
Wind and Structures, Vol. 27, No. 6 (2018) 431-438 

DOI: https://doi.org/10.12989/was.2018.27.6.431                                                                  431 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.com/journals/was&subpage=7                                     ISSN: 1226-6116 (Print), 1598-6225 (Online) 

 

1. Introduction 
 

In some applications the experiments show that size 

effects play an important role in mechanical properties 

(Chong et al. 2001). Thus, avoiding these effects may 

results incompletely hence wrong designs and incorrect 

solutions. The size effect is not considered in the classical 

continuum theories Thus; this theory does not fit the micro 

and nano scale devices. So we are looking for theories that 

consider the small scale effects.  

The nonlocal elasticity theory assumes that the stress 

state at a reference point is a function of the strain at all 

neighbor points of the body. Hence, this theory could take 

into consideration the effects of small scales. Lots of studies 

have been performed to investigate the size-dependent 

response of structural systems based on Eringen’s nonlocal 

elasticity theory (Ebrahimi and Salari 2015a, b, 2016, 

Ebrahimi et al. 2015a, 2016c, Ebrahimi and Nasirzadeh 

2015, Ebrahimi and Barati 2016 a, b, c, d, e, f, Ebrahimi 

and Hosseini 2016 a, b, c). One of the non-classical theories 

that consider the size effects is couple stress theory. Toupin 

(1962) investigated couple stress theory including higher 

order rotation gradients, which is in fact the asymmetric 

part of the deformation gradient. According to this theory, it 

includes four material constants (two classical and two 

additional) for isotropic elastic materials. As an example of 

this theory, Asghari et al. (2011) presented the size effects 

in Timoshenko beams based on the couple stress theory. It 

is mention that, it is difficult to determining the 

microstructure related length scale parameters. So, we're 

looking for the continuum theory that involves only one 

additional material length scale parameter. Modified couple  

                                           

Corresponding author, Professor 

E-mail: febrahimy@gmail.com 

 

 

stress theory is one of the best and most well-known 

continuum mechanics theories that include small scale 

effects with good accuracy in micro scale devices. Yang et 

al. (2002) presented a modified couple stress theory, in 

which the couple stress tensor is symmetric and only one 

internal material length scale parameter is involved, unlike 

classical couple stress theory mentioned above. Many 

researchers have used this theory to examine the dynamic 

and static behavior of microbeams and microplates (Reddy 

2011, Shaat et al. 2014).  

Due to providing many advantages and superior 

properties including high temperature resistance and high 

strength, functionally graded materials have the particular 

importance in modeling. Also, FGMs are a new class of 

composite materials, that broadly have been spread out into 

micro/nano scale devices and systems such as cantilever 

atomic force microscopes (AFMs cantilever) (Rahaeifard et 

al. 2009), mechanical systems at nano and micro scale (Lee 

et al. 2006) and the shape memory alloy fields (Witvrouw 

and Mehta 2005), to achieve desired performance and high 

sensitivity. Also, the effect of various boundary conditions 

on vibration and buckling characteristics of plates has been 

examined in recent works (Abdelaziz et al. 2017), also, 

current nanostructure can be used in smart systems (Sadeghi 

et al. 2017, Khanade et al. 2017).  

Natarajan (2012) presents a brief overview of FG 

materials, based on Eringen’s nonlocal elasticity and 

Reissner–Mindlin plate for application of nonlocal elasticity 

theory. Other papers presented the size-dependent vibration 

and static behavior of micro-beams made of functionally 

graded materials which are analytically investigated on the 

basis of the modified couple stress theory (Asghari et al. 

2010). Nanomachines are of great importance in the study 

of nanotechnology. For example, in applications such as 

DNA nanomachines, programmable chemical synthesis and 

targeted drug delivery can be clearly observed the 

importance of nanomachines (Chen et al. 2012). Many 
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researchers Earmark their studies to design nanostructures 

correctly. For example, design a nanotube which can be 

driven by fluid flow (Li et al. 2014). In addition, this 

material can be used in electrical devices such as those 

mentioned in Ref (Vafamehr et al. 2017) 

Recently nanoscale simulations and experimental 

measurements showed that increasing the surface to volume 

ratio effects on mechanical properties. Hence for nanoscale 

structures and materials due to the high surface to volume 

ratio the surface effects play an important role in their 

Mechanical properties. In classical mechanics due to lower 

surface energy than volume energy, surface energy is not 

considered. The surface elasticity theory that considered 

surface energy on the mechanical properties was presented 

by Gurtin et al. (1975, 1998). They proposed the theory by 

modeling the surface by a two dimensional membrane 

adhering to the underlying bulk material without slipping. 

