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1. Introduction 
 

Normally Actually, with the progress of new industries 

conception and modern production technologies, many 

structures and machines may be subjected to several 

thermal environments, resultant in various types of thermal 

loads (Noda et al. 2003). For these reasons a new kind of 

composite materials known as functionally graded materials 

or sandwich (FGMs) which are designed to withstand high 

temperature gradients and waves have been incorporated 

successfully in various engineering applications (Houari et 

al. 2013, Tounsi et al. 2013, Bouderba et al. 2013, Bessaim 

et al. 2013, Zidi et al. 2014, Ait Amar et al. 2014, Belabed 

et al. 2014, Bousahla et al. 2014, Hamidi et al. 2015, 

AitYahia et al. 2015, Boukhari et al. 2016, Saidi et al. 

2016). Further, FGMs have also attracted growing interest 

and are considered to be the most promising materials for 

applications in nanoengineering, which were mainly 

focused on the study of their mechanical behavior by using 

both classical and higher order shear deformation models 

(Ebrahimi et al. 2015, Ebrahimi and Salari 2015a, 2016, 

Ebrahimi and Farazmandnia 2017, Ebrahimi and Barati 

2016a, b, c, Ebrahimi and Hosseini 2016, Ebrahimi and 

Jafari 2016, Bellifa et al. 2017, Bouafia et al. 2017). Also, 

many other researchers investigated the mechanical and 

thermal stabilities of homogenous and non-homogenous 

nanostructures (Ebrahimi and Salari 2015b, 2016, Ebrahimi 

and Barati 2016a, h, i, Bellifa et al. 2017, Besseghier et al. 

2017). 
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On the other hand, the thermo-mechanical effect on FG 

structures at both macro and nano scales is studied by many 

researchers (Ebrahimi et al. 2015, 2016, Ebrahimi and 

Salari 2015a, c, d, 2016, Ebrahimi and Farazmandnia 2016, 

Ebrahimi and Barati 2016a, b, c, Ebrahimi and Hosseini 

2016). Beldjelili et al. (2016) investigated a refined 

trigonometric shear deformation theory for Hygro-thermo-

mechanical bending of S-FGM plates resting on variable 

elastic foundations. Abdelaziz et al. (2017) used an efficient 

hyperbolic shear deformation theory to investigate the 

bending, buckling and free vibration of FGM sandwich 

plates with various boundary conditions. 

However in such cases, the in-plane compressible forces 

can be produced due to the temperature growing in plates 

which make the structures to be buckled prior to get to a 

yield stress, and which can lead to undesired phenomenon. 

Consequently, studying and understanding the thermal 

stability response of FG plates plays a vital role in practical 

application to guarantee a proficient and reliable design. So, 

in the last years, thermal buckling of functionally graded 

plates (FGMP) has gained outstanding interest by several 

researchers to guarantee the integrity of structures (Song 

and Li 2007, Gossard et al. 1952). For the first time, 

Javaheri and Eslami (2002) obtained the equilibrium and 

stability equations to study the thermal behavior of a 

rectangular FGP under thermal loads via a higher order 

theory. Najafizadeh and Eslami (2002) employed the 

classical plate theory (CPT) to investigate the buckling 

analysis of clamped and simply supported circular FGM 

plate. Shen (2002) employed the Reddy’s higher order shear 

deformation plate theory to explore the nonlinear bending 

analysis for a simply supported functionally graded plate 

exposed to a crossways uniform or sinusoidal load in 

thermal environments. Na and Kim (2004) researched the 
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thermomechanical buckling response of an FG Plate 

