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1. Introduction 
 

Protection of coastlines, harbors and marinas from 

incoming ocean waves is one of the major issues in the field 

of coastal and port engineering. For wave attenuation, many 

authors (Dalrymple and Martin 1990, Williams and Crull 

1993, Abul-Azam and Williams 1997, Porter and Evans 

1996) proposed an array (appearing periodically) of 

identical screen type breakwaters parallel to the coastline. 

This class of problem has also received a considerable 

attention in the field of acoustics (Miles 1982, Achenbach 

and Li 1986, Linton and Evans 1993). Instead of screen 

type breakwaters, Fernyhough and Evans (1995) suggested 

an array of block type breakwaters arranged periodically. 

These kinds of breakwaters are environment-friendly and 

ecological as the gaps between two successive breakwaters 

allow the exchange of water, sediment and marine lives 

between sea and shore sides. Furthermore, Mondal et al. 

(2017) considered the problem of water wave scattering by 

an array of identical ports and an infinitely long floating 

breakwater. They evaluated the resonance frequency for 

different geometrical configurations. This class of problem 

is interesting as the waves undergo reflection, transmission, 

diffraction and shoaling when water waves encounter the 

entrance of gaps. 
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Apart from the wave scattering by periodic breakwaters, 

wave diffraction through a narrow breakwater gap was 

studied by Buchwald (1971) and Sobey and Johnson 

(1986). Oblique wave propagation through a narrow 

opening between two semi-infinite breakwaters was studied 

by Dalrymple et al. (2000) using two mathematical 

approaches: Fourier transform and buffer domain method. 

From their numerical computation, they observed that the 

wave pattern in the channel varies significantly with the 

angle of incident waves. Kanoria et al. (1999) used multi-

term Galerkin approximations to compute the reflection and 

transmission coefficients when water waves propagate 

around a thick vertical barrier of rectangular cross section. 

They observed that the thickness of the barrier plays a 

significant role in the modeling of breakwaters. 

The above-mentioned studies dealt with the problems 

having a uniform water depth while the breakwaters are 

constructed near the coastal region where water depth is not 

uniform. The problem of wave scattering by a thin finite 

floating dock and a step bottom was studied by Dhillon et 

al. (2016). They considered two cases such that the incident 

wave propagates from the lower depth as well as from the 

higher depth. Furthermore, Mondal and Takagi (2019) 

studied the wave interaction with a fixed submerged body 

in the presence of a step bottom in both infinite and semi-

infinite fluid domains. In their study, the wave forces on the 

submerged body and vertical wall were computed. In 

addition, reflection and transmission coefficients were 

presented to show the effect of the submerged body on 

wave energy propagation. Recently, Mondal and Alam 

(2018) considered the problem of water wave scattering by 

an array of breakwaters in the presence of a step bottom in 

the cases of infinite and semi-infinite fluid domains. In their 
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study, the velocity potentials were computed explicitly 

using the eigenfunction expansion method and numerical 

results were presented for reflected and transmitted wave 

energy in the case of the infinite fluid domain for different 

physical parameters. However, in the case of the semi-

infinite fluid domain, resonance frequency and resonance 

surface modes were executed. On the other hand, Newman 

(1965) studied the wave reflection and transmission 

theoretically and numerically when water waves propagate 

over a step bottom where the deeper region is of infinite 

depth. Furthermore, considering finite and semi-infinite 

steps, Karmakar and Sahoo (2008) investigated the 

scattering of water waves by a floating membrane. 

Bhattacharjee et al. (2008) analyzed the transformation of 

flexural gravity waves considering a change in water depth 

and structural characteristics. They emphasized computing 

the reflection and transmission coefficients and the 

deflection of a non-homogenous floating ice sheet. 

