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1. Introduction 
 

Since the beginning of the twentieth century, the use of 

composite materials in the form of plates and beams has 

grown considerably. Whether it is in the auto industry, 

construction, and morerecently in aeronautics. Composite 

materials have significant advantages over materials 

traditional. They bring many benefits functional: lightness, 

mechanical and chemical resistance, reduced maintenance, 

freedom of shape and service life extended. However, the 

disadvantage is the existence of concentrations of 

constraints at the interfaces between layers because of the 

abrupt change in mechanical properties from one layer to 

another. To overcome some difficulties a team of 

researchers Japanese (1980) proposed new materials called 

gradient property material (FGM). The materials to gradient 

properties (FGM) are composites of tip ,  whose 

microstructure is heterogeneous. Generally, these materials 

are made from isotropic components such as metals and 

ceramics (Barati and Shahverdi 2016). FGM find 

application in various fields such as aircraft, biomedical 

sectors and civil and industrial constructions (Bessaim et al. 

2013, Besseghier et al. 2017, Bouafia et al. 2017). 

Therefore, the main question is an accurate description of 

material properties in the depth direction, to perform a 

satisfactory analysis of the mechanical behavior of FGM 

beams. Many studies on FGM structures have been studied  
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in the literature (Bouderba et al. 2013, Tounsi et al. 2013, 

Ait Amar Meziane et al. 2014, Fekrar et al. 2014, Hamidi et 

al. 2015, Zemri et al. 2015, Taibi et al. 2015, Al-Basyouni 

et al. 2015, Attia et al. 2015, Meradjah et al. 2015, 

Bounouara et al. 2016, Bennoun et al. 2016, Bousahla et al. 

2016, Hebali et al. 2016, Chikh et al. 2016, Laoufi et al. 

2016, Beldjelili et al. 2016, Kolahchi et al. 2017a, 

Abdelaziz et al. 2017, Zidi et al. 2017, Abualnour et al. 

2018, Attia et al. 2018, Bouhadra et al. 2018, Meksi et al. 

2018).  

When the application of the FGM increases, more 

accurate plate theories are required to predict the response 

of functionally graded (FG) plates. The first-order shear 

deformation theory (FSDT) accounts for the shear 

deformation effects by the way of linear variation of in-

plane displacements through the thickness. Since the FSDT 

violates the conditions of zero transverse shear stresses on 

the top and bottom surfaces of the plate, a shear correction 

factor which depends on many parameters is required to 

compensate for the error due to a constant shear strain 

assumption through the thickness (Heireche et al. 2008,  

Bellifa et al. 2016). The higher-order shear deformation 

theories (HSDTs) account for the shear deformation effects, 

and satisfy the zero transverse shear stresses on the top and 

bottom surfaces of the plate, thus, a shear correction factor 

is not required (Ould Larbi et al. 2013). Hebali et al. (2014) 

proposed a new quasi-3D hyperbolic shear deformation 

theory for the static and free vibration analysis of FG plates. 

Bousahla et al. (2014) presented a novel higher order shear 

and normal deformation theory based on neutral surface 

position for bending analysis of advanced composite plates. 
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Zidi et al (2014) employed a four variable refined plate 

theory for bending analysis of FG plates under hygro-

thermo-mechanical loading. Yaghoobi et al. (2014) 

presented an analytical study on post-buckling and 

nonlinear free vibration analysis of FG beams resting on 

nonlinear elastic foundation under thermo-mechanical 

loading using VIM. Bourada et al. (2015) discussed the 

bending and vibration responses of FG thick beams by 

proposing a novel simple shear and normal deformations 

theory. Mahi et al. (2015) developed a novel hyperbolic 

shear deformation model for static and dynamic analysis of 

isotropic, functionally graded, sandwich and laminated 

composite plates. Ait Atmane et al. (2015) used a 

variationally consistent shear deformation theory for 

dynamic behavior of thick FG beams with porosities. Attia 

et al. (2015) examined the dynamic response of FG plates 

with temperature-dependent properties by employing 

various four variable refined plate models. Larbi Chaht et al. 

(2015) studied the bending and buckling behaviors of FG 

size-dependent nanoscale beams including the thickness 

stretching effect. Kar and Panda (2015) examined nonlinear 

flexural vibration of shear deformable functionally graded 

spherical shell panel. Belkorissat et al. (2015) studied the 

dynamic properties of FG nanoscale plates using a novel 

nonlocal refined four variable theory. Bennai et al. (2015) 

proposed a novel higher-order shear and normal 

deformation theory for FG sandwich beams. Belabed et al. 

