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1. Introduction 
 

Thin plates subjected to in-plane loads are common 

structural elements with widespread applications in many 

areas of technology such as civil, mechanical, aeronautical, 

marine, and chemical to mention a few (Fadodun and 

Akinola 2017, Ventsel and Krauthammer 2001, Shooshtari 

and Razavi 2015, Altekin 2017, An et al. 2015). The 

vibrations of thin plates with various boundary conditions 

are of much importance in all fields of engineering; and an 

accurate stability analysis of vibration of thin plate is 

necessary for the control of resonance effect thus ensuring 

safety of thin-walled structures (Zhong et al. 2014, Fadodun 

et al. 2017a, Lychev 2011, Hadji et al. 2017). In fact, the 

studies of vibration of plates have been investigated 

extensively for years (Hadji et al. 2016, Bennoun et al. 

2016, Berferhat et al. 2016, Bourada et al. 2016, Rao 2007); 

and a literature survey shows that most considered problems 

involve cases of free and forced vibrations. 

For instance, Abdelaziz et al. (2017) developed and 

applied a simple shear deformation theory to buckling, 

bending and free vibration of functionally graded material 

(FGM) sandwich plate with various boundary conditions. 

They demonstrated the accuracy of the obtained numerical 

results for the natural frequencies, deflections and critical 

buckling of sandwich plates in comparison with the existing 

results in literature. Bakhadda et al. (2018) examined the 

vibration and bending response of carbon nanotube-

reinforced composite plates resting on the Pasternak elastic  
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foundation using hyperbolic shear deformation plate theory. 

They presented the effects of parameters associated with 

nanotube volume fraction, spring constant, plate thickness 

and aspect ratio on the plate vibration and bending behavior 

and in addition, validated the accuracy of the obtained 

results in comparison with some available solutions in the 

literature. Abualnour et al. (2018) proposed stretching effect 

shear deformation theory for free vibration of simply 

supported functionally graded plates. Both the validation of 

the theory and the accuracy of numerical solutions for 

natural frequencies of functionally graded plates considered 

were presented. Younsi et al. (2018) developed two-

dimensional and quasi three-dimensional higher shear 

deformation theories (HSDT) for bending and free vibration 

of functionally graded plate using hyperbolic shape 

functions. It was shown that the theories rely on 

undetermined integral terms and fewer number of the 

unknowns. The accuracy of the obtained results was 

illustrated in comparison with the existing results in 

literature. Bourada et al. (2019) examined the free vibration 

analysis of porous functionally graded beam using 

sinusoidal shear deformation theory. The accuracy of the 

obtained results in comparison with the existing solutions 

was demonstrated. Bouhadra et al. (2018) incorporated the 

influence of thickness stretching and improved the higher 

shear deformation theory for the investigation of advanced 

composite plates. The obtained analytical solution for the 

case of simply supported plates is accurate in comparison 

with the known three-dimensional solution and those 

previously generated by the other higher shear deformation 

theories. Belabed et al. (2018) developed a simple and 

accurate three-unknown hyperbolic shear deformation 

theory for vibration of functionally graded sandwich plates. 

The obtained results for the vibration analysis of the 
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sandwich plate are in agreement with the solutions obtained 

from the classical plate theory, first order shear deformation 

theory, and the existing higher order shear deformation 

theories. Bouafia et al. (2017) investigated size-dependent 

bending and free flexural vibration of behaviors of 

functionally graded nanobeams using nonlocal quasi-three-

dimensional theory involving both shear deformation and 

thickness stretching effects. The presented numerical 

solutions showed the effects of material gradient index, the 

nonlocal parameter, and the beam aspect ratio on the global 

response of the functionally graded (FG) nanobeams. 

Bounouara (2016) used the zeroth-order shear deformation 

theory for free vibration analysis of functionally graded 

(FG) nanoscale plates resting on elastic foundation. The 

study showed the effects of shear deformation, gradient 

index, Winkler modulus parameter, and Pasternak shear 

modulus parameter on the vibration responses of the 

functionally graded (FG) nanoscale plates considered. 

Hebali et al. (2014) developed a new quasi-three-

dimensional (3D) hyperbolic shear deformation theory for 

the bending and free vibration analysis of functionally 

graded plates. Unlike other theories in literature, the theory 

uses fewer number of the unknown functions for the 

displacement field in comparison with the other shear and 

normal deformation theories. Amine et al. (2015) used a 

nonlocal shear deformation beam theory for bending, 

buckling, and vibration of functionally graded (FG) 

nanobeams based on nonlocal differential constitutive 

relations of Eringen. The obtained analytical solutions for 

the simply supported FG nanobeams are in agreement with 

the results predicted by nonlocal Timoshenko beam theory. 