Concrete flushing culverts, having abrupt change in 

water depth on either side of opening, commonly feature 

harbors (see Tsoukala and Moutzouris 2009, Belibassakis et 

al. 2014). The flushing culverts enhance the circulation of 

water by amplifying the velocity field in the harbor which 

maintains the water quality and biological process. The 

flushing culverts also harbor an harbor by reducing the 

transport of sediment. Furthermore, it is observed that 

flushing culverts are often constructed between two 

breakwaters as it is cost effective. 

Therefore, in the present study, the work of Mondal and 

Alam (2018) is extended by considering embedded flushing 

culverts between two consecutive breakwaters. Due to the 

presence of culverts, the water depths in the ocean side and 

lee side of breakwaters, and across the gap of breakwaters 

are different. Hence, it is required to reformulate Mondal 

and Alam‟s (2018) problem. 

 

 

2. Mathematical formulation and solution 
 

In the present study, the linear water wave theory is used 

to understand the behavior of waves in the vicinity of an 

opening of identical rectangular breakwaters, which are 

extended throughout the water depth, in the presence of 

uneven bottom topography. The three-dimensional 

Cartesian coordinate system is used, with the origin at the 

mean free surface and the z-axis is positive in the vertically 

upward direction. It is assumed that the breakwaters of a 

width 2d are placed parallel to the coastline and are 

symmetric about the y-axis (see Fig. 1(a)). The water depths 

in the ocean and lee sides of breakwaters are h
(1)

 and h
(3)

, 

respectively. The gap length between two consecutive 

breakwaters is 2α and the water depth throughout the gap is 

h
(2)

. Due to the periodicity of breakwaters, the present 

problem can be reduced to a channel problem of channel 

width 2β such that there is no flow across channel walls 

(see Mondal et al. 2017). Fig. 1(b) shows the top view of 

the channel problem. Considering the change in the channel 

width and water depth, the flow domain inside the channel 

is decomposed into three domains which are labeled with 

R
(j)

, j=1,2, and 3, where R
(1)

: d ≤ x < ∞, -β ≤ y ≤ β, -h
(1)

 ≤ z ≤ 

η; R
(2)

: -d ≤ x ≤ d, -α ≤ y ≤ α, -h
(2)

 ≤ z ≤ η; and R
(3)

: -∞ < x ≤ 

-d, -β ≤ y ≤ β, -h
(3)

 ≤ z ≤ η, where η is the free surface 

displacement. The bottom surface, breakwater surface and 

channel wall are denoted by Sb, Sbw and Scw, respectively 

and defined by Sb = (d ≤ x < ∞, -β ≤ y ≤ β, z = -h 
(1)

) U (x = 

d, -β ≤ y ≤ β, -h
(1)

 ≤ z ≤ -h
(2)

) U (- d ≤ x ≤ d, -α ≤ y ≤α, z = -

h
(2)

) U (x = -d, -β ≤ y ≤ β, -h
(3)

 < z < -h
(2)

) U (-∞ < x ≤ -d, -β 

≤ y ≤ β, z = -h
(3)

); Sbw = (-β ≤ y ≤ -α, -h
(2) 

≤ z ≤ 0, x = ±d ) U 

(α ≤ y ≤ β, -h
(2) 

≤ z ≤ 0, x = ±d) U (-d ≤ x ≤ d, -h
(2) 

< z < 0, y 

= ±α) and Scw = (x > d, -h
(1)

 ≤ z ≤ 0, y = ±β) U (x < -d, -h
(3)

 ≤ 

z ≤ 0, y = ±β). 

