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1. Introduction 
 

In many practical cases the flow approaching the 

structures, for example offshore platforms, is not uniform 

because of the wall (seabed) shear stress. Although high 

Reynolds number flows appear in most practical examples 

(e.g., Alam et al. 2011, Alam and Zhou 2013, Rastan et al. 

2017), the flow at a low Reynolds number has an 

application in small heat exchangers and electronic cooling 

components. While the mean flow over a square cylinder 

subjected to a uniform flow is symmetric about the wake 

centerline, that subjected to a non-uniform is asymmetric. 

The difference in the flow velocities over the upper and 

lower surfaces of the cylinder is responsible for the 

asymmetry. The wall proximity effect makes the flow more 

complex than without the wall, resulting in different wake 

flow patterns. It is, therefore, crucial to understand the basic  
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flow phenomena for a cylinder under the influence of non-

uniform flow near the wall. This study investigates the flow 

characteristics of a square cylinder when the gap height L (= 

H*/a*, where H is the gap between the wall and the 

cylinder and a* is the height of the cylinder) and non-

linearity of the approaching velocity profile (based on inlet 

pressure gradient P) are varied. 

Numerical studies on the flow past a square cylinder for 

different inlet shear parameter K and at different Reynolds 

numbers Re were conducted by Hwang and Sue (1997, Re = 

500 - 1500, K = 0 -0.25), Cheng et al. (2005, Re = 100, K = 

0 - 0.5), Cheng et al. (2007, Re = 50 - 200, K = 0 - 0.5), and 

Lankadasu and Vengadesan (2008, Re < 100, K = 0 - 0.2). 

Their results showed that the Strouhal number (St), time-

mean drag coefficient ( DC ) and fluctuating forces all 

decrease with increasing K. Lankadasu and Vengadesan 

(2008) reported that, with increasing K, the critical Re, at 

which flow becomes unsteady, is reduced. Similarly, several 

numerical studies have been carried out on a rectangular 

cylinder of different aspect ratios under a uniform shear 

flow (P = 0), e.g., by Sohankar (2008, Re = 10
5
), Islam et 

al. (2012, Re = 100-250), Yu et al. (2013, Re = 10
5
) and Cao 

et al. (2014, Re = 22000). These studies have shown that the 

Re effect is less significant compared to other parameters 

(e.g., incoming velocity profile). Cao et al. (2014) 

concluded that, with increasing K, the stagnation point 

linearly shifts to the high-velocity side, which was  
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Abstract.  A numerical study on the flow over a square cylinder in the vicinity of a wall is conducted for different 

Couette-Poiseuille-based non-uniform flow with the non-dimensional pressure gradient P varying from 0 to 5. The non-

dimensional gap ratio L (=H*/a*) is changed from 0.1 to 2, where H* is gap height between the cylinder and wall, and a* 

is the cylinder width. The governing equations are solved numerically through finite volume method based on SIMPLE 

algorithm on a staggered grid system. Both P and L have a substantial influence on the flow structure, time-mean drag 

coefficient DC , fluctuating (rms) lift coefficient (CL), and Strouhal number St. The changes in P and L leads to four 

distinct flow regimes (I, II, III and IV). Following the flow structure change, the DC , CL, and St all vary greatly with the 

change in L and/or P. The DC  and CL both grow with increasing P and/or L. The St increases with P for a given L, 

being less sensitive to L for a smaller P (< 2) and more sensitive to L for a larger P (> 2). A strong relationship is observed 

between the flow regimes and the values of DC , CL and St. An increase in P affects the pressure distribution more on the 

top surface than on bottom surface while an increase in L does the opposite. 
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identified to be an inherent behavior of the flow around a 

cylinder subjected to a shear flow. 

