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1. Introduction 
 

In the monolayer, laminate or sandwich composite 

structures, the matrix and fibers are always stressed and can 

be damaged, and in addition the interfacial zone represents 

an area of accumulation and concentration of stresses can 

seriously influence the different types of composites 

previously mentioned. To avoid these problems, at the end 

of the 19 th century the Japanese research laboratories 

created the functionally graded materials which have a 

discrete variation across the thickness. Since its 

developments in the 1980s, FGMs are alternative materials 

widely employed in aerospace, nuclear reactor, energy 

sources, biomechanical, optical, civil, automotive, 

electronic, chemical, mechanical, and shipbui lding 

industries (Kar and Panda 2013, Zidi et al. 2014, Ait Amar 

Meziane et al. 2014, Al-Basyouni et al. 2015, Attia et al. 

2015, Kar and Panda 2015a, b, c, d, Taibi et al. 2015, 

Belkorissat et al. 2015, Kar et al. 2016, Kar and Panda 

2016a, b, c, d, e, Ahouel et al. 2016, Boukhari et al. 2016, 

Bounouara et al. 2016, Beldjelili et al. 2016, Kar et al. 2017, 

Kar and Panda 2017, Menasria et al. 2017, Mouffoki et al. 

2017, El-Haina et al. 2017, Fahsi et al. 2017, Abdelaziz et 

al. 2017, Attia et al. 2018). Several researchers have used 

these materials in his research work such as for the 

vibration behavior analysis(Woo et al. 2006, Hu and Zhang 

2011, Reddy 2011, Ruan and Wang 2014, Bellifa et al.  
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2016, Shahsavari et al. 2018), for the buckling analysis 

(Javaheri and Eslami 2002, Kiani et al. 2011, Ghannadpour 

et al. 2012, Ahmed 2014, Mohammadi and Saidi 2010, Kar 

et al. 2017) using the  classical plate theory that neglects 

the transverse shear effect which gives imprecise results for 

thick plates and short beams. For this problem, a new theory 

has been developed by Reissner (1945) and Mindlin (1951) 

which introduces the transverse shear effect. Several works 

have been published for the studies of the free vibration of 

FG plates which are presented in (Chen 2005, Alijani et al. 

2011, Fellah et al. 2013, Zhao et al. 2009, Hosseini 

Hashemi et al. 2010, Hosseini Hashemi et al. 2011, Efraim 

and Eisenberger 2007) using the first shear deformation 

theory (FSDT) which takes into account the transverse 

shear effect in uniform manner across the thickness of the 

plate which necessitates the introductions of a shear 

correction factor. In order to avoid introducing this factor 

each time, Reddy (1984) has developed a high order shear 

deformation theory (HSDT) that automatically satisfies the 

conditions of shear stresses nullity at the top and the bottom 

surfaces of the plate using the warping function. The use of 

this theory for the different behaviours of FG and nano 

structure can be found in (Chen et al. 2009, Jha et al. 2013, 

Akavci 2014, Mantari et al. 2014, Tounsi et al. 2016, 

Houari et al. 2016, Kolahchi et al. 2017a, b, c, 2016a, b, 

Madani et al. 2016, Bellifa et al. 2017a, b, Benadouda et al. 

2017, Kolahchi and Cheraghbak 2017, Kolahchi 2017, 

Hajmohammad et al. 2017, Khetir et al. 2017, Klouche et al. 

2017, Shokravi 2017 a, b, c, Xiang et al. 2013, Meftah et al. 

2017, Xiang and Kang 2014, Mahi et al. 2015, Behravan Ra  

2015, Kolahchi et al. 2015, Aldousari 2017, Hachemi et al. 
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Abstract.  This article present the free vibration analysis of simply supported perfect and imperfect (porous) FG beams using a high order 

trigonometric deformation theory. It is assumed that the material properties of the porous beam vary across the thickness. Unlike other 

theories, the number of unknown is only three. This theory has a parabolic shear deformation distribution across the thickness. So it is 

useless to use the shear correction factors. The Hamilton’s principle will be used herein to determine the equations of motion. Since, the 

beams are simply supported the Navier’s procedure will be retained. To show the precision of this model, several comparisons have been 

made between the present results and those of existing theories in the literature. 
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2017, Bousahla et al. 2014, Bouderba et al. 2013, 2016, 

Fekrar et al. 2012, Bousahla et al. 2016, Draiche et al. 2016, 

Chikh et al. 2017, Besseghier et al. 2017, Bouafia et al. 

