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1. Introduction 
 

Wind-induced vibrations are of particular importance 

when designing long-span bridges. Bridge design needs to 

prevent vibrations due to vortex shedding at low mean wind 

velocity and due to turbulence in a wind field under strong 

winds. Furthermore, the aeroelastic stability limit of the 

combined structure and flow system needs to be sufficiently 

high to prevent collapse due to static divergence, galloping 

and flutter. In particular, flutter has received much attention 

among researchers and bridge engineers since the Tacoma 

Narrows Bridge collapsed due to flutter in 1940. However, 

since technological progress makes it possible to build 

longer and more slender bridges, the flutter of suspension 

and cable-stayed bridges remains an active research field. 

Flutter is in fact one of the most important research topics 

related to Coastal Highway Route E39 (Dunham 2016), 

regarding which the Norwegian Public Roads 

Administration is investigating the possibility to replace 

several ferries with suspension bridges that have spans up to 

3700 meters. 

Motion-induced or so-called self-excited forces cause 

flutter instability. These forces can be modeled in many 

ways, but the model involving aerodynamic derivatives 

developed by Scanlan and co-workers (Scanlan and Tomko 

1971) is the most common approach when assessing the 

flutter stability limit of bridges. The aerodynamic  
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derivatives are assumed as functions only of reduced 

velocity and can be identified via wind tunnel tests or 

computational fluid dynamics (CFD) simulations (Huang et 

al. 2009, Sarwar et al. 2008, Zhu et al. 2007). One of the 

major challenges in using CFD is to accurately model the 

flow in the boundary layer around railings and other bridge 

deck details since this might have a significant impact on 

the accuracy of the outcome of the simulations (Jones et al. 

1995, Sarwar et al. 2008, Takizawa et al. 2014). Wind 

tunnel tests therefore remain of crucial importance in bridge 

design.  

The flutter speed is assessed using various methods, 

from simple formulas to advanced finite element 

methodologies. More than 50 years ago, Selberg (1961) 

derived a formula for the critical velocity that is very 

accurate if the aerodynamic properties of the bridge deck 

are similar to those of an ideal flat plate and if the still-air 

vertical and torsional vibration modes are shape-wise 

similar. The formula is still currently used in preliminary 

designs worldwide despite the fact that more sophisticated 

formulas, which allow taking into account structural 

damping, some of the aerodynamic derivatives and shape-

wise similarity, have been developed more recently (Bartoli 

and Mannini 2008, Chen 2007, Nakamura 1978, Ø iseth and 

Sigbjörnsson 2011). It is also possible to evaluate the flutter 

stability limit by directly observing a scaled section model 

of a bridge in a wind tunnel (e.g., Andersen et al. 2016, 

Costa 2007, Gu et al. 2000, Iwamoto and Fujino 1995, 

Körlin and Starossek 2007, Manzoor et al. 2011). However, 

it is sometimes difficult to very accurately define regions 

where the section model is stable/unstable. In addition, the 

method itself implies that it is hard to consider more than 

two vibration modes. The simplified methods are 
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Abstract.  The prediction of multimode flutter relies, to a larger extent than bimodal flutter, on accurate modeling of the self-excited 

forces since it is challenging to perform experimental validation by using aeroelastic tests for a multimode case. This paper sheds some light 

on the accuracy of predicted self-excited forces by comparing numerical predictions of self-excited forces with measured forces from wind 

tunnel tests considering the flutter vibration mode. The critical velocity and the corresponding flutter vibration mode of the Hardanger 

Bridge are first determined using the classical multimode approach. Then, a section model of the bridge is forced to undergo a motion 

corresponding to the flutter vibration mode at selected points along the bridge, during which the forces that act upon it are measured. The 

measured self-excited forces are compared with numerical predictions to assess the uncertainty involved in the modeling. The self-excited 

lift and pitching moment are captured in an excellent manner by the aerodynamic derivatives. The self-excited drag force is, on the other 

hand, not well represented since second-order effects dominate. However, the self-excited drag force is very small for the cross-section 

considered, making its influence on the critical velocity marginal. The self-excited drag force can, however, be of higher importance for 
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insufficient for long-span bridges. More precise results can 

be provided by using effective numerical methods such as 

complex eigenvalue analysis (Simiu and Scanlan 1996) or 

the step-by-step method (Matsumoto et al. 2007, 2008), 

using aerodynamic derivatives as the input. Several authors 

have emphasized the importance of aerodynamic 

derivatives related to lateral motion when assessing the 

flutter stability limit (Sarkar et al. 2004, Singh et al. 1996, 

Zhang and Brownjohn 2005) as well as the significance of 

contributions from secondary still-air vibration modes 

(Katsuchi et al. 1998, Ø iseth et al. 2010) in the flutter mode. 

Previous studies have, for example, showed that six primary 

still-air modes play a significant role in the flutter 

mechanism of the Akashi-Kaikyo Bridge (Katsuchi et al. 

1999, Miyata et al. 1994), which is currently the world’s 

longest suspension bridge. Thus, current state-of-the-art 

flutter assessment involves horizontal motion, which can 

readily be included in the multimode approach (e.g., 

Katsuchi et al. 1998, Salvatori and Borri 2007) or in the 

more direct finite element approach (Ge and Tanaka 2000, 

Hua and Chen 2008, Mishra et al. 2008, Namini et al. 1992, 

Ø iseth et al. 2012). Alternatively, the flutter stability limit 

can be assessed by studying the free vibration response of a 

system in the time domain, which requires modeling of the 

self-excited forces by using either indicial (Caracoglia and 

Jones 2003) or rational functions (Xu et al. 2017). 

Reliable and accurate experimental data of all 18 

aerodynamic derivatives are crucial when including 

horizontal motion in the flutter assessment. It is also 

important that the load model holds for the cross-section 

considered. The forced vibration setup first used by 

Ukeguchi et al. (1966) and later further developed to 

include horizontal motion is therefore often used to identify 

aerodynamic derivatives, as it is considered more reliable 

(Diana et al. 2015) than free vibration tests and suitable for 

larger velocities, motion amplitudes and turbulence 

intensity (Cao and Sarkar 2012, Sarkar et al. 2009). The 

section model is forced to undergo a pure horizontal, 

vertical or torsional single harmonic motion while the drag 

and lift forces as well as the pitching moment are measured 

during a forced vibration test. However, as aptly noted in 

Zhu et al. (2007), forcing bridge decks in this manner does 

not reflect real bridge behavior in strong wind. Previous 

studies have also shown that the aerodynamic derivatives 

might depend on the amplitudes of vibration (Chen et al. 

2005, Scanlan 1997), the torsional-vertical frequency ratio 

(Qin et al. 2009) and the number of degrees of freedom 

considered during tests (Matsumoto 1996). Keeping these 

issues in mind, the authors were concerned regarding 

whether the aerodynamic derivatives identified by applying 

the standard procedure are sufficient to predict the self-

excited forces that occur during flutter or if a more 

advanced nonlinear methodology needs to be applied 

(Diana et al. 2008, Wu and Kareem 2014).  

The flutter motion is a single frequency motion and is, 

in this sense, simple compared to the buffeting response. 