Also, the thermal effect on mechanical characteristics of FG 

structures have been investigated in recent researches 

(Bouderba et al. 2013). Wang and Feng (2007) investigated 

effects of both surface elasticity and residual surface tension 

on the natural frequency of microbeams. Yan and Jiang 

(2011) studied the influence of surface effects, including 

residual surface stress, surface elasticity and surface 

piezoelectricity, on the vibrational and buckling behaviors 

of piezoelectric nanobeams by using the Euler–Bernoulli 

beam theory. The natural frequency of nanotubes with 

consideration of surface effects has been presented using 

the nonlocal Timoshenko beam theory (Lei 2012). The 

boundary conditions and governing equations for the free 

vibration of nonlocal Timoshenko beams are derived via 

Hamiltonian’s principle. Recently various refined and 

higher-order shear deformation theories have been 

introduced for analysis of FG structures by researchers 

(Abdelhak et al. 2016). Most recently various nonlocal 

zeroth-order, trigonometric and refined shear deformation 

theories have been introduced for the analysis of 

micro/nanostructures by researchers (Bouafia et al. 2017) 

It is worth mentioning, none of the previous works have 

considered surface effects on the FG nanobeam using 

modified couple stress theory. The purpose of this paper is 

to propose a comprehensive analytical model for analysis 

the linear free vibration of FG-nanoscale Euler–Bernoulli 

beam using modified couple stress theory and considering 

the surface effects including surface density, surface 

elasticity and surface tension, also equation has developed 

by principle of minimum potential energy. The material for 

this work is functionally graded material and assuming that 

the bottom surface is aluminum and the top surface is 

silicon according to power law distribution. The results 

show, the vibration behavior of nanobeams is significantly 

influenced by surface density, surface tension and surface 

elasticity. Also it is shown that by increasing the beam size, 

influence of surface effects reduce to zero, and the natural 

frequency tends to its classical value. 

 

 

2. Theory and formulation 
 

2.1 Numerical simulation procedure 

Fig. 1 shows an FG nanobeam of length L, thickness h, 

and width b. At the top and the bottom surfaces, the FG 

nanobeam is generally composed of two different materials. 

According to the power law distribution, bulk elastic 

modulus E (z), mass density (z), surface elastic 

modulus , and residual surface stresss (z) are assumed 

to be along the thickness direction. Volume fraction index n 

determines the variation profile of material properties 

across the FG nanobeam thickness and the superscripts 

 denote the top surface and the bottom surface, 

respectively. Assuming that the top surface (at z= h/2) is 

metal and the bottom surface (at z=h/2) is functionally 

graded nanobeam ceramic, and for different values of n, the 

mechanical properties and surface elastic properties can be 

obtain by Eq (1). 
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Also, the linear constitutive equations are in the 

following form 
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 (2) 

where
ijE  is represent elastic matrices. Because there is no 

slipping between upper and lower layers and the underlying 

material, the displacement in the whole of the beam is 

united. In an Euler–Bernoulli beam model, the 

displacements of an arbitrary point along the x- and z-axes 

are denoted by (x, z, t) and (x, z, t), respectively, So, 

we have 
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where t is time,  ,u x t and  ,w x t  are the axial and the 

transverse displacements of any point on the midplane. 