Furthermore, Lindsay et al. (2015) studied the out-of-

plane modes of vibration of thin plates perforated by 

collection of small clamped patches. As the radius of each 

patch shrinks to zero, they derived a point constraint 

eigenvalue problem so that each patch is replaced by a 

homogeneous Dirichlet condition at its center. The outcome 

of their work showed that the vibrational frequencies are 

dependent very sensitively on the number and center of the 

clamped patches. Park et al. (2015) developed a frequency-

domain spectral element model using the boundary splitting 

and the Kantorovich method-based super spectral element 

for the transverse vibration of thin plates. In comparison 

with the standard finite element solutions, both the accuracy 

of the solutions and the efficiency of the method employed 

were presented. Jaroszewicz (2017) investigated natural 

frequencies of homogeneous and isotropic circular thin 

plates with nonlinear thickness variation and clamped edge 

conditions. Using the method of successive approximation, 

he expressed the frequency equations in terms of power 

series. Lal and Saini (2017) presented analysis and 

numerical results for free vibrations of isotropic rectangular 

plates having arbitrarily varying non-homogeneity with the 

in-plane coordinates along the two concurrent edges using 

Kirchhoff’s plate theory. With the aid of MATLAB, they 

presented the effects of various plate parameters on the 

vibration characteristics of the plate. Bao and Wang (2017) 

developed a generalized solution procedure for in-plane free 

vibration of rectangular and annular sectorial plates with 

general boundary conditions. For the case of annular 

sectorial plate, they introduced a logarithmic radial function 

which simplifies the plate theory and the expression for the 

total potential energy. Their method was shown to be 

computationally effective in comparison with some existing 

techniques in literature. Senjanovic et al. (2017) worked out 

an approximate procedure for the vibration analysis of 

circular thin plates with multiple openings using assumed 

mode approach and illustrated the effect of the opening on 

the plate vibration through sample problems. Fadodun et al. 

(2017a) analyzed free and forced vibrations of a 

transversely isotropic non-classical thin plate made of semi-

linear hyperelastic John’s material. In the study, they 

showed that a non-classical plate made of John semilinear 

material exhibits in-plane loads which the classical 

Kirchhoff’s plate model fails to apprehend. Tahouneh 

(2017) presented the free vibration characteristics of 

sandwich sectorial plates with multiwalled carbon 

nanotube-(MWCNT)-reinforced composite core using three 

dimensional theory of elasticity. Using a two-dimensional 

differential quadrature approach together with a semi-

analytical technique, he obtained series solution of the plate 

equation of motion. 

Recently, fractional derivatives have been employed to 

generalize differential equations governing numerous 

physical processes in media (Fadodun et al. 2017b, Fu et al. 

2013, Li 2014) with a view to examine some effects 

associated with anomalous processes in materials. For 

instance, Treeby and Cox (2010) used fractional Laplacian 

to model power law absorption and dispersion of acoustic 

wave propagation in media. A framework for encoding the 

developed wave equation using three coupled first-order 

constitutive equations was discussed. Chen et al. (2010) 

considered solution of fractional diffusion equation by 

Kansa method. Applying the MultiQuadrics and thin plate 

spline serve as radial basis functions, the numerical 

solutions for one- and two-dimensional cases which agree 

with the corresponding analytical exact solutions were 

presented and discussed. Li (2014) constructed analytic 

solution of a fractional generalized two phase Lame-

Clapeyron Stefan problem and showed the performance of 

several parameters on the obtained solutions. Fu et al. 

(2013) used boundary particle approach for the Laplace 

transform time-fractional diffusion equation. They 

demonstrated both the high accuracy and computational 

efficiency of the method via error analysis and numerical 

experiment. Fadodun et al. (2017b) presented exact solution 

of fractional vibration problem of radially vibrating non-

classical cylinder and obtained the existence of non-smooth 

waves which characterizes the anomalous vibration of the 

cylinder. Du et al. (2010) considered a compact difference 

scheme for fractional diffusion wave equation and 

presented both convergence and stability of the scheme. 

In all of the above mentioned studies, the problems 

concerned with the anomalous vibration of thin plate under 

the influence of in-plane loads in the sense of time-

fractional derivative approach have not been investigated. 

Therefore, this study considers the time-fractional plate 

equation governing the anomalous vibration of thin plate 

subjected to in-plane loads. The objective of the study is to 

obtain an approximate analytical solution for the transverse 
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displacement of the plate. The form of the time-fractional 

equation governing the anomalous vibration of the plate 

under consideration permits us to employ the method of 

variable separable which in turn transforms the plate 

fractional equation into a fractional ordinary differential 

equation in time and a bi-harmonic plate equation in space. 