The ratios of the amplitudes of the horizontal, vertical and 

torsional motions are, however, different along the span, 

and the flutter vibration mode is furthermore complex, 

which makes the phase shift between the horizontal, vertical 

and torsional motions vary along the span. The accuracy of 

the linear load model is investigated in this study by 

measuring the self-excited forces acting on a section model 

of the Hardanger Bridge when it is forced to undergo the 

flutter motion obtained by solving the complex eigenvalue 

problem of the aeroelastic system. First, the aerodynamic 

derivatives of a detailed section model of the bridge deck, 

including both railings and guide vanes, are identified using 

the standard forced vibration procedure. A state-of-the-art 

multimode flutter analysis is conducted to obtain the critical 

mode shape. The flutter motion is then applied at several 

locations along the span while measuring the self-excited 

forces in wind tunnel tests using a recently developed 

forced vibration setup (Siedziako et al. 2017a). The results 

are compared with predictions by applying the aerodynamic 

derivatives obtained from the standard forced vibration tests. 

Possible amplitude dependency, as, for instance, reported by 

Chen et al. (2005), is investigated by measuring the self-

excited forces when the amplitudes of vibration are 

exponentially increasing. This simulates divergent behavior 

corresponding to negative damping of an aeroelastic system. 

 

 

2. Flutter analysis of the Hardanger Bridge 
 

2.1 Critical velocity 
 

In order to perform wind tunnel tests corresponding to 

multimode flutter it is necessary to obtain the critical 

velocity and the corresponding flutter vibration mode for 

the bridge considered. Fig. 1 shows the Hardanger Bridge, 

which crosses the Hardanger Fjord in Norway. It has a main 

span of 1310 m, which is currently the longest in Norway, 

and towers that are 186 m high. The bridge is very slender 

since it only has two lanes for traffic and one lane for 

pedestrians, making the distance between the two main 

cables only 14.5 m. Mass and mass moment of inertia equal 

to respectively 8825 kg/m and 222840 kgm
2
/m. The 

Hardanger Bridge has been extensively studied at NTNU 

(Ø iseth et al. 2010, 2011), and current research activities 

also include a large monitoring program in which wind 

velocities and accelerations are measured at several 

locations along the bridge deck and at the top of each tower 

(Fenerci and Ø iseth 2015, 2017, Fenerci et al. 2017). Flutter 

stability was one of the major concerns in the design of the 

bridge, particularly since several still-air vibration modes 

participate in the flutter motion. 

Fig. 2 shows the finite element model representing the 

starting point of the flutter analysis. It is possible to 

introduce the self-excited forces in the finite element 

modeling and to assess the flutter stability limit considering 

all degrees of freedom (Ge and Tanaka 2000, Mishra et al. 

2008, Namini et al. 1992, Ø iseth et al. 2012). However, a 

reduced-order model using selected still-air vibration modes 

as generalized coordinates, commonly referred to as the 

multimode approach (Chen et al. 2001, Ge and Tanaka 2000, 

Jain et al. 1996, Katsuchi et al. 1998, 1999, Matsumoto et 

al. 2008, Salvatori and Borri 2007, Scanlan et al. 1990), is 

used in this paper. Having the generalized properties of all 

the selected vibration modes, the self-excited forces need to  
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be included in the modeling. Only self-excited forces 

acting on the girder are considered when obtaining the 

critical velocity and the corresponding flutter mode since 

self-excited forces acting on cables and towers are 

considered to be of minor importance. The response along 

the girder is given by 

1 2 , , , 1 2

( , ) ( ) ( )

( ) [ , ... ], [ ] , ( ) [ , ... ]T T

N i i y i z i N

x t x t

x t   



  

u Ψ η

Ψ φ φ φ φ φ φ φ η  
(1) 

Here, Ψ represents the selected still-air vibration modes 

and η the corresponding generalized coordinates. Fig. 3  

 

 

 

 

 

shows the still-air vibration modes considered in the flutter 

analysis, while Table 1 presents the generalized properties. 

The generalized masses for each mode have been extracted 

from an ABAQUS model and were calculated based on the 

default eigenvector normalization, which was scaled so that 

the largest entry in each vector is unity. 

The flutter stability limit can be assessed by considering 

the characteristic equation of the combined structure and 

flow system (Agar 1989, Kvåle et al. 2016). 

 

 

 

Fig. 1 The Hardanger Bridge (photograph by Ole Ø iseth) 

 

Fig. 2 An ABAQUS FE model of the Hardanger Bridge 

 

Fig. 3 Still-air vibration modes of the Hardanger Bridge used in the flutter analysis. The amplitude vibrations of each 

mode were scaled such that maximum displacement is equal to unity 
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    0 0 0

2 ( , ) ( , )ae aeV V       0M C C K K   (2) 

Here, λ is the eigenvalue,   is the corresponding 

eigenvector, and 
0M , 

0C  and 
0K  represent the still-air 

generalized mass damping and stiffness matrices. The 

generalized aerodynamic damping and stiffness matrices are 

obtained by considering the self-excited forces acting on the 

girder as follows 
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The aerodynamic non-symmetric stiffness, Kae, and 

damping, Cae, matrices are most commonly represented by 

experimentally determined aerodynamic derivatives, as 

proposed by Scanlan and Tomko (Scanlan and Tomko 1971). 

* * * * * *

1 5 2 4 6 3

* * * 2 2 * * *

5 1 2 6 4 3

* * 2 * * * 2 *

5 1 2 6 4 3

1 1

2 2
ae ae

P P BP P P BP
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BA BA B A BA BA B A

 

   
   

    
   
   

C K
 

(4) 

Here, V is the mean wind velocity; ρ is the air density; B 

is the width of the cross-section; K=Bω/V is the reduced 

frequency of motion. Pn
*
, Hn

*
, and An

*
, n{1, 2,…, 6}, are 

the dimensionless aerodynamic derivatives, which are 

functions of the reduced frequency and are most commonly 

considered as cross-sectional properties. The eigenvalues 

need to be solved in an iterative manner since the elements 

in the aerodynamic stiffness and damping matrices are 

functions of the reduced frequency of motion and thus the  

Table 1 Natural frequencies, damping ratios and modal masses of the selected still-air vibration modes of the 

Hardanger Bridge 

Mode no. 
Period 

T [s] 

Frequency Damping 

ξ [%] 

Modal mass 

0
M [kg]/[kgm2] 

Type 
ω [rad/s] f [Hz] 

1 19.98 0.316 0.050 0.5 8.56∙107 Hor. 

2 7.11 0.884 0.141 0.5 4.44∙107 Ver. 

3 5.91 1.062 0.169 0.5 5.71∙107 Hor. 

4 5.07 1.239 0.197 0.5 6.68∙107 Ver. 

5 3.67 1.712 0.273 0.5 7.27∙107 Ver. 

6 2.78 2.260 0.360 0.5 5.63∙107 Tor. 

 

Fig. 4 Algorithm used to calculate the critical velocity and the corresponding flutter vibration mode 
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imaginary part of the eigenvalues. Fig. 4 illustrates the 

algorithm used in this study built in by authors in matlab 

function, which has been used for example by Ø iseth et al. 

(2010, 2011). 