(2014) proposed hyperbolic function based higher-order 

shear deformation theory with five unknowns to investigate 

flexural and vibration characteristics of FGM plate. Ellali et 

al. (2018) presented the buckling of piezoelectric plates on 

Pasternak elastic foundation using higher-order shear 

deformation plate theories. The comparative study of the 

effect of various gradation laws (power-law, sigmoid or 

exponential function) on the mechanical behavior of FGM 

plates under transverse load was carried out by Chi and 

Chung (2006). Thai and Kim (2013) used the quasi-3D 

sinusoidal shear deformation theory with only five 

unknowns for bending behavior of simply supported FGM 

plates. Shahsavari et al. (2018) presented a novel quasi-3D 

hyperbolic theory for free vibration of FG plates with 

porosities resting on Winkler/Pasternak/Kerr foundation. 

Many studies on shear deformation theories have been 

developed in the literature to study FG structures and CNT-

reinforced plates (Kolahchi and Bidgoli 2016, Arani and 

Kolahchi 2016, Kolahchi et al. 2016a, b, Bilouei et al. 2016, 

Madani et al. 2016, Draiche et al. 2016, Houari et al. 2016, 

Zamanian et al. 2017, Kolahchi and Cheraghbak 2017, 

Kolahchi 2017, Kolahchi et al. 2017b, c, Klouche et al. 

2017, Mouffoki et al. 2017, Sekkal et al. 2017a, b, Chikh et 

al. 2017, Hajmohammad et al. 2017, Zarei et al. 2017, 

Shokravi 2017a, b, c, d, Bakhadda et al. 2018, Youcef et al. 

2018). Recently, four variable plate theories with 

indeterminate integral terms are developed to make the 

theory more simple (Bellifa et al. 2017a, El-Haina et al. 

2017, Khetir et al. 2017, Fahsi et al. 2017, Menasria et al. 

2017, El-Haina et al. 2017, Hachemi et al. 2017, Zine et al. 

2018, Yazid et al. 2018, Belabed et al. 2018, Benchohra et 

al. 2018).     

 

In order to fully understand the different dynamic 

characteristics of functionally graduated structures, it is 

important to study wave propagation in this type of 

structures at large frequencies for their uses in different 

fields. Structural health monitoring or detection of damage 

is one such important application. As wave propagation 

deals with higher frequencies, diagnostic waves can be 

employed to predict the presence of even minute defects, 

which occur at initiation of damage and propagate them till 

the failure of the FGM structure. In many aircraft structures, 

the undesired vibration and noise transmit from the source 

to the other parts in form of wave propagation and this 

requires control or reduction, which is again an important 

application of wave propagation studies. 

The study of wave propagation in FG plates has also 

received a lot of attention from various researchers. the 

behavior of wave dispersion in a FG plate with material 

properties varying in thickness direction has been studied 

by Chen et al. (2007). Han et al. (2001) used an analytical-

numerical method for analyzing wave characteristics in FG 

cylinders. Han et al. (2002) also proposed a numerical 

method for studying the transient wave in FG plates excited 

by impact loads. Sun and Luo (2011a) also investigated 

wave propagation and dynamic response of functional 

gradient rectangular plates with complete tight supports 

under impulse loading. Considering the thermal effects and 

properties of temperature-dependent materials, Sun and Luo 

(2011b) investigated the propagation of a functionally 

infinite graded plate using the theory of higher order shear 

deformation plate. 

In the manufacture of FGM parts, porosities may appear 

in these elements during the sintering process. This is due to 

the wide difference of the solidification temperature. In 

recent years, some studies about the porosity effect in the 

FG structures have been published in the literature; 

Wattanasakulpong et al. (2012) gives the discussion on 

porosities happening inside FGM samples fabricated by a 

multi-step sequential infiltration technique. 

Wattanasakulpong et al. (2014) also give a discussion of the 

porosities occurring inside the FGMs produced by the 

sequential infiltration technique. Şimşek and Aydın (2012) 

examined the forced vibration of FG microplates with 

porosity effects based on the modified couple stress theory. 