2017, Benchohra et al. 2018, Yazid et al. 2018). Since, the 

use of functionally graded materials has attracted a lot of 

attention. Wattanasakulpong et al. (2012) have thought of 

introducing the porosity within the FGMs because of the 

great difference in the temperatures of solidification 

between the two materials during the production process of 

the FGM. Recently, several researchers have studied the 

effect of porosity in functionally graded materials. Ait Yahia 

et al. (2015) have used the various higher-order shear 

deformation plate theories for the studies of wave 

propagation in FG porous plate. Benferhat et al. (2016) 

have studied the effect of porosity on the bending and free 

vibration response of functionally graded plates resting on 

Winkler-Pasternak foundations. Hadji et al. (2015) 

presented a refined exponential shear deformation theory 

for free vibration of FG beam with porosities. Kolahchi and 

Bidgoli (2016) presented size-dependent sinusoidal beam 

model for dynamic instability of single-walled carbon 

nanotubes. Arani and Kolahchi (2016) studied buckling 

response of embedded concrete columns armed with carbon 

nanotubes. Bilouei et al. (2016) discussed the buckling of 

concrete columns retrofitted with Nano-Fiber Reinforced 

Polymer (NFRP).Chen et al. (2016) have studied the free 

and forced vibrations of Timoshenko beams theory with 

non-uniform porosity distribution. The stability of a non-

homogeneous porous plate has been published by Akbas 

(2017). The studies of the bending, the buckling and the 

vibration behaviours of functionally graded beams have 

been published by Fouda et al. (2017) using the finite 

element method. The mechanical response of a FG beams 

resting on elastic foundation under thickness stretching 

effect and porosities has been studied by Ait Atmane et al. 

(2015). A new expression of critical moment of lateral 

buckling for porous and non-porous beams under thermo 

mechanical loads has been provided by Ziane et al. (2017). 

Gupta and Talha (2017) proposed a new mathematical 

model to incorporate the effect of the porosity in the FG 

plate. Zamanian et al. (2017) investigated agglomeration 

effects on the buckling behavior of embedded concrete 

columns reinforced with SiO2 nano-particles. Zarei et al. 

(2017) examined seismic response of underwater fluid-

conveying concrete pipes reinforced with SiO2 

nanoparticles and fiber reinforced polymer (FRP) layer. 

Shokravi (2017d) presented vibration analysis of silica 

nanoparticles-reinforced concrete beams considering 

agglomeration effects. Mehar and Panda (2017) presented 

an experimental, numerical, and simulation study for elastic 

bending and stress analysis of carbon nanotube-reinforced 

composite plate. Mehar et al. (2017a) presented also a 

theoretical and experimental investigation of vibration 

characteristic of carbon nanotube reinforced polymer 

composite structure. Mehar et al. (2017b) provided 

nonlinear thermoelastic frequency analysis of functionally 

graded CNT-reinforced single/doubly curved shallow shell 

panels by FEM. Recently, the stretching effect is also 

included in structural analysis and the scientific literature 

can be consulted for this point (Bessaim et al. 2013, 

Bousahla et al. 2014, Fekrar et al. 2014, Belabed et al. 2014, 

Hebali et al. 2014, Bourada et al. 2015, Hamidi et al. 2015, 

Abualnour et al. 2018). 

In this paper, a new trigonometric high order shear 

deformation theory that takes into account the transverse 

shear effect will be presented for the free vibration analysis 

of imperfect (porous) FG beams. This theory contains only 

three unknowns. The equations of motion are determined 

from the Hamilton’s principle. Using the Navier’s method 

to determine the solutions of the free vibration of FG porous 

beams. A series of results will be presented and compared 

with those found in the literature. 

 

 

2. Theoretical formulation  
 

Consider a solid short porous beam of length L, 

thickness h and width b, made of functionally graded 

materials with the coordinate system as shown in Fig. 1 the 

beam examined occupies the following intervals 

22;22;0 hzhbybLx   (1) 

zyx ,, are Cartesian coordinates. 