composed of ceramic, FGM, and metal layers by using the 

three dimensional model. The impacts of various 

parameters on thermal buckling behaviors of FGP were 

explored. Shariat and Eslami (2007) contributed to the 

buckling analysis of thick functionally graded rectangular 

plates subjected to different types of mechanical and 

thermal loads. The analytical solution for the mechanical 

and thermal stability of a simply supported rectangular plate 

has been obtained by using third order shear deformation 

plate theory. Shariat and Eslami (2005) provided a study on 

the thermal buckling analysis of rectangular FGPs 

considering the geometrical imperfections and using the 

classical plate theory. They have considered in their study 

three types of thermal loading as uniform temperature rise, 

nonlinear temperature rise along the thickness and axial 

temperature rise. Matsunaga (2009) formulated a higher 

order deformation model to investigate the thermal stability 

of FGPs. A new technique called the power series expansion 

of displacement components; by set of fundamental 

equations of rectangular FGPs was provided. Zenkour and 

Mashat (2010) employed a sinusoidal shear deformation 

plate theory to study the thermal buckling response of FG 

plates. The thermo-elastic buckling of FGP based on first 

order shear plate theory was investigated by Bouazza et al. 

(2010); investigated the effects of changing various 

parameters such as, material constitution and volume 

fraction of constituent materials on the critical temperature 

difference of FGP with simply supported edges are also 

investigated. Bourada et al. (2012) formulated a new shear 

deformation model to explore the thermal buckling 

response of sandwich FGM plates by a new refined theory. 

In another work Bachir Bouiadjra et al. (2012) contributed 

to the thermal buckling bifurcation of FG plates based on 

the refined plate theory, in which three types of thermal 

loads were considered. R Bachir Bouiadjra et al. (2013) 

investigated the nonlinear thermal buckling behavior of 

FGM plates by employing a robust sinusoidal shear 

deformation theory, in which four unknowns were taken 

into account. Kettaf et al. (2013) investigated the thermal 

buckling of FG sandwich plates via a new hyperbolic shear 

deformation model. The effects of elastic foundation the 

thermal buckling analysis of FG plates have been 

investigated by Tebboune et al. (2015) based on an efficient 

and simple trigonometric shear deformation theory. Attia et 

al. 2015 studied the free vibration of functionally graded 

plates taking into account temperature-dependent properties 

and employing various four variable refined plate theories 

with polynomial and non-polynomial shear deformation 

theories. Bouderba et al. (2016) contributed to the thermal 

stability of FG sandwich plates via a simple shear 

deformation theory and various boundary conditions. Chikh 

et al. (2016) developed a new analytical model to study the 

thermomechanical post-buckling of symmetric S-FGM 

plates lying on Pasternak elastic foundations via a 

hyperbolic shear deformation model. El-Hassar et al. (2016) 

studied the thermal stability analysis of solar FG plates on 

elastic foundation using an efficient hyperbolic shear 

deformation theory. Bousahla et al. (2016) investigated the 

effect of gradation in the coefficient of thermal expansion 

on thermal stability of functionally plates. Kar, Panda et al. 

(2016) researched the thermal buckling behavior of shear 

deformable functionally graded single/doubly curved shell 

panel with TD and TID properties. Loc V, Nguyen-Xuan et 

al. (2016) developed an isogeometric approach to study the 

nonlinear bending and post-buckling analysis of 

functionally graded plates under thermal environment. As 

seen above, some works have been developed on the 

thermal stability of FG plates based on refined theory, in 

which only four variables are involved, the main 

assumption on which this theory is based is that the in-plane 

and transverse displacements consist of bending and shear 

components, make it simple to use. However, recently a 

new plate theory model has been developed by Tounsi and 

his co-workers (Bourada et al. 2016, Hibali et al. 2016, 

Merdaci, Tounsi et al, 2016, Meksi et al. 2017, Bessegheir 

et al. 2017, Abualnour et al. 2018) to study the mechanical 

behavior of FG structures, this theory uses a new 

displacement field which enforces undetermined integral 

variables by providing a reduction in the number of 

variables and equations of motion, and therefore in the 

computation time and convergence. Various contributions 

were made recently, dealing on thermal bending and 

stability of both functionally graded and sandwich plates 

(Benbakhti et al. 2016, Elmossouess et al. 2017, Khetir et al. 

2017, Sekkal et al. 2017, Menasria, Tounsi et al. 2017, 

Chikh, Tounsi et al. 2017, Fahsi et al. 2017, El-Haina et al. 

2017), they showed the efficiency of this model by 

comparing the obtained results with the existing ones in the 

literature, in which a good agreement was shown.  