The present study proceeds under the assumptions that 

the fluid is inviscid and incompressible, and the motion is 

irrotational and simple harmonic in time with angular 

frequency ω. These assumptions ensure that the velocity 

potential Φ(x,y,z,t) exists which can be written as Φ(x,y,z,t) 

= Re[             ], Re being the real part. In the fluid 

domain, the spatial velocity potential          satisfies 

the three dimensional Laplace equation 

2 ( , , ) 0.x y z   (1) 

It is subjected to the linearized free surface boundary 

condition 

2( / ) 0,  on 0,z g z       (2) 

 

 

 

 

Fig. 1 (a) Schematic view of array of breakwaters and (b) 

top view of channel problem 
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along with the no-flux boundary condition on the surfaces 

of sea bed (Sb), breakwater (Sbw) and channel walls (Scw), 

which is defined by 

0,n   
on Sb, Sbw, and Scw, (3) 

where g is the gravitational constant and n represents the 

outward normal on the surfaces. In addition, the far-field 

radiation condition is given by 

( )lim 0,j

r
r ik

r




 
  

 
 (4) 

where 2 2 ,r x y  and j = 1 and 3 are associated with ∞ 

and -∞, respectively. Further, k
(1)

 and k
(3)

 indicate the 

incident and reflected wave numbers in the domains R
(1)

 

and R
(3)

, respectively. 

The velocity potentials 
( )j  for different domains R

(j)
, j 

= 1, 2 and 3, can be derived from the above boundary value 

problem using the eigenfunction expansion method. Solving 

the governing Eq. (1) along with the boundary conditions 

(2) - (4) (see Mondal et al. 2017), the velocity potentials for 

each domain can be expanded as 

( ) ( )
0

( )

( ) ( )( ) ( ) ( ) ( )

1 0 0

0

( )( ) ( )

1 0

( ) ( )

       cos ( ) ( ),      for j=1, 3,

j j
n

j
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ik x d ik x dj j j j

j n n

n

ip x dj j

m mn n

m n

Ie f z A e f z

y A e f z
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(6) 

where δ1 j is the Kronecker delta and the eigenvalues ( )j

nk , j 

= 1, 2 and 3 satisfy the dispersion relation in k
( j)

 given by 

2 ( ) ( ) ( )tanh ,j j jgk k h   (7) 

which has one positive real root ( )

0

jk and an infinite number 

of imaginary roots ( )j

nik . The parameters λm, γm and ( )j

mnp

are given by 

( ) ( ) 2 2 (2) (2) 2 2,  ,  ( ) ,  1,3,  and ( ) ,j j

m m mn n m mn n m

m m
p k j p k

 
   

 
      

 
(8) 

for m = 1, 2,... and n = 0, 1, 2,.... The eigenfunctions 
( ) ( )j

nf z , j = 1, 2 and 3 as appearing in Eqs. (5) and (6) are 

of the form 

 ( ) ( )

( )

( ) ( )

cosh
( ) ,

cosh

j j

nj

n j j

n

k h z
f z

k h




 

for n = 0, 1, 2,…, (9) 

which satisfy the orthogonal relation 

( )

0

( ) ( ) ( ) ( ) ( )( ), ( ) ( ) ( ) ,
j

j j j j j

n v n v v nv

h

f z f z f z f z dz 


  D  (10) 

where δnv is the Kronecker delta, and the orthogonality 

constants ( )j

vD  is of the form 

( ) ( ) ( ) ( )

( )

( ) 2 ( ) ( )

2 sinh 2
,

4 cosh

j j j j

j v v

v j j j

v v

k h k h

k k h


D  for v = 0, 1, 2,…. (11) 

The sequence  cos ( ), 0,1,2,...m y m    is orthogonal 

over 2α, and the orthogonality relation is defined by 

cos ( )cos ( )m u muy y dy





    


    (12) 

where ε = 2 for u = 0, otherwise unity, and δmu represents 

the Kronecker delta. Further, the sequence 

 cos ( ), 0,1,2,...m y m    also satisfies the same relation 

as defined in Eq. (12) in the interval -β ≤ y ≤ β. 