 

2.1Effective materials properties of FG porous beams 
 

During the manufacturing of the FG beams, the 

imperfection in the form of the pores occurs in the beam, 

this is due to the temperature of solidification between the 

materials constituting the FG beam (Zhu et al. 2001). For 

this concern Wattanasakulpong and Ungbhakorn (2014) 

have modified the mixing law by considering the porosity 

in the materials. The law mixing of material becomes 
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mc VandV are the volume fractions of ceramic and 

metal, respectively. The volume fraction of ceramic is given 

by 
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Where k is the material index, knowing that the 

material is totally ceramic where )0( k and fully metal 

where )( k .Therefore the properties of an imperfect P-

FGM beam can be given as follow 

 

 

Fig. 1 Geometry of functionally graded beam 

20



 

Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory 

 

   
22

1 
mcm

k

mc PPP
h

z
PPP 








  (4) 

Based on the Eq. (4), the Young modulus )(zE and 

material density )(z of the imperfect FG beam with 

porosity constant through the thickness can be written as 

follows 
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Where )( mc EandE are the Young modulus of ceramic 

and metal, )( mc and  are material density and )( is the 

parameter which takes into account the porosity. 

A further distribution of porosity through the thickness 

was proposed by Wattanasakulpong and Ungbhakorn 

(2014) of such fate, the porosity is maximal at mid-plane of 

the cross section of the beam and tend to zero at the upper 

and lower surfaces of the beam because the material 

infiltration process in the zone is more difficult than 

infiltration in the top and the bottom surface area. The Eqs. 

(5(a)) and (5(b)) can be rewritten in the forms 
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Recently, a new mathematical expression is modeled by 

Gupta and Talha (2017), this expression is obtained with the 

help of the slight modification in the mixing law. The 

effective material properties are given as 
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2.2 The basic assumptions 
 
The basic assumptions considered in this paper are: 

(i) The displacements are small with FG beam thickness 

and therefore, strains involved are infinitesimal. 

(ii) The axial displacement u consist of extension, bending 

and shear components. 

sb uuuu  0
 (8) 

The bending component 
bu is assumed to be similar to 

the displacements given the classical beam theory (Euler 

Bernoulli Beam), therefore 
bu can be expressed by 

x

w
zu b

b



  (9) 

The shear component
su give rise, in conjunction with

sw , 

to the parabolic variations of shear and strain 
xz  and 

hence to the shear stress 
xz through the thickness of the 

beam h in such a way that shear stress 
xz  are zero at the 

top and bottom faces of the beam. Consequently, the 

expression for 
su and 

sv can be given as (Benachour et al. 

2011, Tounsi et al. 2013, Houari et al. 2013, Bennoun et al. 

2016). 
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(iii) The transverse displacement w includes two 

components of bending 
bw and shear

sw . 

  )()(, xwxwzxw sb 
 

(11) 

(iv) The transverse normal 
z is negligible in comparison 

with in-plane stress
x . 

 

2.3 Kinematics and constitutive equations: 
 
Based on the assumptions of the preceding paragraph, 

the field of displacement of the present theory is given as 
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The strains associated with the displacement in Eqs. 

(12(a)) and (12(b)) 
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By assuming that the material elastic of the FG beam, 

the stresses in the beam can be written as 
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Where ),( yzx  and ( , )x xz  are the stresses and strains 

components. 

The Hamilton’s principle is utilised herin to derive the 

three equations of motion appropriate to the displacement 

filed. The principle can be expressed in analytical form as 

(Reddy 1984, Larbi Chaht et al. 2015, Zemri et al. 2015, 

Meradjah et al. 2015, Sekkal et al. 2017a, b, Zidi et al. 2017, 

Meksi et al. 2018, Youcef et al. 2018, Zine et al. 2018, 

Bakhadda et al. 2018, Belabed et al. 2018) 

0 )  (

0
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Where KandU  are the variation of the strain and the 

kinetic energy, respectively.By substitution the Eqs. (18) 

and (19) into Eq. (17). The principle becomes in the 

following form 
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Using Eq. (20) and integrating by parts, collecting the 

coefficients of 
bwu  ,0

and
sw , the equations of motion for 

the perfect porous beam are obtained as follow 
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Where, the stresses result (
xxx QMN ,, and

xzP ) are given 

as 
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And (
222110 ,,,,, KIJJII ) are the masse inertia defined 

as 
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Using the Eqs. (12), (14), (15), (21), (22) and (23), the 

equations of motion can be expressed in term of 

displacements ( bwu ,0 and sw ) as follows 
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Where stiffness coefficients ),,,,,,,( 5544111111111111

sssss AAHDBDBA   

are defined as
 

    dz
zE

zfzzfzfzzHDBDBA

h

h

sss

)1(

)(
)(),(),(,,,1,,,,,

2
22

2/

2/

111111111111


 