The main aim of the present work is to extend the newly 

developed refined plate model cited in the previous works, 

to analyze the nonlinear thermal buckling of functionally 

graded rectangular plates. By using the undetermined 

integral term in the plate kinematics a reduction in the 

number of variables and equations of motion will be 

achieved. It is supposed that material characteristics of the 

FG plate change continuously through the plate thickness 

according to power-law form of volume fractions of the 

constituents. The derived governing equations are solved 

analytically for simply-supported boundary conditions and 

subjected to different types of temperature rise, and 

supposed as uniform, linear and non-linear distribution 

across the thickness. The obtained results are checked and 

compared with the results of previous works existing in the 

literature and the good agreement between them validated 

the presented model. The impacts of different variables, 

such as aspect ratios and width-to-thickness ratios, power-

law index, types of loading on the nondimensional critical 

buckling temperature are all explored. 

 

 

2. Mathematical development 
 

The In this work, we consider a rectangular plate made 

of FGMs of thickness h, length b, and width a made by 

mixing two distinct materials (metal and ceramic) is studied 

here. The coordinates x, y are along the in-plane directions 

and z is along the thickness direction, also the FG plate is 

subjected to three types of in-plane thermal loads as shown 

370



 

Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT 

in (Fig. 1). 

The properties of FGM are supposed graded in the 

thickness direction only (z-axis direction). Power-law 

model is commonly used to describe these variations of 

materials properties. However, the material properties of the 

FGM plate are assumed as follows (Bouazza et al. 2015, 

Bensaid et al. 2017). 

   b t b tP z P P P V    (1) 

in which P denotes the effective material properties like 

Young-modulus and Pt and Pb denote the corresponding 

properties of the top and bottom faces of the plate, 

respectively. Also Vt in Eq. (1) denotes the volume fraction 

of the top face constituent and it is assumed to be given by 

(Abdelhak et al. 2016, Bensaid and Kerboua 2017) 

1
;

2

k

t

z
V

h

 
  
 

 (2) 

where k represents a non-negative variable parameter 

(power-law exponent) which presents the material 

distribution profile across the thickness of the FG plate and 

z is the distance from the mid-plane of the FG beam. 

 
2.1 Kinematics and strains 
 
There are several types of plate and beam theories for 

modeling of shear deformation effect (Ebrahimi and Shafiei 

2016, Ebrahimi and Barati 2016d, e, f, g, Hebali et al. 2014, 

Mantari and Soares 2014, Mahi et al. 2015, Bourada et al. 

2015, Bellifa et al. 2016, Bennoun et al. 2016, Draiche et 

al. 2016, Houari et al. 2016, Zidi et al. 2017). In this 

research paper, the usual HSDT is reformulated by taking 

into consideration some simplifying suppositions so that the 

number of unknowns is reduced. The displacement field of 

the conventional HSDT is defined by (Bakora and Tounsi 

2016) 

       0
0, , , , , , ,x

w
u x y z t u x y t z f z x y t

x



  


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Fig. 1 Geometry and coordinates of FG plates subjected 

to in plane thermal loads 
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0, , , , , , ,y

w
u x y z t v x y t z f z x y t

x



  


 (3b) 

 

   0, , , , ,w x y z t w x y t  (3c) 

In which u0; v0; w0, φx, φy represent the five unknown 

displacements of the mid-plane of the plate, f(z) denotes 

shape function representing the variation of the transverse 

shear strains and stresses within the thickness. By making 

the new rotation angle supposition as,  ,x x y dx   , and 

 ,y x y dy   , the displacement field of the present 

model can be expressed in a simpler form as (Bourada et al. 

2016, Hebali, Tounsi et al. 2016, Merdaci, Tounsi et al. 