According to Euler–Bernoulli beam theory, the only 

nonzero strain is given by 
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(4) 
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Fig. 1 Mesh grid of topographic model 

 

 

Considering the relevant bulk stress–strain relation of 

functionally graded nanobeam and neglecting any residual 

stresses in the bulk due to surface stress also, assuming 

constant piezoelectric properties, the stress can be written as 

( ) ( )xx xxE z zz   

 

(5) 

The surface constitutive equation can be written as 

(Gurtin and Murdoch 1978) 
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(6) 

The stresses of the upper and lower surface layers must 

satisfy the following equilibrium relations 
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

and i


 are the upper and lower surface stresses 

of the FG nanobeam, respectively.(  are the bulk 

stresses at z=  .  and  are the 

displacements of surface layers along the i-direction at 

z= , respectively. In Eq. (7),   and  

 .The following equations can be obtained by 

substituting Eq. (6) into Eq. (7) 
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(8) 

The bulk stress component  is assumed to be zero in 

classical beam theory. However, the Eq. (8) must be true in 

the surface equilibrium equations of Gurtin–Murdoch 

model (Gurtin and Murdoch 1978). For satisfying the 

surface equilibrium equations Lu et al. (2006) assumed a 

linear distribution for the bulk stress component, . Also, 

we assumed that the bulk stress component,  varies 

cubically through the beam thickness and its derivative 

about z besides the two surfaces are assumed to be zero, i.e., 

=0 at z = h/2 (Lü et al. 2009). So, we have 
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(10) 

On the upper and lower surface of the functionally 

graded nanobeam the surface stresses is specified by the 

Laplace–Young equation (Chen et al. 2006). So, the 

distributed loading on the upper and lower surfaces are as 

follows 
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Thus, the superposition of upper and lower surface 

stresses can be implemented by an effective transverse 

distributed loading into the functionally graded nanobeam 

along the longitudinal direction p(x) in the following form 
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2.2 Modified couple stress theory 
 
Yang et al. (200) has represented the modified couple 

stress theory in which the strain energy density is a function 

of both strain tensor and gradient of the rotation vector. 

These tensors are specified by two classical material 

constants for isotropic linear elastic materials and one 

independent material length scale parameter. The stored 

strain energy U is given by 

1
( )

2

s s

ij ij ij ij

V

U m dV     (13) 

In which 

 

, ,

, ,

2

1
( )

2

1
( )

2

1
( )

2

2

( )
( )

2(1 ( ))

ij i j j i

s

ij i j j i

i i

s

ij ij

u u

curl u

m l

E z
z

z



  



 




 

 








 
(14) 

433



 

Farzad Ebrahimi and Hamed Safarpour 

in which  and  are the classical strain and symmetric 

rotation gradient tensors, respectively. Also  is the 

infinitesimal rotation vector and  is material length scale 

parameter. For the equation of the motion, the Hamilton 

principle states that (Tauchert 1974) 
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Where
xym ,b, M and I are the deviatory symmetric part 

of the couple stress tensor, the beam width, moment 

resultant and mass moment inertia respectively which are 

given by 
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The local bending moment are given by 

2
/2

2

2 /2
( )

h

xy
h

w
Y bl z dz

x





 

   (23) 

 

1 2
20 0 3

22

0 0

2

1 2
0 03 2

3 2
( )

2
( )

( ) ( )
4

3 2
( )( ) ( )

2

S

xx

S S

bZ bZ
bC C

wh h
M

xbh
E E

bZ bZ w

h h t

 

 

 

 

   

 

 
     
 

 
    

  
    

 

 
(24) 

where parameters are used in Eq. (24) are given by 
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So governing equation of FG nanobeam with 

considering surface effects is given by 
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3. Solution procedure 
 

In this section on the basis of Navier procedure the 

governing equations of FG nanobeam are solved. In order to 

solve the governing equation of FG nanobeam and simply 

supported boundary condition, the Navier procedure is used 

by assuming the substitutions as follows 

 
1 1

( , ) sin ( ) i t

m

m n

n
w x t W x e

L

 

 

 
  

 
  (28) 

where n is the axial wave numbers. By substituting Eq. (28) 

into Eq. (26) the motion equations are written as a matrix 

form as bellow 

     2 0k M d   (29) 

where  is natural frequency of FG nanobeam and 

   md W is displacement amplitude vector. In Eq. (29) 

[M] is the mass matrix, also [k] is stiffness matrix. By 

setting the determinant of the coefficient matrix to zero, we 

can find the natural frequencies . 