Jahwari and Naguib (2016) investigated FG viscoelastic 

porous plates with a higher order plate theory and a 

statistical based model of cellular distribution. Ait Yahia et 

al. (2015) investigated the wave propagationin FG plates 

with considering the porosity effect. Mouaici et al. (2016) 

proposed an analytical solution for the vibration of FGM 

plates with porosities. The analysis was based on the 

deformation theory of shear with taking into account the 

exact position of the neutral surface. Boukhari et al. (2016) 

introduced an efficient shear deformation theory for wave 

propagation of functionally graded material plates. Recently, 

Ait Atmane et al. (2016) is study the effect of stretching the 

thickness and porosity on the mechanical response of a FG 

beam resting on elastic foundations. Akbas SD (2017) 

studied the thermal effects on the vibratory behavior of FG 

beams with porosity. Benadouda et al. (2017) presented an 

efficient shear deformation theory for wave propagation in 
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FG material beams with porosities.  

The objective of this work is to study the free vibration 

and wave propagation of a FGM plate by taking into 

account the effect of porosity using a high order shear 

deformation theory with four variables. A new shape of the 

distribution of porosity according to the thickness of the 

plate was used. The field of displacement of the theory is 

chosen according to an integral variation. The number of 

unknowns and motion equations of the theory are reduced 

and become simple to use. The equations governing wave 

propagation in the FGM plate are obtained using the 

Hamilton principle. The analytical dispersion relationships 

of FGM plates are obtained by solving a problem with 

eigenvalues. Will trace and analyze wave frequency curves 

and phase velocity in FGM plates, having porosity. We will 

also try to study the influence of the volume fraction index, 

number of wave, thickness ratio and porosity on the 

vibratory behavior and phase velocity of wave propagation 

in FGM plates. 

 

 

2. Theory and formulation  
 
2.1 Problem formulation 
 
Consider a sandwich plate with porosity having total 

height (h), length (a), and width (b) referred to the Cartesian 

coordinates (x, y, z) as shown in Fig. 1. The top and bottom 

faces of the plate are at 2h/z  , and the horizontal edges 

of the plate are parallel to axes x and y. The plate is 

subjected to transverse load of intensity q(x) per unit length 

of the plate. 

 

2.2. Material properties 
 
A FG plate made from a mixture of two material phases, 

for example, a metal and a ceramic as shown in Fig. 1. 

 

 

 

Fig. 1 The geometric configuration of FGM Plate with 

porosity 

The material properties of FG plates are assumed to vary 

continuously through the thickness of the plate. In this 

investigation, the imperfect plate is assumed to have 

porosities spreading within the thickness due to defect 

during production. Consider an imperfect FGM with a 

porosity volume fraction, λ (λ <<1), distributed evenly 

among the metal and ceramic, the modified rule of mixture 

proposed by Ankit Gupta and Mohammad Talha (2017) is 

used as 
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λ is termed as porosity volume fraction (λ<1). λ= 0 

indicates the non-porous functionally graded plate.  

Now, the total volume fraction of the metal and ceramic 

is Vm+Vc =1, and the power law of volume fraction of the 

ceramic is described as 
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Where ‗p‘ is the volume fraction index. The effective 

material property of porous FGM plate is given as 
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Where P denotes the effective material characteristic such 

as Young‘s modulus E and mass density   subscripts m 

and c denote the metallic and ceramic components, 

respectively. ξ it is the factor of the distribution of the 

porosity according to the thickness of the plate (Table 1). It 

is noted that the positive real number p (0≤ p <∞) is the 

power law or volume fraction index, and z is the distance 

from the mid-plane of the FG plate. When p is set to zero (p 

= 0) the FG plate become a fully ceramic plate and fully 

metal plate for large value of p (p =∞). Since the influences 

of the variation of Poisson's ratio  on the behavior of FG, 

plates are very small (Yang et al. 2005, Kitipornchai et al. 

2006), it is supposed to be constant for convenience. 

 

 

Table 1 Factor of the distribution of porosity ξ. 
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2.3 Kinematics and strains 
 
In this article, further simplifying supposition are made 

to the conventional HSDT so that the number of unknowns 

is reduced. (Bouchafa et al. 2015) give the displacement 

field of the conventional HSDT 
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Where 0u
, 0v

, 0w
, x , y  are five unknown displacements 

of the mid-plane of the plate, f(z) denotes shape function 

representing the variation of the transverse shear strains and 

stresses within the thickness. By considering that 

 dxyxx ),(
 and  dyyxy ),(

, the displacement 

field of the present model can be expressed in a simpler 

form as (El-Haina et al. 2017) 
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It can be seen that the displacement field in Eq. (5) 

introduces only four unknowns (u0, v0, w0 and θ).The 

nonzero strains associated with the displacement field in Eq. 