2016), as follow 

       0
0 1, , , , , , ,

w
u x y z t u x y t z k f z x y t dx

x



  

   (4a) 

 

       0
0 2, , , , , , ,

w
v x y z t v x y t z k f z x y t dy

x



  

   (4b) 

 

   0, , , , ,w x y z t w x y t  (4c) 

In this investigation, the shape function is defined by 

(Abualnour, Houari et al. 2018) 

  sin( )
z

f z
h


  (5) 

One can see that the Kinematic in Eq. (4) gives only four 

unknowns (u0, v0, w0 and θ). The non-linear von Karman 

strain–displacement equations are written as follows 

0

0
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( ) , ( )

b s
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and 

 
( )df z

g z
dz

  (8) 

The integrals just defined in the above equations shall be 

resolved by a Navier type method and can 

be written as follows 

2 2

, , ,

,

dx A dy B
y x y x x y

dx A dy B
x y

 
 

 
 

   
  
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 
  
 

 

 
 (9) 

In which the coefficients A′ and B′ are expressed 

according to the type of solution used, in this case 

via Navier. Therefore, A′, B′, k1 and k2 are expressed as 

follows 

2 2
1 22 2

1 1
, , ,A B k k 

 
        (10) 

where α and β are fixed in expression (31). 

2.2 Constitutive equations 
 
The plate is subjected to a thermal load T(x,y,z). The 

linear constitutive relations are written as follow 

11 12
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(11) 

where ( , , , ,x y xy yz yx     ) and ( , , , ,x y xy yz yx     ) 

are the stress and strain components, respectively,  and 

T(x, y, z) is the in plane temperature rise across-the-

thickness. Using the material properties defined in Eq. (2), 

stiffness coefficients, Qij , can be expressed as 

 
11 22 2
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2.3 Stability equations 
 
The total potential energy of the FG plate may be take 

the following form 

   1
,

2
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The principle of virtual work for the present problem 

may be expressed as follows 
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(15) 

Using Eq. (11) in Eq. (14), the stress resultants of the 

FG plate can be related to the total strains by 
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where Aij , Dij , etc., are the plate stiffness, are given as 

follows 

2

2

1
( )

( ) ,
1

( )

hT
x

bT
x

hsT
x

N
E z

M z T z dz

f zM






 
 

    
   

   
   

  (20) 

 

372



 

Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT 

 

 
11 11 11 11 11 2

2 2
12 12 12 12 12 11

66 66 66 66 66 2

1

1, , ( ), ( ), ( ) ,

1

2

hs s s

s s s

hs s s

A D B D H

A D B D H Q z f z zf z f z dz

A D B D H





 
   
    

   
   
    

 


 

(21) 

and 
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By which, the stress and moment resultants, 

,T T bT bT

x y x yN N M M   , and 
sT sT

x yM M  due to 

thermal loading are given by 

In an effort to determine the stability equations and 

study the thermal buckling behavior of the FG plate, the 

adjacent equilibrium criterion is used.  

Suppose that the equilibrium state of the FG plate 

considering thermal loads is defined in expressions of the 

displacement parts ( 
0 0 0 0

0 0, , ,b su v w w  ). The displacement 

components of a neighboring stable state differ by  

(
1 1 1 1

0 0, , ,b su v w w ) with respect to the equilibrium position. 

Thus, the whole displacements of a neighboring state are 

0 1 0 1
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, ,
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 (24) 

By substitution of Eqs. (6) and (24) into Eq. (14) and 

integrating by parts and then equating the coefficients of  

(
1 1 1 1

0 0 0, , ,u v w  ) to zero, singly, the general governing 

stability equations are obtained for the new shear 

deformation plate theories as 
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(25) 

in which 
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where the expressions 
0

xN  and 
0

yN  are the pre-buckling 

force resultants obtained as 

2
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,
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h
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(27) 

However, the general stability equations in expressions 

of the displacement components may be achieved by 
substituting Eq. (16) into Eq. (25). Resulting equations are 

four stability equations based on the present refined shear 

deformation theory for FG plates in contact with two 

parameters elastic foundation 
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3. Closed-form solution 
 

Usually rectangular plates are classified in accordance 

with the type of support used. We are here concerned with 

the exact solution of Eq. (28) for a simply supported FG 

plate. The following boundary conditions are imposed for 

the present efficient sinusoidal shear deformation theory at 
the side edges 

1
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The following approximate solution is seen to satisfy both 

the differential equation and the boundary conditions 

1
0

1
0

1
1 10

1

cos( )sin( )

sin( )cos( )
,

sin( )sin( )

sin( )sin( )

mn

mn

mnm n

mn

u U x y

V x yv

W x yw

X x y

 