     2 0k M d   (30) 

 

 

4. Result and desiccation 
 
Results are presented by two sections, the first one 

presents a validation of the proposed model with previous 

literatures. The second section shows influence of surface 

effect on each case. Also influence of each surface effects 

and length scale parameter on frequencies ratio will be 

discussed. 

 
4.1 Validation 
 
For result's verification of this work, Table 1 give a 

comparison of results for nondimensional frequency, Ψ, of 

simply supported nanobeam between the presented results 

with those obtained by Nateghi (2013). According to the 

Fig. 2, it is revealed that the proposed modeling can provide 

good accurate natural frequency results of the FG nanobeam 

as compared to the Nateghi (2013). 

 

 

 

Table1 Comparison of results for natural frequencies (MHz) 

of simply supported nanobeam 

Nondimensional 

scale parameter (h/l) 
Present study Nateghi (2013) 

1 4.067040 4.067115 

2 1.437997 1.430808 

3 0.713966 0.713938 

4 0.508455 0.508795 

5 0.381126 0.381106 

10 0.179607 0.179655 
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Fig. 1 Comparison of the natural frequency of FG 

microbeam with the results obtained by kong et al. 

(2008) 

 

 

Table 2 Material and surface elastic properties of FGM 

constituents 

 

 

4.2 Parametric result 
 
The material for this paper is functionally graded 

material and it is assumed that the bottom surface is 

aluminum and the top surface is silicon. Volume fraction 

index (n) determines the variation profile of the material 

properties across the rotary FG nanobeam thickness. For the 

particular case (n=0) the material is not FG and certainly 

the material is the absolute metal. The material properties 

and surface elastic properties are given in Table 2. In 

addition, the geometry dimensions of nanobeam are 

assumed as: b (width) =0.2L nm and h (thickness) = 0.2L. 

Also the frequency ratio is given by following term 

 

 

(31) 

 

 

4.2.1 Subtitle surface elasticity: 
Fig. 2 shows the frequency ratio with respect to the 

length of a simply supported nanobeam for different values 

of material length scale parameter. It is observed that, by 

increasing the length the frequency ratio tends to decrease 

for different values of material length scale parameter. Also   

Fig. 2 shows, when the frequency ratio tend to decrease, 

this parameter converge to a constant value, and the natural 

Properties or surface 

elastic properties 
Unit Aluminum Silicon 

 GPA 70 210 

 
Kg/  2700 2370 

  0.3 0.24 

 N/m 5.1882 -10.6543 

 
Kg/  5.46*10-7 3.17*10-7 

 N/m 0.9108 0.6048 
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frequency reaches its classical value. It is noted that, by 

increasing material length parameter, the frequency ratio 

tend to decrease. In addition, as it is shown in Fig. 2 the 

effect of this parameter is less than the other parameters, 

because among all of them this case has the biggest 

frequency ratio.  

 

4.2.2 Surface density 
Fig. 3 shows the frequency ratio with respect to the 

length of a simply supported nanobeam for different values 

of material length scale parameter. It is observed that, by 

increasing the length the frequency ratio tends to decrease 

for different values of material length scale parameter. Also, 

by increasing material length parameter, the frequency ratio 

tends to decrease. 
 
4.2.3 Surface tension 
Surface tension has opposite effects in compare with 

other, this parameter increases the amount of natural 

frequency versus the length of nanobeam. By increasing the 

beam length, the frequency ratio tends to increase. Also, 

when the frequency ratio tends to decrease, this parameter 

converges to a constant value, and the natural frequency 

reaches its classical value. 

 

 

Fig. 2 Variation of natural fundamental frequency ratio 

versus length of nanobeam by considering Surface 

elasticity and N=1 

 

 

 

Fig. 3 Variation of natural fundamental frequency ratio 

versus length of nanobeam by considering Surface 

density and N=1 

 

 

Fig. 4 Variation of natural fundamental frequency ratio 

versus length of nanobeam by considering surface 

tension and N=1density and N=1 

 

 

4.2.4 Surface tension and elasticity 
Fig. 5 shows the frequency ratio with respect to the 

length of a simply supported nanobeam for different values 

of material length scale parameter. It is observed that, by 

increasing the length the frequency ratio tends to increase 

for different values of material length scale parameter. Also, 

by increasing material length parameter, the frequency ratio 

tend to decrease. 