In this work, the conformable fractional derivative approach 

developed by Khalil et al. (2014) is used to solve the 

resulting fractional differential equation due to its 

amenability for initial-boundary value problems and the 

technique of finite sine integral transform approach is 

utilized for the solution of the accompanying bi-harmonic 

equation. The obtained solution reduces to the solution of 

the free vibration problem of thin plates in literature. The 

rest of the paper is organized as follows: section two 

presents time-fractional generalization of plate equation, 

section three gives the initial-boundary value problem, 

section four highlights the solution procedure, section five 

details the analytical solution of the problem under 

consideration, while section six concludes the study. 

 

 

2. Fractional generalization of equation of thin plate 
subjected to in-plane loads  

     
The partial differential equation governing the free 

vibration of an isotropic thin plate subjected to in-plane 

loads reads (Rao, 2007; pp. 527, Eq. (14.455)) 
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(1) 

where )t,y,x(ww   is the transverse displacement 

(deflection) of the plate, yx,  are the independent spatial 

variables, t  is the temporal variable, xN , yN , xyN  are 

the in-plane loads per unit length, h  is the plate thickness, 

and   is the plate material density. 

Furthermore, the coefficient D in Eq. (1) defined by 
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  (2) 

is the flexural rigidity of the plate, E  is the Young’s 

modulus, and   is the Poisson’s ratio. 

In view of Fadodun and Akinola (2017), we consider in-

plane loads of the form 
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Substituting Eq. (3) into Eq. (1) yields 
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Using Eq. (2), the coefficient 
)(
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1
 on the R.H.S of Eq. 

(4) takes the form 
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Substituting Eq. (5) into Eq. (4) gives 
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(6) 

In view of Eq. (5), the governing Eq. (6) coincides 

completely with the free vibration equation of a non-

classical thin plate made of John’s material (Fadodun et al. 

2017a). 

The time-fractional generalization of the free vibration 

Eq. (6) is 
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where  , 21   and the parameter   with 

dimension of time is introduced to ensure all terms in Eq. 

(7) are dimensionally consistent. 

 

 

3. Initial-boundary value problem 

 
Consider anomalous vibration of rectangular thin plate 

subjected to in-plane loads. The plate under consideration is 

simply supported and occupies the region 

ax 0 , by 0 ,  
22

h
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h
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where a , b , and h  are the length, width, and thickness 

of the plate respectively. 

The motion equation and the initial-boundary conditions 

governing the fractional vibration of the thin plate under 

consideration are 
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where 21   and 0g , 00 g . 

 
 
4. Solution approach 

 
This section highlights the conformable fractional 

derivative and finite sine integral transform techniques 

which we shall employ in the solution of the problem. 

 
4.1 Conformable fractional derivative 
 

Definition: Let ]n,n( 1 , and f  be an 

n differentiable function at t , where 0t . Then, the 

conformable fractional derivative of function f  of order 

  is defined by (Khalil et al. 2014) 
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4.2 Finite sine integral transform technique 

 

The finite sine integral transform of a function 

)y,x(WW  , defined on a rectangular region ax 0 , 

by 0 , is (Li et al. 2011) 
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5. Approximate analytical solution of the fractional 
vibration problem of thin plate 

 
Using the method of variable separable, we introduce 

solution of the form 

)t()y,x(W)t,y,x(w   (14) 

where )t(  is a function of temporal variable t  only 

and )y,x(W  is a function of spatial variables x , y .  

Substituting Eq. (14) in Eq. (8(a)), the function 

)y,x(WW   satisfies the partial differential equation 
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and the function )t(  satisfies the fractional ordinary 

differential equation 
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In view of Eq. (12) and using the method of integration by 

part, the fine sine integral transforms of terms in Eq. (15) 
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nxax

m
m ydysinWW

0

0
1 

 

(18d) 

 



a b

mnnnm ydxdysinxsin
y

W

0 0

2

2

2



   


b

myby

n
n xdxsinWW

0

0
1   

(18e) 

It is well known that the conditions )y,a(W)y,(W  00  

imply that the derivatives of )y,x(W  with respect to 

spatial variable y  at 0x  and ax   vanish (Ventsel 

and Krauthammer 2001). That is 

0
2

2






y

W
,  at  0x , a  (19) 

Substituting Eqs. (17(a))-(17(d)) and Eq. (19) into Eqs. 

(18(a))-(18(e)) gives 

mnm

a b

nm ydxdyx
x

W





 

4

0 0

4

4

 sinsin 

 

(20a) 

mnn

a b

nm ydxdyx
y

W





 

4

0 0

4

4

sinsin 

 

(20b) 

  



a

mnnm

b

nm xdxdyx
yx

W

0

22

0

22

4

sinsin   (20c) 

  



a

mnm

b

nm ydxdyx
x

W

0

2

0

2

2

sinsin   (20d) 

  



a b

mnnnm ydxdyx
y

W

0 0

2

2

2

sinsin 

 

(20e) 

In view of Eqs. (20(a))-(20(e)), the finite integral transform 

of Eq. (15) leads to the eigenvalue problem 

mnnmnm
hh

D




















 222

2

222 )(
)1(12

)( 



  

0 ,   ,...,,n,m 321  

(21) 

where mn   are the eigenvalues and mn  are the 

corresponding eigenfunctions. 