In Eq. (5), I is a known quantity associated with the 

incident wave height. Furthermore, the coefficients (1)

00A  

and (3)

00A are related with reflected and transmitted wave 

heights in domains R
(1)

 and R
(3)

, respectively. Lastly, it is 

required to find out the unknown complex constants ( )j

mnA  

(j = 1,2,3), and (2)

mnB (m = 1,2,..., n = 0,1,2,...) to know the 

velocity potentials completely. The unknowns can be 

determined by using the matching of velocity and pressure 

as defined by 

( ) ( 1) ( ) ( 1) (2)  and  ,   for 1,2 and  , 0,j j j j

x x j y h z                  (13) 

at the interfaces x = ±d and the relations as in Eqs. (3), (10) 

and (12). Proceeding in a similar manner as in Mondal et al. 

(2017), a system of linear algebraic equations is obtained as 

follows 

( ) ( ) ( ) ( ) (2) (2) (2) ( )

0 0 0 0 0 1

0 1 0

2 2 2 ,j j j j j

nv n m nv mn v v v v j

n m n

X A J X A A B IX   
  

  

         D  
(14a) 

( ) ( ) (2) (2) (2)

1 0

0,   for  1,2,...,j j

mu nv mn v uv uv

m n

J X A A B u
 

 

       D

 
(14b) 

( ) ( ) ( ) (2) ( ) (2) (2) (2) (2) ( ) ( )

0 0 0 1 0

0

2 2 tan cot 2 ,j j j j j j

v v v n vn n n n n v v j v

n

i k A k X A k d B k d i Ik    




   D D

 
(15a) 

( ) ( ) ( ) (2) (2) (2) (2) (2) ( )

0 0 0

0

(2) (2) (2) (2) ( )

1 0

tan cot

                  + tan cot 0,     1,2,...,

j j j j

uv v uv n n n n n vn u

n

j

mn mn mn mn mn vn um

m n

ip A k A k d B k d X J

q A p d B p d X J u






 

 

   

    





D

 (15b) 

for v = 0, 1, 2, ... and j = 1, 3. The sign „+‟ and „-‟ in Eq. 

(14) correspond to j = 1 and j = 3, respectively whereas in 

Eq. (15) the sign „+‟ and „-‟ correspond to j = 3 and j = 1, 

respectively. The integrals ( )j

nvX , (n, v = 0, 1, 2, ...,) and 

Jmu, (m = 1, 2, ..., u = 0, 1, 2, ....) are of the forms 

   

 ( ) ( ) (2)

( ) (2) (2) (2) (2) ( ) ( )

2 2 ( ) ( ) (2) (2)
(2) ( )

sinh1
tanh tanh

cosh cosh

j j

nj j j

nv v v n n j j
j

n v
v v

k h h
X k k h k k h

k h k hk k

       
     

 
(16) 

2 2

2( 1) sin
cos ( )cos ( ) .

m

m m

mu m u

m u

J y y dy





  
   

 



   


 

(17) 

The integrals ( )j

vnX and Jum as appear in Eqs. (15(a)) and 

(15(b)) can be obtained from Eqs. (16) and (17), 

respectively, by interchanging the suffix (n, v) and (m, u). 
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The constants ( )j

mnA ( j = 1, 2, and 3) and (2)

mnB  can be 

evaluated by solving the system of algebraic Eqs. (14) and 

(15). It is observed that the series are infinite over m and n. 

Thus, for numerical computation, it is required to consider 

finite values of m and n. The series over m and n are 

truncated for m = M and n = N leading 4(M + 1)(N + 1) 

unknowns. The computation of unknowns will lead to 

finding out the physical quantities: reflected, transmitted 

wave energy and wave field in the vicinity of breakwaters. 

 

 

3. Results and discussion 
 

The derived velocity potential in Eq. (5) depicts that a 

progressive wave train exists in domains R
(1)

 and R
(3)

 and 

propagates along the x-axis. Further, in domains R
(1)

 and 

R
(3)

, a group of oblique waves exist when (1)

0k    and 

(3)

0k   , respectively. These oblique waves exist in pair 

and intersect the x-axis making an angle 

 
2

1 ( ) 2 ( )

0 0cos /j j

mk k  with the x-axis (Dalrymple and 

Martin 1990, Williams and Crull 1993, Mondal et al. 2017) 

where j= 1 and 3 indicate domains R
(1)

 and R
(3)

, respectively. 