The free vibration response (in generalized coordinates) 

can be expressed as 

2

1

( ) r
r

N
t

r
r

t e



η   (5) 

Here, the values of the constant Ar are obtained by 

considering the initial conditions of the problem. The 

solution of the eigenvalue problem renders 2N eigenvalues 

and eigenvectors that come in complex conjugate pairs λr = 

μr ± iωr, making the total response in Eq. (5) real. The 

stability limit is defined as the lowest wind speed at which 

the real part of one of the eigenvalues becomes positive, 

which corresponds to negative damping that results in a 

divergent response. 

 

 

 

 

Re[ ]
0 0

| |

i

i

i


 


      (6) 

Since the flutter problem is solved iteratively, the real 

part of the critical eigenvalue, μCR, is not exactly zero but 

rather approaches this value at higher wind velocities. In 

this study, the flutter is recognized when μCR drops below a 

tolerance level set at 0.001. For the frequency iterations, a 

limit of ∆ωlim = 0.0001 is set as the convergence criterion, 

usually achieved in the third iteration.  

The aerodynamic derivatives obtained during the design 

of the bridge presented by Svend Ole Hansen ApS (2009) 

are used in the flutter analysis. All the still-air vibration 

modes considered are assigned a damping of 0.5% and 

rotations of the bridge decks about its longitudinal axis due 

the mean value of the wind load is neglected and thereby 

static deformations as well. The obtained critical velocity 

and frequency for the Hardanger Bridge are respectively  

 

Fig. 5 Motion along the girder corresponding to the flutter mode of the Hardanger Bridge. The top figure corresponds to 

the real part, the middle figure corresponds to the imaginary part and the bottom figure corresponds to the absolute value  

 

Fig. 6 Argand diagram showing contributions from each of the still-air modes in the flutter mode. The eigenvector ϕCR 

was normalized to make its maximum absolute value equal to 1 
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82.38 m/s and 0.279 Hz giving reduced velocity, at which 

flutter occurs equals 2.57. Fig. 5 shows the corresponding 

flutter mode in terms of the real and the imaginary part of 

the displacements along the girder. The figure illustrates 

that the flutter motion is three dimensional, with dominating 

vertical and torsional components, and that there are 

significant phase shifts between the considered response 

components. The modal complexity of the flutter motion is 

also illustrated using an Argand diagram of the vector ϕCR 

(eigenvector corresponding to the eigenvalue with zero real 

part) displayed in Fig. 6, which also shows the participation 

of the still-air modes in the flutter mode. 

 

2.2 Flutter motion for wind tunnel testing 
 
The flutter motion will vary along the girder since the 

still-air modes have varying amplitudes along the span of 

the bridge, which also makes the phase shifts between the 

horizontal, vertical and torsional motions change. It is not 

possible to consider many points along the girder, but 

looking at Fig. 5 the points shown in Fig. 7, seems 

representative both with respect to amplitude and phase 

angle between vertical and torsional motion and are 

therefore considered in this study. 

The flutter motion history at the selected points can be 

obtained by solving 

( )
( ) ( )Re[ ]CRt i

n CR n CRt A x e
  

u Φ   (7) 

Here, the constant ACR is determined by considering the 

initial conditions. The tests need to be performed at with the 

same reduced velocity at the model scale as at full scale 

according to the following relation. 

MS FS

MS MS FS FS

V V

B B 
  (8) 

 

 

 

Here, V is the mean wind velocity, B is the width of the 

girder and ω is the frequency of motion. The subindexes FS 

and MS denote full scale and model scale, respectively. The 

mean wind velocity at the model scale is then given by 

MS MS

MS FS g f FS

FS FS

B
V V S S V

B




   (9) 

Here, Sg and Sf represent the geometry and frequency 

scale factors. The section model of the Hardanger Bridge 

has a scale of 1:50, and the considered mean wind velocity 

and frequency of motion can be varied in the wind tunnel 

tests. Table 2 summarizes the three different combinations 

of mean wind velocities and frequencies considered. 

The scaled flutter motion at the selected locations at the 

model scale is defined by 

( )
( )Re[ ]CR fS t i

n CR G n CRA x e
  

u S Φ   (10) 

Here, the matrix SG scales the horizontal, vertical and 

torsional displacements and is thus defined as follows.  

0 0

0 0

0 0 1

g

G g

S

S S

 
 


 
  

 (11) 

The eigenvector ϕCR is normalized to make its 

maximum absolute value equal to 1 before generating the 

flutter motion. The constant ACR is taken as one, while the 

damping ratio ξ is simply taken as zero. This yields a 7.89

 

rotation and a 1.22 m vertical displacement at the mid-span 

of the Hardanger Bridge and corresponds to 7.89

 and 24.3 

mm at the model scale. These values are larger than the 

typical amplitudes used in forced vibration tests but still 

much lower than the motion observed during the collapse of 

the Tacoma Narrow Bridge, where rotations of up to 35

 

were observed (Fuller et al. 2000). Fig. 8 shows Argand  

 

Fig. 7 Selected locations at which the self-excited forces are assessed by comparing numerical simulations and wind 

tunnel tests 

Table 2 Combinations of mean wind velocity and frequency of motion considered in the comparative study 

No. 
Frequency 

scale Sf 

Geometry 

scale Sg 

Wind tunnel air 

velocity [m/s] 

Frequency of motion in the 

wind tunnel 
Critical frequency 

[Hz] 

Reduced 

velocity 

[-] ω [rad/s] f [Hz] 

1 4 1/50 6.59 7.012 1.116 0.279 2.57 

2 6 1/50 9.89 10.52 1.674 0.279 2.57 

3 7 1/50 11.53 12.27 1.953 0.279 2.57 
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diagrams of the horizontal, vertical and torsional responses 

at the three considered locations. At position 1, the torsional 

and vertical motions are close to 180 degrees out of phase, 

making the maximum values occur simultaneously but with 

opposite signs. The angle between the vertical and torsional 

responses is approximately 170 degrees at position 2, which 

will cause a time lag between the maximum vertical and 

torsional response, while this is even higher for point 3. Fig. 

9 shows the response histories together with a visualization 

of the motion of the girder. It is observed that the flutter 

motion is different at the three positions considered in terms 

of the magnitude of the components and the time lags 

between the components. 

 
 

 
 

3. Wind tunnel tests of the flutter motion 

 
3.1 Wind tunnel and forced vibration rig 
 

The wind tunnel tests are carried out in the Fluid 

Mechanics Laboratory at NTNU. The wind tunnel used in 

this study is a low-speed, closed-loop wind tunnel with an 

11 m-long, 2 m-high and 2.7 m-wide test section. A pitot 

probe placed 6.10 m in front of the section model is used to 

measure the air velocity during the experiments. The 

velocity profile at the inlet of the wind tunnel is uniform, 

with a turbulence intensity of 0.2% (Adaramola and 

Krogstad 2009). A recently developed forced vibration rig  

 

Fig. 8 Argand diagrams showing the complexity of the flutter motion at the considered locations. The lengths of the 

vectors are scaled to make the phase shifts between the components clearer 

 

Fig. 9 Time histories of the motion of the bridge deck at three different locations during flutter motion. The coordinate 

system and wind direction are according to Fig. 4 
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was used in the experiments. It is able to force arbitrary 

motion histories in the heaving, swaying and torsional 

directions simultaneously. For further details on the setup 

components, motion control and data acquisition see 

(Siedziako et al. 2017). The data acquisition was slightly 

modified in this study to utilize the advantages of the 

CompactRIO platform (NI CompactRIO 2017) over 

CompactDAQ and currently NI cRIO-9067 equipped with 

NI 9239 analog input modules is adopted to acquire the 

voltage signals from the controller, the load cells and the 

pressure transducer that is connected to the pitot probe. 