 

4.2.5 Surface density and elasticity: 
Considering two parameters among these three surface 

parameters will cause different behavior in natural 

frequencies. Assuming both surface density and elasticity 

which has opposite effects on natural frequency reduces the 

amount of frequency by increasing the nanobeam. 

According to Fig. 6 the frequency ratio will also decrease 

by increasing the size of beam. 

 

4.2.6 Surface density and tension: 
Fig. 7 shows the frequency ratio with respect to the 

length of a simply supported nanobeam for different values 

of material length scale parameter. It is observed that, by 

increasing the length the frequency ratio tends to increase 

for different values of material length scale parameter. Also, 

by increasing material length parameter, the frequency ratio 

tends to increase. 

 

 

Fig. 5 Variation of natural fundamental frequency ratio 

versus length of nanobeam by considering both surface 

elasticity and tension and N=1 
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Fig. 6 Variation of natural fundamental frequency ratio 

versus length of nanobeam by considering both Surface 

elasticity and density and N=1 

 

 

 

Fig. 7 Variation of natural fundamental frequency ratio 

versus length of nanobeam by considering both Surface 

density and elasticity and N=1 

 

 

5. Conclusions 
 

This paper presents the free vibration analysis of 

functionally graded simply-supported nanobeam modeled 

by considering all surface effect. Modified couple stress 

theory introduces the size-dependent effect. The frequency 

ratio of a nanobeam in each case is investigated with respect 

to the length of nanobeam for different material length scale 

parameter of FG nanobeam. The obtained results show that, 

the surface elasticity, surface density and surface tension 

play important roles on the natural frequency ratio.  

 

 

References 
 

Abdelhak, Z., Hadji, L., Khelifa, Z., Hassaine, D. and Adda Bedia, 

E.A. (2016), “Analysis of buckling response of functionally 

graded sandwich plates using a refined shear deformation 

theory”, Wind Struct., 22(3), 130-141. 

Abdelaziz et al. (2017), “An efficient hyperbolic shear 

deformation theory for bending, buckling and free vibration of 

FGM sandwich plates with various boundary conditions”, Steel 

Compos. Struct., 25(6), 693-704.  

Asghari, M. et al. (2011), “Investigation of the size effects in 

Timoshenko beams based on the couple stress theory”, Arch. 

Appl. Mech., 81(7), 863-874. 

Bouderba, B. et al. (2013), “Thermomechanical bending response 

of FGM thick plates resting on Winkler–Pasternak elastic 

foundations”, Steel Compos. Struct., 14(1), 85-104.  

Chen, L. et al. (2012), “Engineering controllable bidirectional 

molecular motors based on myosin”, Nat. Nano, 7(4), 252-256. 

Chen, T., Chiu, M.S. and Weng, C.N. (2006), “Derivation of the 

generalized Young-Laplace equation of curved interfaces in 

nanoscaled solids”, J. Appl. Phys., 100(7), 074308. 

Chong, A. et al. (2001), “Torsion and bending of micron-scaled 

structures”, J. Mater. Res., 16(4), 1052-1058. 

Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and 

Shaghaghi, G.R. (2015), “Application of the differential 

transformation method for nonlocal vibration analysis of 

functionally graded nanobeams”, J. Mech. Sci. Tech., 29, 1207-

1215. 

Ebrahimi, F. and Salari, E. (2015a), “Size-dependent thermo-

electrical buckling analysis of functionally graded piezoelectric 

nanobeams”, Smart Mater. Struct., 24(12), 125007, 2015 

Ebrahimi, F. and Salari, E. (2015b), “Nonlocal thermo-mechanical 

vibration analysis of functionally graded nanobeams in thermal 

environment”, Acta Astronautica, 113, 29-50. 

Ebrahimi, F. and Salari, E. (2015c), “Size-dependent free flexural 

vibrational behavior of functionally graded nanobeams using 

semi-analytical differential transform method”, Compos. B, 79, 

156-169. 