Hence, the wave energy is carried out by the plane waves 

propagating along the x-axis and oblique waves. Therefore, 

considering the energy flux in domains R
(1)

 and R
(3)

, the 

energy identity can be written as (see Mondal and Alam 

2018) 

1,r tE E   (18) 

where (3) (1)

0 0/ . D D  The total reflected energy (Er) in 

domain R
(1)

 and transmitted energy (Et) in domain R
(3)

 are 

given by 

1 2(1) (3) (3)

2 2 2 20 0 0

0 0(1) (1) (1)
1 10 0 0

,   and  .
2 2

M M

m m

r r rm t t tm

m m

p k p
E K K E K K

k k k 

      (19) 

The m-th mode of reflection coefficient (Krm) and 

transmission coefficient (Ktm) are given by  

 

 

 
(1)

0 | / |rm mK A I  and (3)

0 | / |tm mK A I  where M1 and M2 

indicate the number of oblique waves in domains R
(1)

 and 

R
(3)

, respectively.  

For numerical computation, the values of different 

physical parameters are considered as h
(2)

/h
(1)

 = 0.4, h
(3)

/h
(1)

 

= 0.7, α/β = 0.6 and d/β = 0.4 unless it is mentioned. The 

non-dimensional surface deflection is defined by 
( ) ( )

,
j j

i   for j = 1, 2, and 3, where 

( )
( ) / ( ).

j
j I g    

In section 2, we have mentioned that the infinite series 

are truncated for m = M and n = N. Thus, we need to find 

out the minimum values of M and N for which the 

numerical results converge. To examine the convergence of 

infinite series (Eqs. (5) and (6)) numerically in Fig. 2, we 

have plotted total reflected energy (Er) and transmitted 

energy (Et) against non-dimensional wave number (1)

0k   

for different values of M and N. Fig. 2 depicts that the 

values of (Er) and (Et) are approximately the same for (M = 

10, N = 10) and (M = 15, N = 20) in the range 0.01 < 1

0k   

< 5π. Hence, it is sufficient to consider (M = 10, N = 10) for 

the numerical computation. 

The energy relation defined in Eq. (18) is compared 

with numerical values of Er + κEt (Table 1) for different 

values of 
(1)

0k   (= π/4, 2π/3, 3π/2, 5π/2, 7π/2, and 9π/2). 

In addition, in Table 1, values of absolute percentage error 

(er) are presented. It is observed that the maximum value of 

the absolute percentage error is 10
−4

. This confirms that 

computed results are accurate. 

Before proceeding further, in order to confirm the 

accuracy of the present method, we have compared our 

results with the known numerical results of Dalrymple and 

Martin (1990) who considered screen type inline 

breakwaters with a uniform water depth. From the 

formulation of the present problem, it is obvious that for the 

numerical computation we can not equate d/β with zero, 

and h
(2)

/h
(1)

 and h
(3)

/h
(1)

 with unity. Hence, in Fig. 3, we 

have plotted the zeroth order reflection coefficient Kr0 and 

phase −θ/π versus non-dimensional wavenumber 
(1)

0k  for  

  

Fig. 2 (a) Er and (b) Et versus non-dimensional wavenumber (1)

0k   for different values of M and N 
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Fig. 3 Comparison of present result (lines) with Dalrymple 

and Martin‟s (1990) (symbols) 

 

 

 

Fig. 4 Total transmitted energy (Et) versus non-

dimensional wavenumber (1)

0k  . The line and circles 

indicate present results and Fernyhough and Evans‟ 

(1995) 

 

 

d/β = 0.0001, α/β = 0.25 h
(2)

/h
(1)

 = 0.9998, and h
(3)

/h
(1)

 = 

0.9999, where the amplitude and phase are defined by Kr0 = 

|Kr0|e
iθ
 (Dalrymple and Martin 1990). In the figure circle 

symbols indicate the results of Dalrymple and Martin 

(1990). Both results agree well with each other. 