 
(25a) 

    dz
zE

zgAA

h

h

ss

)1(2

)(
)(,

2/

2/

2
5544


 


 
(25b) 

 

2.4 Exact solution for FGM beam: 
 
The exact solutions of Eq. (24) for simply supported FG 

beam are derived by using the Navier’s procedure. The 

followings representation for the displacements quantities 

that satisfy the above boundary conditions can be expressed 

as 
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(26) 

Where
mU ,

bmW and 
smW are unknowns functions to be 

determined,   is the frequency of the free vibration of the 

beam, 1i is the imaginary unite and Lm /  . 

Substituting Eq. (26) into Eq. (24), the analytical 

solution for free vibration can be obtained in the form 
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In which 

 

22



 

Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory 

 

 

 

2

55

4

1133

4

1123

4

1122

3

1113

3

1112

2

1111

,,

,,





sss

s

AHkDkDk

BkBkAk





 

)(),(),(

,,

2

2033

2

2023

2

2022

121113011





KImJImIIm

ImJmIm



  

(28) 

 

 

3. Numerical results and discussions 
 
In this part, the free vibration analysis of the simply 

supported perfect and imperfect functionally graded beam 

will be presented. The properties of the materials used in 

this work are summarized in the Table 1, these properties 

vary according to a power law through the thickness of the 

FG beam Eqs. (5)-(7). 

To show the accuracy of the present model, several 

comparisons have been made between the present results 

and those given in the literature (Reddy 1999, Koochaki 

2011, Sina et al. 2009, Ait Atmane et al. 2015).   

For the simplicity, the non-dimensional fundamental 

frequency is defined as 
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The Tables 2-4 present the comparisons of the non-

dimensional fundamental frequencies of simply supported 

homogeneous )0( k functionally graded and FG porous 

beams, respectively. 

 

 

 

 

 

It can be seen from the Table 2 that the results of the 

present theory are in good agreement with those obtained 

by the Euler Bernoulli theory (Reddy 1999), the first and 

third shear deformation theories presented in (Koochaki 

2011) and the high shear deformation theory obtained by 

Ait Atmane et al. (2015) for the free vibration of 

homogeneous beams )0( k . 

From the Table 3, it should be noted that the present 

results are almost identical with those obtained by Sina et al. 

(2009) based on the first shear deformation beam theory 

and Ait Atmane et al. (2015) based on the high shear 

deformation beam theory for functionally graded beams 

with slenderness ratios )and,h/L( 1003010 and material 

index ( 0  0.3)k and . 

The Table 4 present the six first non-dimensional 

frequencies of perfect )0(  and imperfect )0(  simply 

supported beam with )5/( hL and )2.01.0,0( and . It 

can be seen that the increase of the porosity parameter leads  

Table 1 Materials properties 

Materials )(zE (GPa) )/( 3mkg  
 

Alumina )( 32OAl  380 3800  

0.3 Aluminium )(Al  70.1 2700 

Table 2 Comparison of non-dimensional fundamental frequencies )( for homogeneous beams 

L/h  
ETB 

(Reddy 1999) 

FSDBT 

(Koochaki 2011) 

PSDBT 

(Koochaki 2011) 

HSDBT 

(Ait Atmane et al. 2015) 
Présent 

0.01 2.985526 2.986137 2.9861380 2.9861344 2.9861350 

0.0125 2.985232 2.985827 2.9858280 2.9858287 2.9858296 

0.0142 2.984340 2.985556 2.9855680 2.9855821 2.9855833 

0.0166 2.984865 2.985155 2.9851680 2.9851807 2.9851823 

0.02 2.983701 2.984505 2.9845054 2.9845054 2.9845078 

0.025 2.982588 2.983285 2.9832858 2.9832858 2.9832896 

0.033 2.979668 2.980657 2.9806572 2.9807765 2.9807832 

0.04 2.976570 2.978020 2.9780220 2.9780222 2.9780320 

0.05 2.971688 2.973193 2.9731941 2.9731941 2.9732093 

0.066 2.962858 2.962858 2.9628610 2.9633287 2.9633551 

0.1 2.931568 2.934044 2.9340570 2.9340576 2.9341179 

Table 3 Non-dimensional fundamental frequencies )(

for FG beams 

hL /  k  
Ait Atmane 

et al. (2015) 

Sina et al. 