Several studies on the wall proximity effect on a 

cylinder flow have also been carried out (Bailey et al. 2002, 

Lee et al. 2005, Kumaran and Vengadesan 2007, Wang and 

Tan 2008, Dhinakaran 2011, Maiti 2012, Samani and 

Bergstorm 2015). Bailey et al. (2002) conducted an 

experimental study and examined the vortex shedding from 

a square cylinder near a wall at Re = 1.9×10
4
. Their results 

showed that the suppression of vortex shedding occurs for L 

< 0.4. Lee et al. (2005) studied the effect of cylinder aspect 

ratio and L (0.3 ≤ L ≤ 2), introducing a simple passive 

control method to reduce the aerodynamic drag and vortex-

induced vibration. They observed that the vortex begins to 

shed by the interaction of the upper shear layer with the 

upwash flow from the gap. Wang and Tan (2008) 

experimentally compared the near-wake flow patterns for a 

circular and a square cylinder for L = 0.1 - 1.0. They 

concluded that the vortex shedding strength for the square 

cylinder is relatively weaker, as compared to that for the 

circular cylinder at the same L. The critical L for the onset 

of vortex shedding is found to be 0.3 and 0.5 for the circular  

 

 

and square cylinders, respectively. Maiti (2012) reported 

that aerodynamic characteristics of a square cylinder under 

a uniform shear flow are more sensitive to L for L > 1 than 

for L ≤ 1.0. Dhinakaran (2011) observed an increase in 

aerodynamic forces with decreasing L for a square cylinder 

placed near a moving wall at Re = 100. The flow behavior 

was classified into two-row vortex street (1 ≤ L ≤ 4), single-

row vortex street (0.4 ≤ L ≤ 1), quasi-steady vortex street (L 

= 0.3) and vortex shedding suppression (L < 0.3). Recently, 

Samani and Bergstrom (2015) conducted large eddy 

simulation to examine the wall proximity effect of a square 

cylinder for three values of L = 0, 0.5 and 1.0 at Re = 500. 

An increase in L leads to an increase in time-mean lift 

coefficient ( LC ) and a decrease in DC . As the cylinder 

approaches the wall, the wake flow becomes increasingly 

asymmetric with the top recirculation cell displaced 

significantly upward and further downstream, and a 

secondary recirculation zone develops on the bottom wall. 

The aforementioned studies on the flow around a single 

cylinder are based on either a uniform flow or a linear shear 

flow with and without wall proximity. It is clear from these 

studies that the inlet velocity profile and the gap flow  

 

 

Fig. 1 (a) Schematics of the computation domain and boundary conditions and (b) Typical grid system around the cylinder 

for L = 0.5 
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greatly alter the aerodynamic forces and hence the flow 

around the cylinder. However, numerical studies on a 

square cylinder in a wall proximity under a non-uniform 

shear flow are scarce. Therefore, the present study aims to 

understand the effect of inlet non-linear velocity profile on 

aerodynamic forces and the wake flow structure of a square 

cylinder at different L. 

 

 

2. Problem formulation 
 

With the wall lying along the x*-axis, a cylinder of a 

square cross-section of a height a* is placed parallel to the 

wall at gap height H* from the wall (Fig. 1). Following the 

previous studies (e.g., Bhattacharyya and Maiti 2005), the 

inlet and outlet boundaries were placed at a distance of 

10a* and 20a* from the front and rear faces of the cylinder, 

respectively. The top lateral boundary lies at 10a* from the 

plane wall. The inlet flow field is taken as Couette-

Poiseuille flow based nonlinear velocity profile u*(y*). This 

upstream condition is consistent with the Navier-Stokes 

equation and viscous effects because of the no-slip 

requirement at the wall (Schlichting and Gersten 2000). In 

other words, the cylinder is submerged into the boundary 

layer of the plane wall. The following nonlinear velocity 

profile (with characteristic velocity U at y* = 10a*) 

described by Schlichting and Gersten (2000) is considered 

at the inlet 
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where U is the velocity at a distance h* from the wall, and P 

is the nondimensional pressure gradient. The P is defined as 
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where Re = Ua*/ν, p = p*/(ρU
2
) and, μ and ν are the  

 

 

viscosity and kinematic viscosity of the fluid. Different  

nondimensional velocity profiles u(y) for different values of 

P with fixed height h* = 10a* are presented in Fig. 2(a). 