 

 

 

 

Fig. 5 Total reflected and transmitted wave energy 

versus non-dimensional wavenumber (1)

0k  for different 

depth ration h
(2)

/h
(1)

 with α/β = 0.6, d/β = 0.4 and h
(3)

/h
(1)

 

= 0.7 

 

 

In Fig. 4, another comparison of the present result is 

made with the result of Fernyhough and Evans (1995) who 

considered a periodic array of rectangular breakwaters and 

uniform water depth. As stated before, we can not substitute 

h
(2)

/h
(1)

 = 1 and h
(3)

/h
(1)

 = 1. Therefore, we consider 

sufficiently close values of h
(2)

/h
(1)

 = 0.9998 and h
(3)

/h
(1)

 = 

0.9999 and plotted the total transmitted energy Et as a 

function of 
(1)

0k   with α/β = 0.4 and d/β = 0.2. From Fig. 

4, we can see that the present results (line) have a good 

agreement with the result (circular symbols) of Fernyhough 

and Evans (1995). 

 

3.1. Effect of h
(2)

/h
(1) 

 

Variations of reflected wave energy (Er) and transmitted 

wave energy (Et) with 
(1)

0k  are presented in Fig. 5 for 

different values of h
(2)

/h
(1)

 (= 0.3, 0.4, 0.5, and 0.6) with d/β 

= 0.4. It is noticed that, with an increase in
(1)

0k  , the Er 

grows and Et declines, attaining a maximum and a 

minimum, respectively for certain values of 
(1)

0k   (< π/2). 

After the maximum and minimum values, Er decreases to 

zero and Et becomes unity accordingly for 
(1)

0k  = 0.76π − 

0.83π depending on h
(2)

/h
(1)

. It is also observed that there is  

Table 1 Numerical check of energy relation (18) for different values of k0β 

(1)

0k   Rtotal Ttotal κ Rtotal+κTtotal er 

π/4 0.380206 0.682971 0.907497 1.00000013 0.000013 

2π/3 0.106118 0.871601 1.025564 1.00000061 0.000061 

3π/2 0.411313 0.588606 1.000136 0.99999905 0.000095 

5π/2 0.382275 0.617725 1.000001 1.000001 0.000062 

7π/2 0.337541 0.662458 1 0.99999936 0.000064 

9π/2 0.403261 0.596738 1 0.999999 0.0001 
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no change in the values of Er and Et with the change of 

h
(2)

/h
(1)

 for 
(1)

0k  > π. Furthermore, from Fig. 5, it is seen 

that there are sharp changes in Er and Et at 
(1)

0k  = mπ, 

where m = 1, 2, .... This happens as the channel width 

becomes an integer multiple of the wavelength which 

indicates that the cross tank modes are excited. 

 

3.2 Effect of α/β  
 

The variations of Er and Et with the gap ratio (α/β) of the 

gap length (α) and channel width (β) are plotted in Fig. 6(a) 

and 6(b) for different values of (1)

0k   (= π/2, 2π/3, 4π/5, 

and π). For a given (1)

0k  , the Er and Et vary oppositely to 

each other with the increase of α/β. The Er is 1.0 at α/β ≈ 0 

regardless of (1)

0k  , i.e., the energy is totally reflected, 

yielding Et = 0. On the other hand, when α/β = 1.0, the 

energy is totally transmitted (Et = 1.0) as expected. The Er 

for (1)

0k  = π/2 decreases with increasing α/β, having an 

inflection point at α/β = 0.33 (Fig. 6(c)) where Er = 0.64. It 

suggests that the rate of the decrease grows for α/β < 0.33 

and declines for α/β > 0.33 (Fig. 6(c)). When (1)