 

 

 

 

 

   
   
   

   
   
   

  

  (30) 

where Umn , Vmn , Wmn , Xmn are arbitrary parameters to be 

determined. α and β are defined as 

/ /m a and n b      (31) 

Substituting Eq. (30) into Eq. (28), the closed-form solution 

of buckling load can be obtained from 
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(32) 

in which 
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By using the condensation technique to eliminate the 

axial displacements Umn and Vmn , Eq. (31) can be rewritten 

as 
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where 
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The system of homogeneous Eq. (33) has a nontrivial 

solution only for discrete values of the buckling load. For a 

nontrivial solution, the determinant of the coefficients (Wmn, 

Xmn) must equal zero 
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The obtained equation may be solved for the buckling 

load for non trivial solution. This gives the following 

relation for buckling load 

0 2 2 2 34 43 33 44

44

,x y

a a a a
N N

a
 


   (36) 

In this paper, to check the effect of the considered kind 

of temperature disparity within the thickness on stability 

buckling response of FG sandwich plate, three types of 

thermal loading within the plate thickness are taken (Fig. 1). 

 

3.1 Uniform temperature rise (UTR) 
 
It is assumed that the initial uniform temperature of the 

FG sandwich plate is Ti, and the temperature is uniformly 

elevated to a final value Tf such that the plate buckles. Thus, 

the temperature change is 

  f iT z T T T     (37) 

In this case, by manipulating the Eqs. (34), (27), and 

(35) the following equation for thermal buckling load is 

deduced 
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3.2 Linear temperature distribution through the 
thickness (LTD)   

 
Here, For FG plates, the temperature change is not 
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uniform. The temperature is assumed to be varied linearly 

through the thickness as follows 
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Identically to the UTR procedure, the following expression 

for thermal buckling load is derived 
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(40) 

 

3.3 Buckling of FG plates subjected to graded 
temperature change across the thickness 

 
We suppose that the temperature of the top surface is TM 

and the temperature varies from TM, according to the power 

law variation through-the-thickness, to the bottom surface 

temperature TM in which the plate buckles. In this instance, 

the temperature through-the-thickness is written as 
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Similar to the previous loading case, the critical buckling 

temperature change ∆Tcr becomes by using Eqs. (27) and 

(34) 
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4. Numerical results and discussion 
 

In this section of the present investigation, some 

numerical results are analyzed for inspecting the accuracy 

of the present novel formulation in predicting the thermal 

buckling responses of thick FG plates subjected to uniform, 

linear and nonlinear thermal loading throughout the 

thickness. The obtained results are validated with those 

existing in the literature. 

The functionally graded plate  utilized in this 

investigation is made of a mixture of aluminum and 

alumina. The Young modulus, coefficient of thermal 

expansion and thermal conductivity for aluminum are Em = 

70 GPa, αm = 23.10
-6

/C and for alumina are Ec = 380 GPa, 

αc = 7.410
-6

/C, respectively. For the linear and nonlinear 

Table 1 Critical thermal buckling of FG square plate under 

uniform temperature rise for different values of gradient 

index k and side-to-thickness ratio a/h 

k Theory a/h=5 a/h=10 a/h=20 

0 

Present 5.5855 1.61882 0.42154 

TPT(a) 5.58556 1.61882 0.42154 

HPT(a) 5.58344 1.61868 0.42154 

SPT(a) 5.58069 1.61862 0.42153 

1 

Present 2.6724 0.75845 0.19626 

TPT(a) 2.67241 0.75845 0.19627 

HPT(a) 2.67153 0.75840 0.19627 

SPT(a) 2.67039 0.75837 0.19626 

5 

Present 2.2713 0.67894 0.17850 

TPT(a) 2.27131 0.67895 0.17851 

HPT(a) 2.27501 0.67931 0.17854 

SPT(a) 2.35948 0.68678 0.17905 

10 

Present 2.2755 0.69254 0.18313 

TPT(a) 2.27551 0.69254 0.18313 

HPT(a) 2.27678 0.69269 0.18314 

SPT(a) 2.36822 0.70108 0.18373 

(a) Zenkour and Sobhy (2011) 

 

 

temperature rises through the thickness, the temperature 

rises 5C in the metal-rich surface of the plate (i.e., Tm = 

5C).  