(2009) 
Present 

10 
0 2.879551 2.879 2.879604 

0.3 2.774811 2.774 2.774963 

30 
0 2.922108 2.922 2.922114 

0.3 2.813328 2.813 2.813345 

100 
0 2.927100 2.927 2.927101 

0.3 2.817838 2.817 2.817840 
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Table 4 Six first Non-dimensional frequencies )( of FG beams with (L/h=5)
 

k    Theories 
1  2  3  4  5  6  

0.5 0.0 Ait Atmane et al. (2015) 2.652071106 9.227581431 17.69478543 26.95936800 36.56997080 46.35346951 

Present 2.651404520 9.222989702 17.68927744 26.96711644 36.61350562 46.46069916 

0.1 Ait Atmane et al. (2015) 2.629935615 9.163948853 17.59574226 26.83563397 36.43006594 46.20291888 

Present 2.629095059 9.157756657 17.58597937 26.83628014 36.46414042 46.29905062 

0.2 Ait Atmane et al. (2015) 2.601215142 9.080767423 17.46517379 26.67110200 36.24244879 45.99940418 

Present 2.600145287 9.072433633 17.44962742 26.66195061 36.26329319 46.07982094 

1.0 0.0 Ait Atmane et al. (2015) 2.581070224 8.998837152 17.29734773 26.41699106 35.91550139 45.61898733 

Present 2.579605128 8.987361174 17.27512611 26.40026499 35.93249080 45.70457565 

0.1 Ait Atmane et al. (2015) 2.527515127 8.838878481 17.03790125 26.08073189 35.52391636 45.18878939 

Present 2.525680432 8.823840712 17.00575143 26.04673934 35.51719093 45.24609360 

0.2 Ait Atmane et al. (2015) 2.450084220 8.604783550 16.65295765 25.57471517 34.92630325 44.52326210 

Present 2.447754961 8.584757926 16.60621160 25.51405359 34.88101624 44.53195045 

2.0 0.0 Ait Atmane et al. (2015) 2.586406159 8.950808821 17.11088871 26.04796748 35.35579761 44.88145525 

Present 2.584168457 8.933596473 17.07699261 26.01796437 35.36484062 44.97218788 

0.1 Ait Atmane et al. (2015) 2.487791307 8.651090665 16.61507660 25.39454980 34.58585936 44.03039853 

Present 2.484992536 8.628516661 16.56633880 25.33899122 34.56054326 44.08187906 

0.2 Ait Atmane et al. (2015) 2.316541140 8.123771581 15.72853020 24.20495086 33.15759214 42.42204192 

Present 2.313031197 8.093515694 15.65577683 24.10268919 33.06068680 42.37831636 

5.0 0.0 Ait Atmane et al. (2015) 2.792915979 9.395559685 17.55065355 26.27845939 35.25569424 44.39249113 

Present 2.790094096 9.375602079 17.51329197 26.24542352 35.26170671 44.47932333 

0.1 Ait Atmane et al. (2015) 2.694743432 9.069598562 16.96555175 25.44949237 34.21042237 43.15861543 

Present 2.690906635 9.041849564 16.91007416 25.38909982 34.18331811 43.21092956 

0.2 Ait Atmane et al. (2015) 2.450980911 8.307099364 15.65914662 23.66287326 32.02232974 40.64091433 

Present 2.445861574 8.268602520 15.57640692 23.55803999 31.93785016 40.63019776 

Table 5 Six first Non-dimensional frequencies )( of FG beams with (L/h=5)
 