 

2.1 Governing equations and numerical method 
 

The non-dimensional Navier-Stokes equations for a 

two-dimensional laminar flow are given by 

0 V  (3) 

 

  V
Re

pVV
t

V 21





 (4) 

The nondimensional quantities V = (u, v), p and t denote 

the velocity, pressure and time, respectively, where a* and 

U are used as the characteristic length and velocity scales 

for the normalization. 

The no-slip condition is used on the cylinder surfaces 

and on the plane wall. A Dirichlet boundary (u = u(y), v = 0) 

is used at the inlet boundary, while the Sommerfeld 

condition ((∂ɸ/∂t)+uc(∂ɸ/∂x) = 0, where ɸ is any flow 

variable, and uc is the local wave speed) is applied at the 

outlet. A slip boundary condition (∂u/∂y = 0, v = 0) is 

imposed on the top lateral boundary. The numerical 

treatment to the Sommerfeld condition has been discussed 

in details in Maiti (2011). 

A finite volume method on a staggered grid system and 

then the pressure correction based iterative algorithm 

SIMPLE (Patankar 1980) are applied. A third-order accurate 

QUICK (Leonard 1995) is employed to discretize the 

convective terms and central differencing scheme for 

diffusion terms. A fully implicit second-order scheme is 

incorporated to discretize the time derivatives. At the initial 

stage of motion, times step is taken to be 0.0001 which has 

been subsequently increased to 0.001 after the transient 

state. 

 

 

Fig. 2 (a) Couette-Poiseuille flow based nonlinear incident velocity profiles for different P and (b) Typical grid 

distribution for L = 0.5 
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3. Grid independence and validation of code 
 

A nonuniform grid distribution is considered in the 

domain, with a uniform grid on the cylinder surface and 

increasingly enlarged grids away from the cylinder surface. 

The grid distribution in x and y directions is shown in Fig. 

2(b), similar to that used in the previous study 

(Bhattacharyya and Maiti 2004, Maiti 2011, 2012). 

Depending on the size of the distributed grids, the 

horizontal and vertical lines of the computational domain 

are divided into five and three, respectively, distinct 

segments. Along the y-direction, a uniform grid with size 

0.005a* is considered between the wall and top of the 

cylinder (within the segment „Iy‟ in Fig. 2(b)). With 

reference to Franke et al. (1990) and Sohankar et al. (1997), 

the value of the first grid size from the cylinder surface is 

kept constant as 0.004a* for the present computation. 

The grid refinement study on the number of uniform 

nodes and on the resolution of grid near the cylinder surface 

and the far fields was conducted in the previous study 

(Maiti, 2011, 2012, Maiti and Bhatt, 2015) for the case of 

single and two tandem cylinders. A detailed discussion on 

the percentage of deviation has been made in these studies. 

In the present study, the grid distribution along the y-

direction is varied according to the gap height of the 

cylinder from the wall. The numerical code validated for the 

case of a square cylinder placed near a wall (Bhattacharyya 

et al. 2006) is used in the present study. Thus, the 

previously published results by the authors also show the 

validity of the used code for this work. 

In the present study the following operational 

dimensionless parameters affecting the flow are considered: 

 L = 0.1, 0.25, 0.5, 1.0, 1.5 and 2.0 

 Inlet pressure gradient P = 0, 1, 3 and 5 

 Reynolds number Re = 1000, based on the 

velocity at height 10a* from the wall (Maiti and Bhatt 

2015). Davis and Moore (1982), Davis et al. (1984) 

presented 2D numerical results for square and rectangular 

cylinders and found a good agreement between the 

numerical and experimental results for Re up to 1000 for a  

 

 

uniform flow. They concluded that the use of more grid 

points could extend the range of Re for 2D computation. 