For non-trivial solutions of eigenfunctions mn , we set 

0)(
)1(12

)( 222

2

222 










 





nmnm

hh

D
 (22) 

The solution of Eq. (22) gives the eigenvalue mn   












 )(

)1(12
)( 22

2

222

nmnmmn
hh

D








 

,...,,n,m 321  

(23) 

It is clear that for each eigenvalue mn  in Eq. (23), there is 

a corresponding and associated non-trivial eigenfunction 

mn ; and consequently one obtains the solution )y,x(W  

of Eq. (15) 











1 1

sinsin
4

),(
m n

nmmn yx
ab

yxW   (24) 

Now, using Eq. (10) and setting mn  , the fractional 

order ordinary differential equation in Eq. (16) reduces to 

the variable coefficient ordinary differential equation 
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02
2

2

2













)t(
t

)t(
dt

d
mn





 (25) 

where 21  . 

The solution of Eq. (25) for special case of parameter 1  

and for each eigenvalue mn  is 

 )t()t( mn  










































2

1
2

1

22














tYBtJCt mn

mn
mn

mn  (26) 

where 













2

1

2






tJ mn  and 














2

1

2






tY mn  are the Bessel 

functions of order


1
 of first and second kind respectively, 

and mnmn B,C  are constants. 

Substituting Eqs. (24) and (26) into Eq. (14) gives the 

deflection solution )t,y,x(ww   





















































1 1

2
1

*2
1

* sinsin
224

m n

nm
mn

mn
mn

mn yxtYBtJCt
ab

w 















 
(27) 

where mnmn
*
mn BB   and mnmn

*
mn CC  . 

Substituting Eq. (27) into first condition in Eq. (8f) gives 

0* mnB  (28) 

Using Eq. (28) in Eq. (27) gives 






































1 1

2
1

24

m n

nm
mn*

mn ysinxsintJCt
ab

w 







 (29) 

Using the second initial condition in Eq. (8(f)) yields 












1 1

0

4

m n

nmmn
*
mn ysinxsin),(C

ab
g   (30) 

where the parameter ),( mn  is defined by 

0
2

2
1

0























































 tJt

dt

d
lim),( mn

t
mn  (31) 

In view of Eqs, (12) and (13), the constant *
mnC  in Eq. (30) 

is 



a b

nm
mn

*
mn ydxdysinxsing

),(
C

0 0

0

1



 

,...,,n,m 321  

(32) 

 
 

mn),(

abg
C

mn

*
mn 2

04




 

,...,,,n.m 7531  

(33) 

Substituting Eq. (33) into Eq. (29) gives the solution of the 

fractional vibration problem of thin plate subjected to in-

plane loads 






































1 1

2
12

0 216

m n

mn

mn

nm tJ
mn),(

ysinxsin
t

g
w













 (34) 

where ,...,,n,m 531  

In the special case of free vibration of thin plate subjected 

to in-plane loads, the parameter 2 . 

Using 2  in Eq. (34) yields 

 






















1 1 2

12

0

2

16

m n

mn
mn

nm tJ
mn),(

ysinxsin
t

g
w 






 (35) 

In view of Eq. (31) 

mn
mn

mn ),( 



2

2   (36) 

Also, one knows that the Bessel function  tJ mn

2

1  

satisfies the relation 

   tsintJt mn
mn

mn 



2

2

1   (37) 

Using Eqs. (36) and (37) in Eq. (35) gives 

)t,y,x(w  

 





















,...,,m ,...,,n

nm
mn

mn ysinxsin
mn

tsing

531 531
2

016







 

(38) 

Eq. (38) gives the transverse displacement solution of the 

free vibration problem of thin plates with simply supported 

boundary conditions in literature. 
 
 
8. Conclusions 
 

The work uses conformable fractional derivative 

approach and the method of variable separable to construct 

approximate analytical solution of fractional partial 

differential equation governing anomalous vibration of thin 

plate. The governing time-fractional partial differential 

equation is transformed into a bi-harmonic plate equation 

and a fractional ordinary differential equation. The obtained 

solution reduces to solution of free vibration problem of 

thin plate when the order of the fractional derivative 

becomes 2. The results in this work find applications in the 

analysis and design of modern foundations of bridge decks 

as well as rigid pavements of highway and airports. 
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