0k  is 

increased to 2π/3, the inflection point shifts forward, 

occurring at α/β = 0.20 with Er = 0.66. That is, the Er  

 

 

declines more rapidly for α/β < 0.20 with more energy 

transmitted (Figs. 6(c) and 6(d)). A further increase in 
(1)

0k  to 4π/5 produces interesting results, Er sharply 

dropping to zero at α/β = 0.17, followed by an increase upto 

α/β = 0.29. In other words, the energy is totally transmitted 

at α/β = 0.17. An inflection point again exists at α/β = 0.12 

where Er = 0.44. At (1)

0k  = π, the Er ≈ 1.0 for α/β < 0.5, 

decaying for α/β > 0.5. The observation suggests that the 

energy is not transmitted at all for (1)

0k  = π when α/β < 

0.5. Here the inflection point occurs at α/β = 0.71 with Er = 

0.49. These α/β corresponding to the inflection points can 

be called as the critical (α/β)i which render some important 

realities that a change in α/β upto (α/β)i allows energy  

transmission at a greater rate and about 1/3 of the total  

energy is transmitted to the lee side for most of the cases. 

One question may arise what is the insight into the 

relationship between (α/β)i and (1)

0k  . As found above, 

(α/β)i = 0.33, 0.2, 0.12 and 0.71 for (1)

0k  = π/2, 2π/3, 4π/5, 

and π, respectively. The (1)

0k  = 2π/3, for example, means 

that a length of β contains 2/3 of the wave. The (1)

0k  = mπ 

= (1)

0 0( )k  represents an integer number of waves lying on 

β, where m = 1, 2, ... So, (1) (1)

0 0 0(( ) )k k  is the deficit  

  

  

Fig. 6 (a) Reflected energy and (b) transmitted energy versus α/β for different wave number (1)

0k   with d/β = 0.4, h
(2)

/h
(1)

 

= 0.4 and h
(3)

/h
(1)

 = 0.7 
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wavenumber. Interestingly, we find that 

    (1) (1)

0 00
/ /

i
k k    = 0.66/π, 0.6/π, 0.6/π, and 0.71/π, 

respectively, which can be roughly represented by ~ 2/3π. 

Note that m = 2 for (1)

0k   as  (1) (1)

0 00
0k k   . The 

factor     (1) (1)

0 00
/ /

i
k k    can be regarded as the non-

dimensional opening of the channel considering both β and 
(1)

0k . This information may be very useful for the 

breakwater designers. 

 

3.3 Effect of d/β 
 

Reflected wave energy Er and transmitted wave energy 

Et are plotted in Fig. 7 as a function of d/β for different 

values of (1)

0k  . It is noticed that the variations in Er and Et 

with d/β for each (1)

0k   are periodic. For (1)

0 / 4k   , Et 

becomes minimum at d/β = 0.5, i.e., for waves of a large 

wavelength, the breakwater width should be half of the 

channel width for a minimum transmission of energy. On  

 

 

the other hand, the corresponding values of d/β for a 

minimum Et are 0.26 and 0.18 for (1)

0k  = π/2 and 2π/3, 

respectively. The observation suggests that, for a minimum 

Et, a smaller thickness of breakwaters is required for waves 

of a smaller wavelength. The value of d/β, at which Et 

attains a minimum, is called critical (d/β)c. Further, it is 

noticed that   (1)

0/ / 8.
c

d k     That is, when a 

minimum Et is required, one can calculate the required d 

from this empirical relation. 