Bailey et al. (2002) concluded that the vortex formation 

process is increasingly two dimensional for a square 

cylinder in the vicinity of a plane wall. The same opinion 

was shared by Zovatto and Pretizetti (2001), Bhattacharyya 

and Maiti (2005), Maiti (2011, 2012). Bhattacharyya and 

Maiti (2004), Maiti (2011) presented the 2D numerical 

results of a square cylinder for L = 0.5 at Re up to 1000.  

 

 

4. Results and discussion 
 

The effect of L and P on the flow and aerodynamic 

characteristics of a square cylinder is discussed here. The 

results of vorticity contours, power spectra, and pressure 

distributions are presented and discussed.  

 

4.1 Flow structure 
 

Fig.3 shows the instantaneous vorticity contours for L ≤ 

0.5. At L = 0.1, P ≤ 3, the flow is steady. As P is increased 

from 3 to 5, unsteadiness is developed in the far field and 

propagates towards the cylinder, and the flow becomes 

quasi-steady in nature. The flow through the gap is very 

small. On the other hand, the gap flow is significant at L = 

0.25. The flow is steady at P ≤ 1 (L = 0.25), the upper shear 

layer being straight and the gap flow generating an 

anticlockwise recirculation behind the cylinder. At P = 3,  

the gap flow recirculation region is stretched upward and 

results in a clockwise recirculation of a part of the upper 

shear layer. The flow still remains steady. A more detailed 

explanation of vortex shedding suppression from a square 

cylinder at a lower L can be found in Martinuzzi et al. 

(2003) and Maiti (2012). For P = 5, the upper shear layer 

gets sufficient momentum to shed vortices while the gap 

flow with an anticlockwise recirculation has a quasi-steady 

nature. Hence, the wake is dominated by a single row of 

clockwise vortices with a definite peak in the spectra of lift 

coefficient, which will be shown later.  

 

Fig. 3 Instantaneous vorticity contours at different gap heights (L ≤ 0.5) for different P. The solid and dashed lines 

represent the positive and negative vorticities, respectively 
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Upon increasing L to 0.5, the flow is yet steady for P = 0 

and the gap flow recirculation region gets bigger than that at 

a smaller L. Wang and Tan (2008)‟s experimental study 

done for P = 0 revealed that the critical L for the onset of 

vortex shedding is 0.5. At P = 1, the shear layers of different 

vorticity strengths from the upper and lower sides of the 

cylinder curl up into vortices in an alternating fashion. 

While the vortices from the lower side and from the wall 

elongate and dissipate faster in the wake, those from the 

upper side are regular in size and appearance. A single row 

of vortices emanating from the upper side of the cylinder 

thus characterizes the wake. This flow type can be regarded 

as regular vortex shedding from the upper side, i.e., WU,R+L,0, 

where subscript „U‟, „R‟, „L‟, and „0‟ stand for „upper‟, 

„regular‟, „lower‟ and „no-vortex‟, respectively, while „W‟ 

denotes „wake‟. That is, WU,R+L,0 means that regular vortex 

from the upper side preserves in the wake but no vortex 

from the lower side survives or sheds. A strong interaction 

between the upper vortex and two counter-rotating gap 

vortices leads to the dissipation of the gap vortices. Zovatto 

and Pedrizzetti (2001) reported that an interaction of the 

wall boundary layer with the lower shear layer suppresses 

the positive vortices from the lower side of the cylinder, the 

downstream wake featuring a row of negative vortices. 

Compared to the counterpart of the unsteady flow for L = 

0.25, P = 5, the streamwise distance between the 

consecutive vortices is larger for L = 0.5, P = 1. With  

increasing P from 1 to 5 (L = 0.5), the formation of vortices 

occurs closer to the cylinder, and the gap vortices are less 

stretched during their formation. Now following the 

definitions of the single row street wake (WU,R+L,0), the 

steady flow can be expressed as WU,0+L,0, i.e., no vortices in 

the wake from the upper and lower sides. 