k    1  2  
3  4  5  6  

0.5 0.0 2.651404520 9.222989702 17.68927744 26.96711644 36.61350562 46.46069916 

0.1 2.667088064 9.253060483 17.70899929 26.95740885 36.56438287 46.36845834 

0.2 2.682673156 9.281584724 17.72448224 26.94035708 36.50481699 46.26284334 

1.0 0.0 2.579605128 8.987361175 17.27512611 26.40026499 35.93249080 45.70457566 

0.1 2.589269446 8.996280576 17.25541147 26.33373509 35.81165400 45.52861876 

0.2 2.597958420 9.000615766 17.22589725 26.25191828 35.67032521 45.32741930 

2.0 0.0 2.584168457 8.933596473 17.07699261 26.01796437 35.36484062 44.97218788 

0.1 2.585363734 8.904969901 16.97747800 25.82646471 35.07609009 44.58961471 

0.2 2.582516521 8.860779895 16.84776401 25.59022945 34.72921746 44.13687388 

5.0 0.0 2.790094096 9.375602079 17.51329197 26.24542352 35.26170671 44.47932333 

0.1 2.801594643 9.318458500 17.28043907 25.78004975 34.54435672 43.51131978 

0.2 2.803080159 9.207152348 16.92776350 25.12350439 33.56558474 42.21534677 
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to decrease in the non-dimensional frequency and this is 

due to the decrease of the stiffness of the beam. 

Table 5 shows the effect of the porosity and the material 

index on the first six non-dimensional natural frequencies 

for perfect and imperfect FG beams using the new porosity 

distribution (FGM-III), it can be seen that the 6th mode 

gives the highest non-dimensional frequencies. 

In the Figs. 2-5, we study the influence of the different 

geometric and materials parameters on the dynamic 

response  of the perfect and imperfect FG beams. 

Fig. 2 shows the non-dimensional fundamental 

frequency as a function of the slenderness ratio for a non-

porous (perfect) functionally graded beam using the 

proposed theory. The results are in good agreement with 

those obtained in the literature (Ait Atmane et al. 2015).  

According to the obtained results, it can be seen that the 

increase of the index power )(k makes the beam flexible. 

In addition, the fundamental frequency increases with the 

increase of the slenderness ratio )/( hL . However, it is also 

observed that for the slender beam, the frequencies remains 

constant, this is due to the effect of shear which negligible 

in this case. 
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Fig. 2 Variation of the non-dimensional 

fundamentalfrequencies )/)(/(ˆ( 2

mm EhL   of the FG 

beams with the slenderness )/( hL for different values of 

the material index 
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Fig. 3 Variation of the non-dimensional fundamental 

frequencies of the FG beams )1( k with the slenderness 

for different values of the porosity parameter (FGM-I) 
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Fig. 4 Variation of the non-dimensional fundamental 

frequencies of the FG beams )1( k with the slenderness 

for different values of the porosity parameter (FGM- II) 
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Fig. 5 The variation of the non-dimensional natural 

frequency with the material index )(k  using the three 

solutions (FGM-I, FGM-II and FGM-III) 

 

 

The Fig. 5 illustrate the variation of the non-dimensional 

fundamental frequency as a function of the material index 

)(k of the three types of the porosity distribution in the 

FGM (FGM-I, FGM-II and FGM-III) 

with )5/( andhL   . It can be seen from the obtained 

results that the frequencies increase with the increase of the 

material index )(k  when the letter takes values greater than 

2. It can be observed that the results obtained using the 

(FGM-II) gives a high frequencies compared with those 

obtained using (FGM-I). However, it is remarkable that the 

solution III gives values of non-dimensional frequencies 

identical to those determined using solution II (FGM-II). 

Fig. 6 present the variation of the Young’s modulus 

through the thickness of the beam for different values of 

material index )k( . It can be seen that the increase of the 

material index reduce the value of the Young’s modulus and 

consequently the beam tends to be entirely metallic. It can 

be also noted that the solutions II and III gives almost the 

same results. 
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Fig. 6 The variation of the Young's modulus through the 

thickness for different values of the material index 

)(k with 3.0  
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Fig. 7 The variation of the Young's modulus across the 

thickness for different values of porosity 

)( with 3.0k  

 

 

The Fig. 7 shows the effect of the porosity on the 

Young’s modulus. It should be noted that the porosity 

reduce the Young’s modulus in particular in the central zone 

of the beam. Again, it can be noted that the results obtained 

using solutions II and III are almost identical. 

 

 

4. Conclusions 
 

In the present research, the high order trigonometric 

deformation beams theory was used for the free vibration 

analysis of perfect and imperfect (porous) functionally 

graded beams with different distribution of porosity across 

the thickness. The theory does not require the shear 

correction factor and ensures the nullity of the shear stresses 

at the top and the bottom surface of the beam. The 

equations of motion are solved using the Navier’s procedure. 

The impact of several parameters influencing the 

fundamental frequency such as power law exponent, 

geometry ratios and the different types of porosity 

distribution are purposed and discussed in detail. 
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