Therefore a comprehensive LabVIEW program is used to 

communicate with the actuators controller to upload the 

motion histories, while a separate LabVIEW program based 

on the CompactRIO platform is used to acquire data. The 

sampling rate for the data acquisition is set to 2 kHz, 

downsampled to 250 Hz, and a time step of 1 ms is used for 

the uploaded motion histories.  

 

3.2 Section model 

 

Fig. 10 shows a Hardanger Bridge section model used in 

this study mounted between two actuators. It is 2.68 m long, 

and there are only 1.5 cm gaps between the ends of the 

model and the wind tunnel walls, making end plates 

unnecessary. The dimensions of the cross-section are 

presented in Fig. 11. The section model consists of an 

aluminum pipe, with an outer diameter of 40 mm and a wall 

thickness of 1 mm that provides most of the stiffness of the 

model. The aluminum pipe is clamped firmly to the  

 

 

 

 

actuators on both sides of the wind tunnel. The geometry of 

the bridge deck is milled in Gurit PVC 60, which is glued 

onto the aluminum pipe, while the bridge railings and guide 

vanes are 3D printed. The mass of the section model is 5.45 

kg (2.03 kg/m), and its first natural frequency is 12.5 Hz. 

More details about the experimental setup and the section 

model are given in (Siedziako et al. 2017) 

 
3.3 Aerodynamic derivatives 
 

The flutter stability limit and the corresponding flutter 

mode were obtained using data from the free vibration tests 

conducted at Svend Ole Hansen ApS (2009), while all the 

tests presented in this paper were conducted in the Fluid 

Mechanics laboratory at NTNU during the same period. It is 

well known that the aerodynamic derivatives from different 

wind tunnels that use different methods to process the data 

might yield slightly different aerodynamic derivatives; see, 

for instance, (Sarkar et al. 2009), where this phenomenon 

has been studied in detail. This makes it necessary to 

determine the aerodynamic derivatives for the actual test 

conditions. The self-excited forces acting on a bridge deck 

can, according to the load model proposed by Scanlan and 

coworkers, be expressed as (Scanlan and Tomko 1971)  

( , ) ( ) (t) ( ) (t)Se ae aeK t K K


 q C u K u  (12) 

The matrices and symbols involved were introduced in 

Eq. (4), and Fig. 11 shows the positive directions of the 

motion and forces. The identification method used herein is 

a time domain method based on the work of Han et al.  

 

Fig. 10 Photograph showing the section model used during testing 

 

Fig. 11 The cross-section of the Hardanger Bridge deck 
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(2014), where the model of aeroelastic forces is fitted to the 

time series of the self-excited forces by a least squares fit. 

An extended version of this method that can address more 

complicated motion patterns was recently developed in 

(Siedziako et al. 2016b). It was decided to consider 

horizontal, vertical and torsional motion separately in this 

paper since this makes the identified aerodynamic 

derivatives more reliable. It is however possible to combine 

all three motions if one ensures that all motions give 

significant contributions to the measured self-excited forces 

although the identification might become more difficult. By 

considering only the sinusoidal pitching motion, the self-

excited forces given in Eq. (12) can be written in a matrix 

form. 

, ( , , )Se t K V   X Eq  (13) 

Here, qse,θ (t,K,V) represents the self-excited forces 

induced by the torsional motion, the coefficient matrix Eθ 

contains the aerodynamic derivatives, and the matrix Xθ 

contains the torsional motion history. 
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The coefficient matrix Eθ and thus the 6 aerodynamic 

derivatives related to the torsional motion can then be 

obtained by minimizing the sum of squares. 

T T
Se    -1

E (X X ) X q  (16) 

Similar expressions for Ez and Ex are analogously 

derived by considering the vertical and horizontal motion, 

respectively. In the tests presented here, the time histories 

of the aeroelastic forces have been extracted by repeating 

each test under still-air conditions. Then, the forces 

recorded in still air can be directly subtracted from the time 

series recorded in wind to remove the inertia forces; see 

also (Diana et al. 2004) and (Siedziako et al. 2016a). 

Buffeting forces due to turbulence can be neglected since 

the tests were conducted in smooth flow. Any static 

contributions from both the mean wind and gravity are 

removed by detrending the measured forces.  

 

 

Table 3 Summary of the properties, frequencies and amplitudes used in the standard forced vibration tests 

Duration of time series 50 s Tested velocities 4, 6, 8, and 10 m/s 

Total number of tests 84 Tested frequencies 0.5, 0.8, 1.1, 1.4, 1.7, 2.0, 2.5 Hz 

Tested reduced velocities 28 Reduced velocity range From 0.7 to 8.7 

Sampling frequency 250 Hz Vibration amplitudes 1.5 cm / 2 

 

Fig. 12 Aerodynamic derivatives of the Hardanger Bridge related to velocities or angular velocities 
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The aerodynamic derivatives were determined 

considering the mean wind velocity and frequency 

combinations shown in Table 3. The aerodynamic 

derivatives for the Hardanger Bridge cross-section, 

including both guide vanes and railings, are presented in Fig. 

12 and Fig. 13 together with a third-order polynomial fit to 

the data. Nearly the exact same mode shape of the flutter 

mode was obtained when using the aerodynamic derivatives 

provided by Svend Ole Hansen ApS (2009) as identified in 

this study; therefore, there was no need to repeat the flutter 

tests. 

 
3.4 Flutter motion 
 

The time series of the flutter motion at the wind tunnel 

scale was obtained using Eq. (10). Time series of 120, 60 

and 68 s duration for the 4, 6, and 7 frequency scales 

corresponding to 1.12, 1.67 and 1.95 Hz at the model scale, 

respectively, were used in the tests to obtain a reasonable 

number of cycles. Each time series was tested at only one 

wind speed, as depicted in Table 2, since the reduced 

velocities at the model and full scales need to be in 

agreement. The values of the aerodynamic derivatives at the 

critical reduced velocity ˆ 2.57CRV  are displayed in the 

Table 4. The presented values were calculated using the 

third-order polynomial fit to the aerodynamic derivatives.  

The correlation coefficient of the predicted and 

measured time series of the self-excited forces is used to 

evaluate the performance of the load model. 
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A measure of the accuracy of the predicted peak values 

is also used to evaluate the results. 
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In these two expressions, ix is measured, iy  denotes 

the simulated self-excited forces, and ix   and iy  are the 

peaks of the time series. The correlation coefficients and 

peak errors for all the tests conducted are listed in Table 5, 

and Fig. 14 shows exemplary time series of the measured 

and predicted self-excited forces at the mid-span (Pos. 3). 
The results show that the measured and predicted self-

excited lift forces and pitching moment correspond in an 

excellent manner. This indicates that Scanlan’s model for 

the self-excited forces provides very good results for the lift 

force and the pitching moment along the entire span. This 

implies that the varying phase lags and the amplitudes of 

the horizontal and torsional motions along the span do not 

affect the accuracy of the predicted self-excited forces. It is 

also interesting to see that despite the fact that the load 

model has been derived while assuming small vibration 

amplitudes, it still holds at relatively large amplitudes.  