For checking the correctness of the present novel 

formulation, the results have been recovered for FG plates 

subjected to uniform, linear and nonlinear thermal loading 

across the thickness according to the newly refined theory. 

The obtained results of buckling analysis for the plate under 

uniform temperature rise are tabulated in Tables 1, 2 and 3. 

These tables demonstrate the comparisons of the critical 

buckling temperature change ( 310 ,cr crt T ) obtained by 

the present theory with those given by Zenkour and Sobhy 

(2011) based on the higher plate theory (HPT), third order 

plate theory (TPT) and first order shear deformation plate 

theory, without considering the elastic foundation. One can 

see that the results of the present theory are in good 

agreement with TPT, HPT and FPT for both thin and thick 

FG plates. It is also to be noted that the number of 

unknowns in present model is only four, while the unknown 

functions in the existing HPT, TPT and FPT is five. 

From the Tables 1 and 2, we can see that an increment in 

the gradient index (k) from 0 to 10 and in the dimension 

aspect ratio a/h lead to a decrement in critical buckling 

temperatures tcr. Furthermore, the critical buckling 

temperatures for homogeneous plates are considerably 

superior to those for the FG plates particularly for the 

reasonably thicker plates. The linear temperature rise gives 

large values compared to the uniform temperature 

distribution. 
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Table 2 Critical thermal buckling of FG square plate under 

linear temperature rise for different values of gradient index 

k and side-to-thickness ratio a/h 

k Theory a/h=5 a/h=10 a/h=20 

0 

Present 11.17111 3.23764 0.84308 

TPT(a) 11.16112 3.22764 0.83309 

HPT(a) 11.15688 3.22736 0.83307 

SPT(a) 11.15138 3.22725 0.83306 

1 

Present 5.01201 1.42244 0.36809 

TPT(a) 5.00264 1.41307 0.35872 

HPT(a) 5.00099 1.41297 0.35871 

SPT(a) 4.99885 1.41292 0.35871 

5 

Present 3.90958 1.16866 0.30726 

TPT(a) 3.90098 1.16006 0.29866 

HPT(a) 3.90735 1.16069 0.29871 

SPT(a) 4.05274 1.17354 0.29959 

10 

Present 4.03236 1.22723 0.31982 

TPT(a) 4.02350 1.21837 0.31566 

HPT(a) 4.02576 1.21864 0.31568 

SPT(a) 4.18778 1.23350 0.31672 

(a) Zenkour and Sobhy (2011) 

 

 

Table 3 Critical thermal buckling of FG square plate under 

nonlinear temperature rise for different values of gradient 

index k and side-to-thickness ratio a/h 

k Theory a/h=5 a/h=10 a/h=20 

0 

Present 22.3422 6.47528 1.67617 

TPT(a) 22.32223 6.45528 1.66618 

HPT(a) 22.31376 6.45473 1.66614 

SPT(a) 22.30276 6.45450 1.66614 

1 

Present 10.02693 2.84572 0.71640 

TPT(a) 10.00817 2.82696 0.71764 

HPT(a) 10.00488 2.82676 0.71763 

SPT(a) 10.00060 2.82667 0.71763 

5 

Present 6.79150 2.03014 0.52376 

TPT(a) 6.77655 2.01520 0.51882 

HPT(a) 6.78763 2.01628 0.51889 

SPT(a) 7.04019 2.03861 0.52043 

10 

Present 6.94087 2.11242 0.55860 

TPT(a) 6.92562 2.09717 0.54335 

HPT(a) 6.92950 2.09763 0.54338 

SPT(a) 7.20839 2.12321 0.54516 

(a) Zenkour and Sobhy (2011) 

 

 

The effects of non-linear temperature distribution on the 

thermal stability temperatures of FG plates are presented in 

Table 3. It may be observed that the critical thermal 

buckling temperature tcr is sensitive with increasing of both 

material gradient index and the side-to- thickness ratios. 

