

the counter-rotating vortex is much weaker and smaller than 

the co-rotating vortices from the same side and quickly 

vanishes. After the co-rotating vortices coalesce, the 2S 

vortex-shedding pattern establishes in the wake. The shear 

layers of the upstream cylinder merge with those of the 

downstream cylinders and boost the vortex-shedding from 

the downstream cylinders. 

 

Fig. 8 (a), (d) Displacement histories, (b), (c), (e), (f) vorticity contours, and (g), (h) displacement spectra at Ur = 4.0 and 

5.0. Subplots (b), (c) and (e), (f) correspond to the instants of two downstream cylinders having maximum and minimum 

transverse separations, respectively 

 

Fig. 9 Displacement histories (a), displacement spectra in the whole time-span (b) and between the vertical dashed lines 

(c) at Ur = 6.4 
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3.2.5 Regime V 
The vibration pattern in Regime V is similar to that in 

Regime IV except that the beating-like vibration of the 

upstream cylinder is more significant, as shown in Fig. 

12(a). This can also be reflected by the dual-peak 

displacement spectra of the upstream cylinder in Fig. 12(b). 

Different with the vortex-shedding pattern in Regime IV, 

the counter-rotating vortex ceases to exist which leads to a 

2P pattern in Regime V. However, the 2P pattern is replaced 

by a 2S pattern after the co-rotating vortices merge. 

 

 

 

 

 

 

4. Conclusions 
 

Vortex-induced vibrations of three circular cylinders in 

an equilateral triangular arrangement were numerically 

studied. The center-to-center spacing ratio is L/D = 2.0, the 

Reynolds number is Re = 100, and the mass ratio is m
*
 = 

2.0. Three cylinders are free to vibrate in the cross-flow 

direction. The numerical methodology was first validated in 

the case of VIV of three circular cylinders in an isosceles 

triangle arrangement. Good agreement with published data 

was achieved.  Then the vibration response and 

hydrodynamic forces at different reduced velocities were 

 

Fig. 10 Displacement histories (a) and vorticity contours (i-vii) at the instants marked in (a) at Ur = 6.4 

 

Fig. 11 Displacement histories, (b) displacement spectra of three cylinders at Ur = 8.5. Subplots (i-vi) show the vorticity 

contours at the instants marked in (a) 
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investigated. The main conclusions are summarized as 

follows. 

The vibration response is divided into five regimes 

according to the features of the vibration amplitude and the 

hydrodynamic forces.  

In Regime I (Ur ≤ 3.2), the vibration amplitudes of three 

cylinders are almost zero, and the corresponding wake 

undergoes a flip-flopping pattern. The gap flow between the 

two downstream cylinders changes its direction randomly 

and occasionally with a long switching period.  

In Regime II (3.2 < Ur ≤ 5.0), the amplitudes of the 

downstream cylinders increase significantly with Ur while 

the upstream cylinder amplitude keeps negligible. The 

vibrations of the downstream cylinders are in anti-phase 

which leads to a parallel vortex street. Large repulsive mean 

lift acts on the downstream cylinders. 

In Regime III (5.0 < Ur ≤ 6.4), the vibration amplitude 

of the upstream cylinder soars and approaches to those of 

the downstream cylinders. Local maximal amplitudes of 

three cylinders are obtained at the end of the range. The 

displacement histories of the downstream cylinders show a 

beating-like pattern while the short-time mean position of 

the upstream cylinder displays a long-period swinging. 

When the short-time mean position of the upstream cylinder 

moves downwards, the vibration of Cylinder 3 is enhanced 

but the vibration of Cylinder 2 weakens, and vice versa. 

In Regime IV (6.4 < Ur ≤ 9.2), the vibration amplitudes 

of three cylinders plummet. The oscillations of two 

downstream cylinders are in in-phase and attractive mean 

lift commences at the beginning of the range. The vortex-

shedding is the 2T pattern with the triplet consisting of two 

co-rotating vortices and one counter-rotating vortex. An 

asymmetric vibration region is confirmed in the range of 7.2 

< Ur < 7.8.  

In Regime V (Ur > 9.2), the vibration amplitudes of the 

downstream cylinders show a divergent trend. The vibration 

pattern and vortex-shedding are similar to those in Regime 

IV. 
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