(5) are 
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Where 
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And The integrals defined in the above equations shall be 

resolved by a Navier type method and can be written as 

follows 
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Where the coefficients 'A  and 'B  are expressed 

according to the type of solution used, in this case via 

Navier. Therefore, 'A , 'B , 1
k

 and 2
k

 are expressed as 

follows 
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Where 1  and 2  are the wave numbers of wave 

propagation along x-axis and y-axis directions respectively. 

For elastic and isotropic FGMs, the constitutive relations 

can be expressed as 
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where ( x , y , xy , yz , xz ) and ( x , y , xy , 

yz , xz ) are the stress and strain components, 

respectively. Using the material properties defined in Eq. 

(1), stiffness coefficients, ijC , can be given as 
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2.4 Equations of motion 
 
Hamilton‘s principle is herein utilized to determine the 

equations of motion (Bellifa et al. 2017b) 
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Where U  is the variation of strain energy; V   is the 

variation of the external work done by external load applied 

to the plate; and K  is the variation of kinetic energy. 

The variation of strain energy of the plate is given by 
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Where A  is the top surface and the stress resultants N , 

M , and S  are defined by 
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The variation of the external work can be expressed as 
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Where q  and ( 000 ,, xyyx NNN ) are transverse and in-plane 

applied loads, respectively.  

For the free vibration and wave propagation problems, 

the external work is zero. The variation of kinetic energy of 

the plate can be expressed as 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; )z(  is 

the mass density given by Eq. (1); and ( iI , iJ , iK ) are 

mass inertias expressed by 
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By substituting Eqs. (13), (15) and (16) into Eq. (12), 

the following can be derived 
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Substituting Eq. (6) into Eq. (10) and the subsequent results 

into Eqs. (14), the stress resultants are obtained in terms of 

strains as following compact form: 




s

s

b

sss

s

s

s

b AS

k

k

HDB

DDB

BBA

M

M

N



















































,

 

(19) 

Were 

 tb
xy

b
y

b
x

b MMMM ,,
 

(20a) 

 txyyx
000 ,,  

, 
 tb

xy
b
y

b
x

b kkkk ,,
, 

 ts
xy

s
y

s
x

s kkkk ,,
 
(20b) 



















66

2212

1211

00

0

0

A

AA

AA

A

, 


















66

2212

1211

00

0

0

B

BB

BB

B

 



















66

2212

1211

00

0

0

D

DD

DD

D

 

(20c) 


















s

ss

ss

s

B

BB

BB

B

66

2212

1211

00

0

0

,

















s

ss

ss

s

D

DD

DD

D

66

2212

1211

00

0

0

 


















s

ss

ss

s

H

HH

HH

H

66

2212

1211

00

0

0

 

(20d) 

 ts
yz

s
xz SSS ,

, 
 tyzxz

00 , 
, 














s

s
s

A

A
A

55

44

0

0

 

(20e) 

and stiffness components are given as 
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Introducing Eq. (19) into Eq. (18), the equations of motion 

can be expressed in terms of displacements ( 0u , 0v , 0w , 

 ) and the appropriate equations take the form 
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Where ijd , ijld  and ijlmd  are the following differential 

operators 
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2.5 Dispersion relations 
 

We assume solutions for 0u , 0v , 0w  and 0  

representing propagating waves in the x-y plane with the 

form 
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(24) 

where U ; V ; W  and X  are the coefficients of the 

wave amplitude, 1  and 2  are the wave numbers of  

 

 

wave propagation along x-axis and y-axis directions 

respectively,   is the frequency, 1i  the 

imaginary unit. 