This is due to the rise in flexibility of the FG plates, while 

the fraction of metal segment increases when power law 

index increases. In addition, it is seen that the present type 

of thermal loading gives large values compared to the 

previous ones. 

 

4.1 Parametric investigations 
 

In this part, the impacts of different parameters of plate 

and the type of thermal loads on the critical buckling load 

of the present FG plate will be highlighted, the obtained 

results are illustrated in Figs. 2 to 5. 
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Fig. 2 Critical buckling temperature tcr of FG plate 

(a/b=2) versus the power law index k for different values 

of the side-to thickness ratio a/h 
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Fig. 3 Critical buckling temperature of FG plate (a/h=5) 

against the power law index k for various values of the 

aspect ratio a/b 

 

 

Figs. 2 and 3 examine the impact of material graduation 

index (k) on dimensionless thermal buckling loads of FG 

plates with simply boundary conditions, respectively, for 

various values of side to-thickness ratio a/h , aspect ratio 

a/b and a range of thermal loading types. It can be observed 

that from these figures that tcr is quite sensitive to the 

variation the previously cited parameters, and must be well 

chosen in the design phase. However, regardless of the 

loading kind and the gradient index k, the critical buckling 

temperature tcr decreases as the side to-thickness ratio a/h 

rises and it is diminished with the reduction of the aspect 

ratio a/b. The high critical buckling temperature value for 

the FG plate is obtained for the ceramic phase k reach to 

zero. The reason is that the ceramic plate is stiffer than the 

other. Further, when the FG plate becomes either thin or 

large there is a noticeable difference in the peak values of tcr 

between the thermal loading types. 

Fig. 4 illustrates the change in critical temperatures tcr of 

FG square plates over to various thermal loading cases with 

respect to the thickness ratio a/h. It can be seen that with 

rising a/h, the critical temperature tcr reduces regularly. 

Note that in the case of the uniform temperature rise, the 

critical temperatures tcr of the Graded plate get the less 

significant values than that of the plate over linear 

temperature rise and this latter is smaller than that of the 

plate under non linear temperature rise. Also, one can see 

that an increment in the nonlinearity parameter γ leads to an 

increases tcr . 
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Fig. 4 Maximum critical buckling temperature tcr caused 

by uniform, linear and non-linear temperature rise across 

the thickness versus the side-to-thickness ratio a/h and 

for distinct values of the non-linearity parameter γ (k=5 

and a/b=2) 
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Fig. 5 Maximum critical buckling temperature tcr caused 

by uniform, linear and non-linear temperature rise across 

the thickness versus the aspect ratio a/b and for different 

values of the non-linearity parameter γ. (k=5 and a/h=10) 
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Fig. 5 exhibits the influences of the aspect ratio b/a on 

the extreme value of critical stability temperature tcr of FG 

plate subjected to different types of thermal loads. It can be 

shown that, the critical temperature tcr decreases 

progressively with rising the plate aspect ratio b/a wherever 

the thermal loading type. It is also remarked from Fig. 5 

that the tcr increases with increasing of the nonlinearity 

parameter γ. 

 

 

5. Conclusions 
 

In this paper, the nonlinear thermal buckling 

characteristics of functionally graded plates subjected to 

uniform, linear and non-linear temperature rises through the 

thickness path has been examined on the basis novel higher-

order shear deformation theory. By making further 

simplifying suppositions to the existing HSDT, with the 

incorporation of an undetermined integral term, the quantity 

of unknowns and governing equations of the current theory 

is diminished to four as the other refined plate theories and 

hence, make this model simple and efficient to exploit. 

Material properties are graded in the thickness direction by 

a power-law distribution scheme. To confirm the exactness 

of the current theory, the obtained results by the present 

investigation have been matched with existing ones in the 

literature; good concordances have been observed. 

Influences of various parameters have been performed such 

as aspect ratio, plate thickness, thermal loading type and 

also material gradient index on the critical buckling 

temperature of functionally graded rectangular plate. 

Finally it can be concluded that, the current new model can 

enhance the numerical computational rate by reason of their 

diminished degrees of freedom. 
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