 

 

Fig. 13 Aerodynamic derivatives of the Hardanger Bridge related to displacements or rotation 

Table 4 Aerodynamic derivatives at Vred = 2.57 calculated using the third-order polynomial fit to the data 

AD P1
* P2

* P3
* P4

* P5
* P6

* 

Value -0.733 -0.135    -0.286 0.031 -0.622 -0.197 

AD H1
* H2

* H3
* H4

* H5
* H6

* 

Value -7.52 -0.510 20.66 -2.22 2.09 -0.357 

AD A1
* A2

* A3
* A4

* A5
* A6

* 

Value -2.23 -0.911 6.10 -0.280 -0.032 0.035 
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On the other hand, the prediction of the self-excited drag 

force is inaccurate. Analysis of the time series revealed that 

there is an additional higher-order harmonic contribution at 

2ωCR in the recorded drag force. The applied motion was 

purely sinusoidal; thus, the input motion cannot explain the 

higher-order self-excited forces. Some higher order 

contributions were also observed in the standard forced 

vibration tests. The self-excited drag is very challenging to 

measure since it is very small for small amplitude motion.  

It is therefore much harder to distinguish the higher order 

contributions from inaccuracies introduced by inaccurate 

cancellation of inertia forces and other uncertainties.   

Second-order effects have, however, been observed before 

(Wu and Kareem 2013). Chen et al. (2005) reported the 

presence of higher-order harmonics in self-excited lift and 

pitch under nearly purely torsional oscillations. They 

observed significant contributions from second- and third-

order harmonics for a bluff cross-section, while a test of a 

thin plate did not provide any significant higher-order 

effects. More recent numerical studies by Xu et al. (2016) 

focused on the higher-order self-excited drag force. They 

reported that the second-order drag force can be dominant  

 

 

 

 

 

for a streamlined section when it undergoes torsional 

oscillations. The results presented herein confirm the 

findings of these numerical studies and should be 

considered for further study. There exist nonlinear models 

for self-excited forces.  Studies have shown that Volterra 

series (Wu and Kareem 2014), artificial neural networks 

(Wu and Kareem 2013) and rheological models (Diana et 

al. 2008) (Diana et al. 2010) are possible alternatives. 

Detailed modelling of nonlinear self-excited forces is 

considered out of the scope of this paper, but it is interesting 

to consider a simple expression, which should give a 

reasonable approximation for single harmonic motion. The 

following expression, which includes two harmonic 

components, has therefore been fitted to the measured self-

excited forces to assess the importance of the second-order 

effects 

, (t) sin( ) sin(2 )
nnn n BSe n CR A CRq A t B t        (19) 

Table 6 shows the amplitude ratios B/A for all the 

performed tests; Table 7 compares the accuracy of the 

predicted drag force when considering only the first-order 

and both the first- and second-order effects. 
 

Table 5 Correlation coefficient and peak error between measured and predicted aeroelastic forces induced during 

flutter 

Position 
Frequency 

scale 
Air velocity [m/s] 

Drag Lift Pitch 

ρxy Perr [%] ρxy Perr [%] ρxy Perr [%] 

Pos. 1 4 6.59 0.465 256.9 0.999 0.244 1.00 0.033 

Pos. 1 6 9.89 0.537 255.5 0.995 1.089 0.999 0.071 

Pos. 1 7 11.53 0.658 202.8 0.998 0.867 0.999 0.049 

Pos. 2 4 6.59 0.427 231.8 0.996 0.670 1.00 0.039 

Pos. 2 6 9.89 0.541 191.2 0.998 0.530 1.00 0.074 

Pos. 2 7 11.53 0.570 193.1 0.997 1.156 0.999 0.071 

Pos. 3 4 6.59 0.500 127.7 0.998 0.335 0.999 0.057 

Pos. 3 6 9.89 0.560 130.7 0.996 0.842 0.999 0.088 

Pos. 3 7 11.53 0.633 136.3 0.995 1.348 0.999 0.106 

Average   0.543 191.8 0.997 0.787 0.999 0.065 

 

Fig. 14 Measured vs predicted forces induced during the flutter motion at the bridge mid-span; V= 6.59 m/s 
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As expected, the second-order effects strongly influence 

the self-excited drag force. In fact, for 8 out of the 9 tests, 

the magnitude of the second-order harmonic was larger than 

that of the first one. Table 7 also shows that the predicted 

drag force is greatly improved when including the second-

order effects. For the lift and pitching moment, the 

measured second-order contributions were much smaller. 

These observations are clearly strongly dependent on the 

aerodynamic characteristics of the particular section 

considered. The self-excited forces for sections that have 

almost linear force coefficients in the considered range of 

effective angles of attack will in general give an output that 

is linear even for large angles of attack. 

 

3.5 Amplitude dependency 
 

The results in the previous chapter show that the self-

excited lift force and pitching moment are predicted very 

accurately for the motion considered, while the predicted 

drag force is inaccurate due to strong second-order 

contributions. Previous studies have shown that the 

aerodynamic derivatives might be amplitude dependent 

even when relatively small amplitudes are considered (Chen 

et al. 2005). It is therefore of interest to study how the 

model of the self-excited force performs when considering 

increasing amplitudes, which will be the case when the 

mean wind velocity is slightly higher than the critical 

velocity. The diverging flutter motion has been obtained  

 

 

 

with Eq. (10), assuming a negative damping ratio of ξ = -

0.15%.   

Two of the previously considered frequency scales Sf =4 

and Sf =6 and all three positions in Fig. 7 have been 

considered in this study. Fig. 15 shows simulated time 

histories of the flutter motion at the mid-span of the bridge 

considering a mean wind velocity of 9.9 m/s and a critical 

frequency of 1.67 Hz. The maximum horizontal 

displacement is approximately 1% of the width of the 

bridge deck, while the maximum vertical displacement is 

approximately 60% of the height of the girder. The 

amplitudes of the torsional vibrations range from 2

 to 13


. 

The load model presented in Eq. (12) is, strictly 

speaking, only valid for harmonic oscillations of the bridge 

deck, which is not the case when negative damping is 

introduced. Fig. 16 shows the FFT of the motion history. 

The motion is very narrow banded, which implies that 

assuming a single harmonic motion and using the values of 

the aerodynamic derivatives presented in Table 4 yield a 

fair approximation. 

Fig. 17 presents a comparison of the predicted and 

measured self-excited forces induced during the wind 

tunnel test corresponding to the motion history displayed in 

Fig. 15. 

A near-perfect match between the predicted and 

measured lift and pitching moment values can be observed, 

while the drag predictions seem to have been more accurate 

at the beginning of the test. 