Substituting Eq. (24) into Eq. (23), the following 

problem is obtained 
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Where 
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Table 2 Naturel frequencies of a porous FG plate for various thickness ratios, porosity parameters, power law indices and 

porosity distributions 

a/h p 

λ=0 λ =0,1 λ =0,2 

Nuttawit 

(2013) 

Gupta 

(2017) 
présent 

Nuttawit 

(2013) 

Gupta 

(2017) 
présent 

Nuttawit 

(2013) 

Gupta 

(2017) 
présent 

5 

0 78680,80 78680,80 78680,80 85629,23 81551,57 81550,31 96890,84 84841,06 84829,58 

0.5 53406,38 53406,38 53406,38 54182,36 53788,74 53788,58 55166,40 54179,50 54178,22 

1 46301,80 46301,80 46301,80 46166,29 46274,80 46274,82 45974,20 46227,97 46228,16 

5 36431,00 36431,00 36431,00 35427,32 35925,91 35926,13 34201,36 35368,65 35370,55 

10 34648,82 34648,82 34648,82 33532,33 34089,57 34089,81 32179,12 33474,25 33476,35 

10 

0 56646,44 56646,44 56646,44 61648,98 58995,93 58994,90 69756,81 61682,99 61673,63 

0.5 38361,90 38361,90 38361,90 38917,80 38825,08 38824,89 39627,60 39304,78 39303,19 

1 33289,58 33289,58 33289,58 33183,38 33441,90 33441,84 33034,31 33587,82 33587,36 

5 26537,07 26537,07 26537,07 25843,07 26364,23 26364,31 24993,52 26163,80 26164,50 

10 25211,47 25211,47 25211,47 24438,12 25001,00 25001,09 23501,75 24761,30 24762,13 
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The dispersion relations of wave propagation in the 

functionally graded beam are given by 

    0  2  MK 
 

(27) 

The roots of Eq. (27) can be expressed as 

)(11  W , )(22  W , )(33  W and )(44  W  (28) 

They correspond to the wave modes 1M , 2M , 3M  and 

4M respectively. The wave modes 1M  and 4M  

correspond to the flexural wave, the wave mode 2M and 

3M corresponds to the extensional wave.  

The phase velocity of wave propagation in the functionally 

graded plate can be expressed as 

)4,3,2,1(   ,
)(
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W

C i
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(29) 

 

 

3. Numerical results and discussions  
 

In order to analyze the effect of porosity on the 

vibratory and behavior and phase velocity of the FGM 

plates, illustrative examples have been presented in this part. 

A functionally graduated plate is made from two Si3N4 / 

SUS304 materials; whose properties of these are presented 

in the following table 

These properties change through the thickness of the 

plate according to the power law. The upper surface of 

FGM plate is rich in Si3N4 ceramic, while the lower 

surface of the FGM plate is rich in SUS304 metal. The 

thickness of the functionally graded plate is taken h=0.02 

and 0.01 m. various numerical examples are presented and 

discussed to check the accuracy of present theory in 

investigating the wave propagation and free vibration of FG 

plates. The analysis based on the present model is carried 

out using MAPLE. 

Tables 2 and 3 present the frequencies and phase 

velocities of an FGM plate for the three formulas of the  

 

 

porosity distribution factor. From the results presented in 

this two tables, we can observe the values of the frequencies 

and the velocity obtained by the present model are in good 

agreement with those of the Gupta (Ankit Gupta  et al., 

2017) model for the two cases  λ = 0,1 and λ = 0, 2 

regardless of the value of the ratio a / h. 

The variation curves of the natural frequency (ω) and 

the phase velocity for the first four modes of the various 

functionally graded plates, as a function of the material 

power index (p) for different values of the porosity were 

respectively presented in Figs. 2 and 3. 

From Figs. 2 and 3, it can be seen that the increase of the 

material index parameter induces the decrease of the natural 

frequency and the phase velocity in FG plates and this 

regardless of the wave number. However, the increase of the 

porosity factor leads to an increase of the frequency for the 

first two modes and a decrease for the modes 3 and 4. 

Consequently, the maximum frequency is obtained for a 

ceramic plate (p = 0) and a porosity factor λ = 0.3.  

The natural frequency and the phase velocity of the 

wave propagation in the homogeneous plate is the 

maximum among those of all other FG plates. This is 

expected because the ceramic plate (p = 0) is the one with 

the highest rigidity. Therefore, it is clear that the 

heterogeneity of FGMs has a great influence on the phase 

velocity of the wave propagation and the natural frequency 

in the FG plate. 

Fig. 4 show the frequency curves of the different FGM 

plates respectively obtained by using the proposed formula 

of the porosity distribution factor for different values of the 

latter as a function of the wave number kp. It can be seen 

from these curves that the frequency increases with the 

increase of kp for the same material power index. We can 

also observe that the frequency becomes maximum for the 

perfect plate (λ = 0). 