Ebrahimi, F. and Salari, E. (2015d), “A semi-analytical method for 

vibrational and buckling analysis of functionally graded 

nanobeams considering the physical neutral axis position”, 

Comput. Model. Eng. Sci., 105, 151-181. 

Ebrahimi, F. and Salari, E. (2015e), “Thermal buckling and free 

vibration analysis of size dependent Timoshenko FG nanobeams 

in thermal environments”, Compos. Struct., 128, 363-380. 

Ebrahimi, F. and Salari, E. (2015f), “Thermo-mechanical vibration 

analysis of nonlocal temperature-dependent FG nanobeams with 

various boundary conditions”, Compos. B, 78, 272-290. 

Ebrahimi, F. and Salari, E. (2016), “Effect of various thermal 

loadings on buckling and vibrational characteristics of nonlocal 

temperature-dependent functionally graded nanobeams”, Mech. 

Adv. Mater. Struct., 23(12), 1379-1397. 

Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), 

“Thermomechanical vibration behavior of FG nanobeams 

subjected to linear and non-linear temperature distributions”, J. 

Therm. Stresses, 38(12), 1360-1386. 

Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016), “In-plane 

thermal loading effects on vibrational characteristics of 

functionally graded nanobeams”, Meccanica, 51(4), 951-977. 

Ebrahimi, F. and Barati, M.R. (2016a), “Magneto-electro-elastic 

buckling analysis of nonlocal curved nanobeams”, Eur. Phys. J. 

Plus, 131(9), 346.  

Ebrahimi, F. and Barati, M.R. (2016b), “Static stability analysis of 

smart magneto-electro-elastic heterogeneous nanoplates 

embedded in an elastic medium based on a four-variable refined 

plate theory”, Smart Mater. Struct., 25(10), 105014. 

Ebrahimi, F. and Barati, M.R. (2016c), “Temperature distribution 

effects on buckling behavior of smart heterogeneous nanosize 

plates based on nonlocal four-variable refined plate theory”, Int. 

J. Smart Nano Mater., 1-25. 

Ebrahimi, F. and Barati, M.R. (2016d), “An exact solution for 

buckling analysis of embedded piezoelectro-magnetically 

actuated nanoscale beams”, Adv. Nano Res., 4(2), 65-84. 

Ebrahimi, F. and Barati, M.R. (2016e), “Buckling analysis of 

smart size-dependent higher order magneto-electro-thermo-

437

mailto:febrahimy@eng.ikiu.ac.ir


 

Farzad Ebrahimi and Hamed Safarpour 

elastic functionally graded nanosize beams”, J. Mech., 1-11. 

Ebrahimi, F. and Barati, M.R. (2016f), “A nonlocal higher-order 

shear deformation beam theory for vibration analysis of size-

dependent functionally graded nanobeams”, Arabian J. Sci. 

Eng., 41(5), 1679-1690. 

Ebrahimi, F. and Hosseini, S.H.S. (2016a), “Double nanoplate-

based NEMS under hydrostatic and electrostatic actuations”, 

Eur. Phys. J. Plus, 131(5), 1-19. 

Ebrahimi, F. and Hosseini, S.H.S. (2016b), “Nonlinear 

electroelastic vibration analysis of NEMS consisting of double-

viscoelastic nanoplates”, Appl. Phys. A, 122(10), 922. 

Ebrahimi, F. and Hosseini, S.H.S. (2016c), “Thermal effects on 

nonlinear vibration behavior of viscoelastic nanosize plates”, J. 

Therm. Stresses, 39(5), 606-625. 

Ebrahimi, F. and Nasirzadeh, P. (2015), “A nonlocal Timoshenko 

beam theory for vibration analysis of thick nanobeams using 

differential transform method”, J. Theor. Appl. Mech., 53(4), 

1041-1052. 

Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), “Free 

vibration analysis of functionally graded size dependent 

nanobeams”, Appl. Math. Comput., 218(14), 7406-7420. 

Gurtin, M.E. and Murdoch, A.I. (1975), “A continuum theory of 

elastic material surfaces”, Arch. Ration. Mech. An., 57(4), 291-

323. 