Table 6 The ratio between the amplitudes of second- and first-order harmonics in the measured self-excited forces 

Position Frequency scale Air velocity [m/s] 
Effects of the second-order harmonics [%] 

Drag Lift Pitch 

Pos. 1 4 6.59 132.54 3.53 1.39 

Pos. 1 6 9.89 114.63 4.98 1.48 

Pos. 1 7 11.53 94.32 4.27 1.38 

Pos. 2 4 6.59 189.95 4.87 1.75 

Pos. 2 6 9.89 151.15 5.39 2.12 

Pos. 2 7 11.53 135.06 5.23 1.98 

Pos. 3 4 6.59 157.50 5.16 1.65 

Pos. 3 6 9.89 132.70 5.83 1.97 

Pos. 3 7 11.53 106.28 5.74 1.95 

Average   134.9 5.00 1.74 

Table 7 Accuracy of the predicted self-excited drag force considering only first-order and both first- and second-order 

effects 

Position Frequency scale Air velocity [m/s] 
First-order harmonic 

First- + Second-order 

harmonics 

ρxy Perr [%] ρxy Perr [%] 

Pos. 1 4 6.59 0.535 107.6 0.897 13.4 

Pos. 1 6 9.89 0.575 94.0 0.877 16.1 

Pos. 1 7 11.53 0.680 67.4 0.933 8.6 

Pos. 2 4 6.59 0.429 167.1 0.922 9.6 

Pos. 2 6 9.89 0.542 99.2 0.982 1.9 

Pos. 2 7 11.53 0.570 91.1 0.958 5.4 

Pos. 3 4 6.59 0.523 129.6 0.974 3.2 

Pos. 3 6 9.89 0.565 101.4 0.936 8.5 

Pos. 3 7 11.53 0.638 78.7 0.929 10.0 

Average   0.562 104.0 0.934 8.5 
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As the amplitude of the vibrations increases, the higher-

order harmonic contributions start to play a crucial role in 

the measured self-excited drag. The recorder time series 

were divided into five equal time intervals to study the 

changes in the coefficient of determination - R
2
 between 

predicted and measured forces. Results presented in Table 8 

confirm that the accuracy of drag force predictions drops 

when vibrations increase, while in case of lift and pitch this  

 

 

 

 

effect is negligible. Spectrograms in Fig. 18 show how the 

frequency content of the recorded self-excited drag changes, 

when flutter motion strengthens. Values on the 

spectrograms have been scaled to show relative amplitude 

of the harmonic signals, where 1 indicated largest recorder 

amplitude of a single harmonic for the entire time of 

experiment. 

 

 

Fig. 15 Time series of the flutter motion at the mid-span of the bridge when assuming negative damping 

 

Fig. 16 FFT of the torsional motion in Fig. 15 

 

Fig. 17 Measured vs predicted self-excited forces induced during motion at position 3 for Sf=4 
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As expected, Fig. 18 clearly confirms the presence of 

the higher-order harmonics in the measured self-excited 

drag force. For all of the tested locations and frequency 

scales used, the following conclusions can be drawn. The 

first-order harmonic prevails at the early part of the time 

series, where amplitudes of the motion are relatively small. 

As the vibrations increase, higher -order harmonic 

contributions start to appear. The second-order harmonic  

 

 

 

 

 

 

 

 

especially requires special attention, as it increases faster 

than the first-order harmonic. The second-order component 

dominates in the last part of the time series for all the cases 

considered. Fig. 21 shows spectrograms of the lift force and 

the pitching moment. Higher-order effects are also clearly 

present in the last part of the time series but of much less 

relative magnitude than for the self-excited drag force. 

 

Table 8 Coefficient of determination of the measured versus predicted self-excited forces considering segments of the 

motion 

Part of the total time 

series 

R2 – coefficient of determination 

Drag Lift Pitch 

Pos. 1 Pos. 2 Pos. 3 Pos. 1 Pos. 2 Pos. 3 Pos. 1 Pos. 2 Pos. 3 

0.0-0.2  0.323 0.483 0.645 0.997 0.998 0.997 0.999 0.999 0.999 

0.2-0.4  0.345 0.432 0.587 0.998 0.998 0.998 0.999 0.999 0.999 

0.4-0.6  0.300 0.359 0.485 0.998 0.997 0.997 0.999 0.999 0.999 

0.6-0.8  0.237 0.261 0.364 0.997 0.996 0.995 0.999 0.999 0.999 

0.8-1.0  0.164 0.161 0.230 0.995 0.994 0.995 0.999 0.994 0.995 

 

Fig. 18 Spectrograms of the measured drag force under flutter motion corresponding to 0.25L (pos. 1) 

 

Fig. 19 Spectrograms of the measured drag force under flutter motion corresponding to 0.4L (pos. 2) 
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4. Conclusions 
 

The modeling of self-excited forces is of crucial 

importance when assessing the flutter stability limit of long-

span, cable-supported bridges. This is particularly evident 

when several still-air vibration modes participate in the 

flutter motion, making the ratio of the amplitudes and the 

phase lag between the horizontal, vertical and torsional 

motions vary along the span of the structure. Forced 

vibration technique with a use of section model has been 

used to investigate the accuracy of the self-excited forces 

predicted during flutter motion using aerodynamic 

derivatives. The full set of 18 aerodynamic derivatives of 

the cross-section of the Hardanger Bridge was first 

identified using a standard forced vibration procedure. 

Predicted and measured self-excited forces for the flutter 

motion were compared to assess how well the aerodynamic 

derivatives capture the self-excited forces along the span. 

The flutter mode of the bridge was obtained using the 

multimode approach, and since the flutter mode is complex 

and differs along the bridge span, flutter motions at the mid-

span, at the quarter-span and in close proximity to the mid- 

 

 

 

 

span of the bridge were considered in this study. Several 

mean wind velocity and motion frequency combinations 

that correspond to the critical reduced velocity at full scale 

were considered to study if they affect the accuracy of the 

predicted forces. 

The experimental results show that the aerodynamic 

derivatives identified using a standard forced vibration test 

capture the self-excited lift force and pitching moment very 

well since the predictions correspond to the measurements 

in an excellent manner for all tested position as well as all 

mean wind velocity and frequency combinations. The 

predicted self-excited drag force does not, however, 

correspond well to the measured self-excited drag force. 

The recorded time series revealed a very strong influence 

from second-order effects that dominates the drag force. 

The second-order effects are also visible for the lift and 

pitching moment, but they are very small compared with the 

first-order effects. It was also shown that by including the 

second-order contribution in the model of the self-excited 

forces, the predictions of the drag force can be significantly 

improved. The effects of the amplitude on the accuracy of 

the prediction of the self-excited forces during flutter 

 

Fig. 20 Spectrograms of the measured drag force under flutter motion corresponding to 0.5L (pos. 3) 

 

Fig. 21 Spectrograms of the measured lift force (left) and pitching moment (right) for the scaled flutter motion 

corresponding to 0.5L (pos. 3) 
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motion were investigated by considering a divergent time 

series that corresponds to negative damping. For small 

amplitudes, the self-excited drag force is nearly linear, 

while higher-order harmonics appear when the amplitudes 

become larger. The measured self-excited lift and pitching 

moment values correspond in an excellent manner, even for 

the largest amplitudes considered, although less influential 

higher-order contributions were also noticed for these force 

components. 

 
 

Acknowledgments 
 
This research was conducted with financial support from 

the Norwegian Public Roads Administration. The authors 

gratefully acknowledge this support. 
 

 
References 
 
Adaramola, M.S. and Krogstad, P.Å . (2009), “Model tests of a 

horizontal axis wind turbine in yawed condition. In European 

offshore wind conference and exhibition”, Proceedings of the 

European Offshore Wind Conference and Exhibition, 

Stockholm. 