Fig. 5 shows the influence of the phase velocity of a FGM 

plate as a function of wave number. The material power 

index is taken equal to p = 2. From this figure, the 

similarities in the evolutions of the vibration can be 

highlighted. 

Table 3 The phase velocities of a porous FG plate for various thickness ratios, porosity parameters, power law indices and 

porosity distributions 

a/h p 

λ=0 λ =0,1 λ =0,2 

Nuttawit 

(2013) 

Gupta 

(2017) 
présent 

Nuttawit 

(2013) 

Gupta 

(2017) 
présent 

Nuttawit 

(2013) 

Gupta 

(2017) 
présent 

5 

0 7868,08 7868,08 7868,08 8562,92 8155,16 8155,03 9689,08 8484,11 8482,96 

0.5 5340,64 5340,64 5340,64 5418,24 5378,87 5378,86 5516,64 5417,95 5417,82 

1 4630,18 4630,18 4630,18 4616,63 4627,48 4627,48 4597,42 4622,80 4622,82 

5 3643,10 3643,10 3643,10 3542,73 3592,59 3592,61 3420,14 3536,86 3537,05 

10 3464,88 3464,88 3464,88 3353,23 3408,96 3408,98 3217,91 3347,43 3347,64 

10 

0 5664,64 5664,64 5664,64 6164,90 5899,59 5899,49 6975,68 6168,30 6167,36 

0.5 3836,19 3836,19 3836,19 3891,78 3882,51 3882,49 3962,76 3930,48 3930,32 

1 3328,96 3328,96 3328,96 3318,34 3344,19 3344,18 3303,43 3358,78 3358,74 

5 2653,71 2653,71 2653,71 2584,31 2636,42 2636,43 2499,35 2616,38 2616,45 

10 2521,15 2521,15 2521,15 2443,81 2500,10 2500,11 2350,17 2476,13 2476,21 
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Fig. 2 Variation of the natural frequency of the FGM plates according to the material power index 
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Fig. 3 Variation of the phase velocity of the FGM plates according to the material power index 
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Fig. 4 The natural frequency curves of different functionally graded plates in terms of wave number 
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Fig. 5 The phase velocity curves of  different functionally graded plates in terms of wave number 
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Table 4 The property of the materials used 

Matériaux E (GPa) ρ (kg/m3) ν 

Si3N4 2370 2370 0.3 

SUS304 201.04 8166 0.3 

 

 

For the first mode, increasing in wave number leads to 

increase in the phase velocity parameter of the FG plate. 

For the second mode, the increase of wave number of the  

 

 

 

 

 

plate has no influence on the phase velocity. On contrast, 

for mode 3, the increase of the wave number of the plate 

results in a reduction of the phase velocity. It can be also 

seen that the phase velocity decreased with the increase of 

the porosity factor for all modes. 

Figs. 6 and 7 show the influence of plate thickness ratio 

on natural frequency and phase velocity of wave 

propagation, respectively. Two values of the porosity 

parameter are considered (λ = 0 and λ = 0.3). The wave 

number value kp is taken equal to 10 and the depth of the 

beam is 0.02 m. It can be seen that the thickness ratio (a / h)  
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Fig. 6 Influence of thickness ratio on the natural frequency of the plate FGM 
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Fig. 7 Influence of thickness ratio on the phase velocity of the plate FGM 
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Fig. 8 Influence of the porosity on the natural  frequency and phase velocity ofthe different plates 
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has a considerable effect on the wave propagation 

frequency in the FGM plate (the latter decreases with the 

increase of this ratio). 

Fig. 8 show the variation of the wave propagation 

frequency versus porosity factor using the formula proposed 

for FGM plates with different values of the thickness ratio 

(a / h). 

 

 

4. Conclusions 
 

In this work, the natural frequency and wave 

propagation of porous FG plate with a new model of the 

porosity distribution is investigated using a shear 

deformation theory with an integral displacement field. The 

properties of the material are assumed to vary in the 

direction of the height in the function of the modified 

mixing rule. The equations of motion are derived using the 

Hamilton principle. The analytical dispersion relation of a 

FG plate is obtained in solution to a problem of eigenvalue. 

From the results obtained, it can be concluded that the 

effect of volume fraction distributions, thickness ratio and 

porosity volume index on vibratory behavior and wave 

propagation in FG plates is significant. 
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