Li et al. (2017) for P = 0 numerically studied the wall 

effect (0 ≤ L ≤ 2.0) on an inclined flat plate at an angle of 20° 

with the ground plane. They reported that when L is 

decreased from 2 to 0.5 the positive vortex clusters 

generated from the trailing edge flattens and the vortex 

strength weakens. As a result, only negative vortices were  

 

 

observed in the downstream flow. A Further decrease in L 

yields a steady flow.  

Fig. 4 shows instantaneous vorticity structures at L = 

1.0, 1.5 and 2.0 for different values of P. The vortex 

shedding commences for L = 1.0, P = 0. The interaction 

occurs between the vortices where the upwash flow from 

the gap facilitates the interaction, and a row of negative 

vortices features the wake, i.e., WU,R+L,0. An increase in L 

results in an increase in the local Reynolds number that is 

mechanically similar to an increase in P since (-dP/dx) = 2P 

(1/h)
2
(1/Re), where h is the nondimensional height from the 

wall. With an increase in P the interaction of positive and 

negative vortices leads to an irregular arrangement of 

vortices in the wake, making wake vortices different in size 

and intensity. A dramatic change takes place when L is 

increased further to 1.5 for P = 1. The roll-up is delayed of 

the shear layer from the lower surface of the cylinder, the 

positive vortices from the gap becoming more stretched and 

surviving in the wake (see snapshot for L= 1.5, P = 1). Here 

this flow is termed as WU,R+L,S; here subscript „S‟ stands for 

„stretched‟. In other words, WU,R+L,S means the wake is 

characterized by regular vortices from the upper side and 

stretched vortices from the lower side of the cylinder. For a 

higher P, the vortices from the lower side become stronger 

and survive in the wake as regular vortices. A further 

increase in L to 2.0 results in the lower side vortices to  

stretch more for a small P (P = 0, 1; L = 2.0) but to be 

regular in size and appearance at a large P (P = 3 and 5; L = 

2.0). The wake for P = 3, 5 at L = 2.0 thus characterizes 

WU,R+L,R, i.e., regular vortices from both upper and lower 

sides. At a larger L there is a pronounced flow separation of  

the shear layers from the wall, disseminating negative  

vortices. It triggers the instability in the vortex distribution 

in the wake, and the wake unsteadiness enhances. It is clear 

from Figs. 3 and 4 that the flow structure strongly depends 

on L and P. With the increase in L, the front stagnation 

point of the cylinder moves to the higher velocity side and 

the flow is biased towards the lower velocity side. 

 

 

Fig. 4 Instantaneous vorticity contours at different gap heights (L ≥ 1.0) for different P. The solid and dashed lines 

represent the positive and negative vorticities, respectively 
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Based on the above discussion, four distinct flow 

patterns are identified in a broad sense. They are steady 

flow WU,0+L,0 (regime I) and unsteady flows WU,R+L,0 

(regime II), WU,R+L,S (regime III), and WU,R+L,R (regime IV), 

respectively, as marked in the P-L plane in Fig. 5. 

Representative flow structures and corresponding drag and 

lift (CD and CL) histories are shown for each flow regime. 

The time histories of CD and CL, and the wake flow all 

indicate the steady flow at small L (regime I). The steady 

flow regime is wide at a small P and narrow at a high P. 

When L is increased for a given P, the flow becomes 

unsteady (regime II). In this flow pattern the vortices from  

 

 

 

 

 

the lower side rapidly dissipate. The wake is characterized 

by a single row of vortices (WU,R+L,0). The variations in CL 

and CD thus regular. For a further increase in L (regime III), 

the lower side of the cylinder disseminates stretched 

vortices in the wake, while the upper side spawns regular 

vortices (WU,R+L,S). The time evolutions of CD and CL are 

thus not symmetric about their mean. Regime IV appears at 

a high P and L, where regular vortices are released from 

both sides of the cylinder. Accordingly, the symmetry of the 

CD and CL about their mean improves.  