Agar, T.J.A. (1989), “Aerodynamic flutter analysis of suspension 

bridges by a modal technique”, Eng. Struct., 11(2), 75-82. 

Andersen, M.S., Johansson, J., Brandt, A. and Hansen, S.O. 

(2016), “Aerodynamic stability of long span suspension bridges 

with low torsional natural frequencies”, Eng. Struct., 120, 82-91. 

Bartoli, G. and Mannini, C. (2008), “A simplified approach to 

bridge deck flutter”, J. Wind Eng. Ind. Aerod., 96(2), 229–256. 

Cao, B. and Sarkar, P.P. (2012), “Identification of Rational 

Functions using two-degree-of-freedom model by forced 

vibration method ”, Eng. Struct., 43, 21-30.  

Caracoglia, L. and Jones, N.P. (2003), “Time domain vs. 

frequency domain characterization of aeroelastic forces for 

bridge deck sections”, J. Wind Eng. Ind. Aerod., 91, 371-402. 

Chen, X. (2007), “Improved understanding of bimodal coupled 

bridge flutter based on closed-form solutions”, J. Struct. Eng., 

133(1), 22–31. 

Chen, X., Kareem, A. and Matsumoto, M. (2001), “Multimode 

coupled flutter and buffeting analysis of long span bridges”, J. 

Wind Eng. Ind. Aerod., 89(7-8), 649-664. 

Chen, Z.Q., Yu, X. D., Yang, G. and Spencer, B.F. (2005), “Wind-

induced self-excited loads on bridges”, J. Struct. Eng., 131, 

1783-1793. 

Costa, C. (2007), “Aerodynamic admittance functions and 

buffeting forces for bridges via indicial functions”, J. Fluid. 

Struct., 23(3), 413-428. 

Diana, G., Resta, F.,  and Rocchi, D. (2008). “A new numerical 

approach to reproduce bridge aerodynamic non-linearities in 

time domain.” Journal of Wind Engineering and Industrial 

Aerodynamics, 96, 1871–1884. 

Diana, G., Resta, F., Zasso, A., Belloli, M. and Rocchi, D. (2004), 

“Forced motion and free motion aeroelastic tests on a new 

concept dynamometric section model of the Messina 

suspension bridge”, J. Wind Eng. Ind. Aerod., 92, 441-462. 

Diana, G., Rocchi, D. and Belloli, M. (2015), “Wind tunnel : a 

fundamental tool for long-span bridge design”, Structure and 

Infrastructure Engineering: Maintenance, Management, Life-

Cycle Design and Performance, 11(4), 533-555. 

Dunham, K.K. (2016), “Coastal Highway Route E39 – Extreme 

Crossings”, Transportation Research Procedia, 14(2352), 494-

498. 

Fenerci, A. and Ø iseth, O. (2015), “Full-scale measurements on 

the Hardanger Bridge during strong winds”, In Dynamics of 

Civil Structures, Volume 2, Conference Proceedings of the 

Society for Experimental Mechanics Series, 237-245.  

Fenerci, A. and Ø iseth, O. (2017), “Measured buffeting response 

of a long-span suspension bridge compared with numerical 

predictions based on design wind spectra”, J. Struct. Eng., 147, 

1-15.  

Fenerci, A., Ø iseth, O. and Rönnquist, A. (2017), “Long-term 

monitoring of wind field characteristics and dynamic response 

of a long-span suspension bridge in complex terrain”, Eng. 

Struct., 143, 269-284.  

Fuller, R.G., Lang, C.R. and Lang, R.H. (2000), Twin views of the 

Tacoma Narrows Bridge collapse, American Association of 

Physics Teachers. 

Ge, Y.J. and Tanaka, H. (2000), “Aerodynamic flutter analysis of 

cable-supported bridges by multi-mode and full-mode 

approaches”, J. Wind Eng. Ind. Aerod., 86(2-3), 123-153. 

Gu, M., Zhang, R. and Xiang, H. (2000), “Identification of flutter 

derivatives of bridge decks”, J. Wind Eng. Ind. Aerod., 84, 151-

162. 

Han, Y. Liu, S., Hu, J.X., Cai, C.S., Zhang, J. and Chen, Z. (2014), 

“Experimental study on aerodynamic derivatives of a bridge 

cross-section under different traffic flows”, J. Wind Eng. Ind. 

Aerod., 133, 250-262.  

Hansen, O.S. et al. (2009), “The Hardanger Bridge static and 

dynamic wind tunnel tests with a section model”, Prepared for: 

Norwegian Public Roads Administration Revision 2. 

Hua, X.G. and Chen Z.Q. (2008), “Full-order and multimode 

flutter analysis using ANSYS”, Finite Elem. Anal. Des., 44, 

537-551. 

Huang, L., Liao, H., Wang, B. and Li, Y. (2009), “Numerical 

simulation for aerodynamic derivatives of bridge deck”, Simul. 

Model. Pract. Th., 17(4), 719-729.  

Iwamoto, M. and Fujino, Y. (1995), “Identification of flutter 

derivatives of bridge deck from free vibration data”, J. Wind 

Eng. Ind. Aerod., 55, 55-63. 

Jain, A., Jones, N.P. and Scanlan, R.H., (1996). “Coupled flutter 

and buffeting analysis of long-span bridges”, J. Struct. Eng., 

122(7), 716-725. 

Jones, N.P. Scanlan, R.H., Sarkar, P.P. and Singha, L. (1995), 

“The effect of section model details on aeroelastic parameters”, 

J. Wind Eng. Ind. Aerod., 54-55, 45-53. 

Katsuchi, B.H., Jones, N.P. and Scanlan, R.H. (1999), “Multimode 

coupled flutter and buffeting analysis of the Akashi-Kaikyo 

Bridge”, J. Struct. Eng., 125(1), 60-70. 

Katsuchi, H. Jones, N.P., Scanlan, R.H. and Akiyama, H. (1998), 

“Multi-mode flutter and buffeting analysis of the Akashi-

Kaikyo bridge”, J. Wind Eng. Ind. Aerod., 77-78, 431-441. 

Kvåle, K.A., Sigbjörnsson, R. and Ø iseth, O. (2016), “Modelling 

the stochastic dynamic behaviour of a pontoon bridge: A case 

study”, Comput. Struct., 165, 123-135. 

Körlin, R. and Starossek, U. (2007), “Wind tunnel test of an active 

mass damper for bridge decks”, J. Wind Eng. Ind. Aerod., 95(4), 

267-277.  

Manzoor, S., Hémon, P. and Amandolese, X., (2011), “On the 

aeroelastic transient behaviour of a streamlined bridge deck 

section in a wind tunnel”, J. Fluid. Struct., 27, 1216-1227. 

Matsumoto, M. (1996), “Aerodynamic damping of prisms.” J. 

Wind Eng. Ind. Aerod., 59, 159-175. 

Matsumoto, M., Mizuno, K., Okubo, K., Ito, Y. and Matsumiya, H. 

(2007). “Flutter instability and recent development in 

stabilization of structures”, J. Wind Eng. Ind. Aerod., 95(9-11), 

888-907. 