Wave fields in the vicinity of breakwaters are presented 

in Figs. 8-10. The incident wave trains arrive from the right 

sides of the figures. In Fig. 8, the real part of the surface 

profile and modulus of the wave field are plotted for 
(1)

0k   , i.e the wavelength is equal to the channel width 

2β. Hence, a cross-tank wave mode is observed in domains 

R
(1)

 and R
(3)

. It is apparent that the free surface mode in 

domains R
(1)

 and R
(3)

 has a cosine mode in the lateral 

direction as expected. For a large d/β = 2.0 and 
(1)

0 7 / 4k   , the surface profile, surface elevation along 

the x-axis and flow distribution are plotted in Fig. 9. In this  

 

Fig. 7 Total reflected and transmitted wave energy versus d/β for different wave number (1)

0k  with α/β = 0.6, h
(2)

/h
(1)

 = 

0.4 and h
(3)

/h
(1)

 = 0.7 

  

Fig. 8 Real part of surface elevation and (b) flow distribution in the vicinity of breakwaters with α/β = 0.6, d/β = 0.4 and 
(1)

0 .k    
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case, the wave field consists of a progressive wave along  

the x-axis and a pair of oblique waves. Using the expression 

 
2

1 (1) 2 (1)

0 0cos /mk k  , it is found that the pair of 

oblique waves intersect the x-axis at angles 35
o
 and 145

o
 

with the positive direction of the x-axis. Hence the wave 

field becomes more complicated in this case. Further, in the  

ocean side, partial standing waves are observed in front of 

the breakwater mouth, while the progressive wave is 

observed on the lee side. From Figs. 8(b) and 9(c), it is  

 

 

 

 

obvious that the wave amplitude on the lee side of 

breakwaters is smaller than that on the ocean side. 

In Fig. 10, real part and imaginary part of surface 

elevation are plotted for (1)

0 2 / 3k   where α/β = 0.2 and 

d/β = 2.0. However, the water depth is considered the same 

as stated above. In sea side, the surface profile for real and 

imaginary parts are of 90
o
 phase lag and the amplitudes are 

not equal. This implies that partial standing wave is formed 

in sea side. On the other hand, the progressive wave is 

observed in the lee side of breakwaters. 

 

 

 

Fig. 9 (a) Real part of surface elevation, (b) surface elevation along the x-axis, and (c) flow distribution in the vicinity of 

breakwaters with α/β = 0.6, d/β = 2.0 and (1)

0 7 / 4k    

  

Fig. 10 Free surface deformation (a) real part and (b) imaginary part with α/β = 0.2, d/β = 2.0 and 
(1)

0 2 / 3k    
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4. Conclusions 
 

In this study, we have considered the problem of wave 

interaction with a group of identical rectangular structures 

in the presence of undulated bottom topography. The 

problem is converted into a boundary value problem in  

terms of velocity potential and solved by using the 

eigenfunction expansion method. Using the matching 

conditions at interfaces of two different domains, a system 

of linear algebraic equations are constructed and solved 

numerically using commercial software MATLAB to know 

the velocity potentials completely.  

From the numerical computation, it is observed that the 

present method has a good agreement with the results in the 

literature. We have presented the reflected and transmitted 

energy for different physical parameters, along with the 

wave field in the vicinity of breakwaters. At k0β = π, where 

the wavelength becomes equal to the channel width, sharp 

changes in the reflected and transmitted energy are 

observed, Et dropping to ≈ 0 and Er jumping to ≈ 1, because 

of an occurrence of a cross-tank resonance mode. In the 

case of small wavelength (< 2β), a pair of oblique waves 

appear along with the travelling wave along the x-axis and 

the wave pattern becomes more complicated. Furthermore, 

the surface profiles, suggests that the breakwaters are 

efficient to provide a relatively calm zone in the lee side. 

For each (1)

0k  , there is a critical (α/β)i following 

    (1) (1)

0 00
/ / 2 / 3

i
k k       that corresponds to 1/3 

of the total energy transmitted to the lee side. On the other 

hand, it is observed that, for the minimum transmission of 

wave energy, the width of breakwaters is linearly 

proportional to the wavelength which follows

  (1)

0/ / 8.
c

d k     The reflected and transmitted wave 

energy does not vary with h
(2)

/h
(1)

 when the wavelength is 

smaller than the channel width (i.e., (1)

0k   ). 
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