Gurtin, M.E. and Murdoch, A.I. (1978), “Surface stress in solids”, 

Int. J. Solids Struct., 14(6), 431-440. 

Gurtin, M.E., Weissmüller, J. and Larche, F. (1998), “A general 

theory of curved deformable interfaces in solids at equilibrium”, 

Philos. Magazine A, 78(5), 1093-1109. 

Khanade K., Sasangohar, F., Sadeghi, M., Sutherland, S. and 

Alexander, K. (2015), “Deriving information requirements for a 

smart nursing system for intensive care units”, Proceedings of 

the Human Factors and Ergonomics Society Annual Meeting. 

Kong, S. et al. (2008), “The size-dependent natural frequency of 

Bernoulli–Euler micro-beams”, Int. J. Eng. Sci., 46(5), 427-

437. 

Lee, Z. et al. (2006), “Metallic NEMS components fabricated 

from nanocomposite Al–Mo films”, Nanotechnology, 17(12), 

3063. 

Lei, X.W. et al. (2012), “Surface effects on the vibrational 

frequency of double-walled carbon nanotubes using the 

nonlocal Timoshenko beam model”, Compos. Part B: Eng., 

43(1), 64-69. 

Li, J. et al. (2014), “Rotation motion of designed nano-turbine”, 

Sci. Rep., 4. 

Lu, P. et al. (2006), “Dynamic properties of flexural beams using a 

nonlocal elasticity model”, J. Appl. Phys., 2006. 99(7). 

Lü, C., Lim, C.W. and Chen, W. (2009), “Size-dependent elastic 

behavior of FGM ultra-thin films based on generalized refined 

theory”, Int. J. Solids Struct., 46(5), 1176-1185. 

Natarajan, S. et al. (2012), “Size-dependent free flexural vibration 

behavior of functionally graded nanoplates”, Comput. Mater. 

Sci., 65, 74-80. 

Nateghi, A. and Salamat-talab, M. (2013), “Thermal effect on size 

dependent behavior of functionally graded microbeams based 

on modified couple stress theory”, Compos. Struct., 96, 97-110. 

Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2009), 

“Sensitivity analysis of atomic force microscope cantilever 

made of functionally graded materials”, Proceedings of the 

ASME 2009 international design engineering technical 

conferences and computers and information in engineering 

conference, American Society of Mechanical Engineers. 

Reddy, J. (2011), “Microstructure-dependent couple stress theories 

of functionally graded beams”, J. Mech. Phys. Solids, 59(11), 

2382-2399. 

Sadeghi M., Thomassie, R. and Sasangohar, F. (2017), “Objective 

assessment of functional information requirements for patient 

portals”, Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting. 

Shaat, M. et al. (2014), “Size-dependent bending analysis of 

Kirchhoff nano-plates based on a modified couple-stress theory 

including surface effects”, Int. J. Mech. Sci., 79, 31-37. 

Tauchert, T.R. (1974), Energy principles in structural mechanics, 

McGraw-Hill Companies. 

Toupin, R.A. (1962), “Elastic materials with couple-stresses”, 

Arch. Ration. Mech. An., 11(1), 385-414. 

Vafamehr, A. et al. (2017), “A framework for expansion planning 

of data centers in electricity and data networks under 

uncertainty”, IEEE T. Smart Grid. 

Wang, G.F. and Feng, X.Q. (2007), “Effects of surface elasticity 

and residual surface tension on the natural frequency of 

microbeams”, Appl. Phys. Lett., 90(23), 231904. 

Witvrouw, A. and Mehta, A. (2005), The use of functionally 

graded poly-SiGe layers for MEMS applications. in Materials 

science forum, Trans Tech Publ. 

Yang, F. et al. (2002), “Couple stress based strain gradient theory 

for elasticity”, Int. J. Solids Struct., 39(10), 2731-2743. 

Yan, Z. and Jiang, L. (2011), “The vibrational and buckling 

behaviors of piezoelectric nanobeams with surface effects”, 

Nanotechnology, 22(24), 245703. 

 

 

CC 
 

438