Matsumoto, M.. Matsumiya, H., Fujiwara, S. and Ito, Y. (2008), 

“New Consideration on Flutter Properties basing on SBS -

Fundamental Flutter Mode, Similar Selberg’s Formula, 

308



 

Modeling of self-excited forces during multimode flutter: an experimental study 

Torsional Divergence Instability, and New Coupled Flutter 

Phenomena affected by Structural Coupling”, In BBAA VI 

Internarional Colloquium, Milano. 

Mishra, S.S., Kumar, K. and Krishna, P. (2008), “Multimode 

flutter of long-span cable-stayed bridge based on 18 

experimental aeroelastic derivatives”, J. Wind Eng. Ind. Aerod., 

96(1), 83-102. 

Miyata, T., Tada, K., Sato, H., Katsuchi, H. and Hikami, Y. (1994), 

“New findings of coupled-flutter in full model wind tunnel tests 

on the Akashi Kaikyo Bridge”, Proceedings of the Symposium 

on Cable-Stayed and Suspension Bridges, Association 

Francaise Pour la Construction, Deauville. 

Nakamura, Y. (1978), “An analysis of binary flutter of bridge deck 

section”, J. Sound Vib., 57, 471-482. 

Namini, A., Albrecht, P. and Bosch, H. (1992), “Finite element-

based flutter analysis of cable-suspended bridges”, J. Struct. 

Eng., 118(6), 1509-1526.  

NI CompactRIO (2017), National Instruments, 

〈http://www.ni.com/compactrio/〉(Mai 07, 2017). 

Ø iseth, O. and Sigbjörnsson, R. (2011), “An alternative analytical 

approach to prediction of flutter stability limits of cable 

supported bridges”, J. Sound Vib., 330(12), 2784-2800. 

Ø iseth, O., Rönnquist, A. and Sigbjörnsson, R. (2010), “Simplified 

prediction of wind-induced response and stability limit of 

slender long-span suspension bridges, based on modified quasi-

steady theory: A case study”, J. Wind Eng. Ind. Aerod., 98(12), 

730-741.  

Ø iseth, O., Rönnquist, A. and Sigbjörnsson, R. (2011), “Time 

domain modeling of self-excited aerodynamic forces for cable-

supported bridges: A comparative study”, Comput. Struct., 

89(13-14), 1306-1322.  

Ø iseth, O., Rönnquist, A. and Sigbjörnsson, R. (2012), “Finite 

element formulation of the self-excited forces for time-domain 

assessment of wind-induced dynamic response and flutter 

stability limit of cable-supported bridges”, Finite Elem. Anal. 

Des., 50, 173-183.  

Qin, X.R., Kwok, K.C.S., Fok, C.H. and Hitchcock, P.A. (2009). 

“Effects of frequency ratio on bridge aerodynamics determined 

by free-decay sectional model tests”, Wind Struct., 12(5), 413-

424. 

Salvatori, L. and Borri, C. (2007), “Frequency- and time-domain 

methods for the numerical modeling of full-bridge 

aeroelasticity”, Comput. Struct., 85(11-14), 675-687. 

Sarkar, P.P., Caracoglia, L., Haan, F.L., Sato, H. and Murakoshi, J. 

(2009), “Comparative and sensitivity study of flutter derivatives 

of selected bridge deck sections, Part 1: Analysis of inter-

laboratory experimental data”, Eng. Struct., 31(1), 158-169.  

Sarkar, P.P., Chowdhury, A.G. and Gardner, T.B. (2004), “A 

novel elastic suspension system for wind tunnel section model 

studies”, J. Wind Eng. Ind. Aerod., 92, 23-40. 

Sarwar, M.W., Ishihara, T., Shimada, K., Yamasaki, Y. and Ikeda, 

T. (2008), “Prediction of aerodynamic characteristics of a box 

girder bridge section using the LES turbulence model”, J. Wind 

Eng. Ind. Aerod., 96(10-11), 1895-1911. 

Scanlan, B.R.H. and Jones, N.P. (1990), “Aeroelastic analysis of 

cable-stayed bridges”, J. Struct. Eng., 116(2), 279-297. 

Scanlan, R.H. (1997), “Amplitude and turbulence effects on bridge 

flutter derivatives”, J. Struct. Eng., 123(2), 232-236. 

Scanlan, R.H. and Tomko, J. (1971), “Airfoil and bride deck 

flutter derivatives”, J. Eng. Mech. Div., 97(6), 1717-1733. 

Selberg, A. (1961), “Oscillation and Aerodynamic Stability of 

Suspension Bridges”, Acta polytechnica Scandinavica Civil 

Engineerin and Building Construction Series. 

Siedziako, B., Ø iseth, O. and Rönnquist, A. (2016a), “A new setup 

for section model tests of bridge decks”, Proceedings of the 

12th UK Conference on Wind Engineering, Nottingham. 

Siedziako, B., Ø iseth, O. and Rönnquist, A. (2016b), 

“Identification of aerodynamic properties of bridge decks in 

arbitrary motion”, In Special Topics in Structural Dynamics, 

Volume 6: Proceedings of the 34th IMAC, A Conference and 

Exposition on Structural Dynamics.  

Siedziako, B., Ø iseth, O. and Rønnquist, A. (2017), “An enhanced 

forced vibration rig for wind tunnel testing of bridge deck 

section models in arbitrary motion”, J. Wind Eng. Ind. Aerod., 

164,152-163.  

Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures 

3rd Ed., Wiley, New York, NY, USA. 

Singh, L., Jones, N.P., Scanlan, R.H. and Lorendeaux, O. (1996), 

Identification of lateral flutter derivatives of bridge decks”, J. 

Wind Eng. Ind. Aerod., 60(1-3), 81-89. 

Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Hsu, M.C., Ø iseth, O., 

Mathisen, K.M., Kostov, N. and McIntyre, S. (2014), 

“Engineering analysis and design with ALE-VMS and space-

time methods”, Arch. Comput. Method. E., 21(481), 481-508. 

Ukeguchi, N., Sakata, H. and Nishitani, H. (1966), “An 

investigation of aerolastic initability of suspension bridges”, In 

Symposium on Suspension Bridges, Lisbon. 

Wu, T. and Kareem, A. (2014), “Simulation of nonlinear bridge 

aerodynamics: A sparse third-order Volterra model”, J. Sound 

Vib., 333(1), 178-188.  

Xu, F.Y., Wu, T., Ying, X.Y. and Kareem, A. (2016), “Higher-

order self-excited drag forces on bridge decks”, Technical Note 

in J. Eng. Mech., 142(3). 

Xu, Y. Ø iseth, O., Naess, A. and Moan, T. (2017), “Prediction of 

long-term extreme wind-induced load effects for cable-

supported bridges using time-domain simulations”, Eng. Struct., 

148, 239-253.  

Zhang, X. and Brownjohn, J.M.W. (2005), “Some considerations 

on the effects of the P-derivatives on bridge deck flutter”, J. 

Sound Vib., 283(3-5), 957-969. 

Zhu, Z.W., Gu, M. and Chen, Z.Q. (2007), “Wind tunnel and CFD 

study on identification of flutter derivatives of a long-span self-

anchored suspension bridge”, Comput.-Aided Civil Infrastruct. 

Eng., 22(8), 541-554. 

 

 

CC 

 

 
 
 
 
 
 
 

309