 

 
 

 

Fig. 5 Classification of flow structures in the P-L plane and representative vorticity contours and corresponding time 

histories of CD (black line) and CL (blue line). The dashed lines represent the boundaries between the regimes 

 

Fig. 6 Time-mean streamwise velocity profiles for various L at the exit of the gap between the cylinder lower surface and 

the wall. (a) P = 0 and (b) P = 5 
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4.2 Gap flow  
 

It is clear from the discussion made above that both L 

and P affect the flow structure behind the cylinder. It is 

therefore instructive to investigate the velocity profile in the 

gap region for different P to understand the wake structure. 

Fig. 6 shows the mean velocity profiles for different L and 

P. Lee et al. (2005) reported that in the cases where the 

vortex shedding occurs, the velocity in the gap is greater 

than that without vortex shedding. Also, the position at 

which maximum velocity occurs is closer to the lower 

surface of the cylinder. Presently, for L ≤ 0.5 at P = 0, the 

gap flow is similar to a jet flow, the velocity profile taking a 

parabolic shape owing to a steady flow. As observed in Fig. 

4, the flow becomes unsteady for L ≥ 1.0 at P = 0. The gap 

flow for the unsteady cases (L ≥ 1.0, Fig. 6(a)) is biased 

towards the cylinder, and the position of the maximum  

velocity shifts closer to the cylinder. The interaction 

between vortices from the cylinder and wall causes the 

upward flow near the trailing edge of the cylinder. The flow 

velocity near the cylinder surface is negative for L = 1.5 and 

2.0 because of the recirculating flow between the shear 

layer and lower surface. On the other hand, though the flow 

is unsteady for L = 1.0, recirculating flow is absent as the 

shear layer is attached to lower surface and separates from 

the trailing edge (Fig. 4). At P = 5 (Fig. 6(b)), an increase in 

the mean velocity in the gap region prevails and vortex 

shedding occurs at relatively a smaller L, compared to the P 

= 0 counterpart. A larger L corresponds to a higher flow for 

y/L < 0.5. Again the recirculating flow crops up for L ≥ 1.0 

but disappears for L < 1.0, corresponding to the lower shear 

layer separation from the leading for L ≥ 1.0 and from the 

trailing edge for L < 1.0, respectively (Figs. 3 and 4).  

 

 

4.3 Pressure distribution on the cylinder surface ( PC )  

 

The time-averaged surface pressure ( PC ) distributions 

along the cylinder periphery for different P at an 

intermediate L = 0.5 and a large L = 1.5 are presented in 

Figs. 7(a) and 7(b). The PC  for P = 0 does not change 

appreciably along the surfaces of the cylinder, very similar 

to that for a creeping flow. For P ≥ 1, PC  distribution is 

greatly affected by P; PC  is negative for all the surfaces 

except the front one, which is a general PC -distribution 

characteristics for a square cylinder subjected to a uniform 

flow (Alam et al. 2002). Presently, there is a suction 

occurring at the lower front-corner of the cylinder. As P is 

increased, the stagnation point shifts towards the upper 

front-corner of the cylinder, hence the flow is accelerated 

for a longer length on the lower-front surface, resulting in 

the suction pressure. It is more pronounced for larger P. It is 

noted that the difference in PC  between the front and rear 

surface increases with an increase in P, which leads to a 

higher drag for a higher P. On the top and bottom surfaces, 

more negative PC  is observed with an increase in P. The  

difference in PC  distribution is associated with the wake 

vorticity structure. The pressure distribution is affected 

more on the top surface compared to the bottom surface due 

to a higher nonlinear flow over the upper surface. At L = 1.5, 

P = 3 and 5, the pressure recovery is substantial on the 

upper side surface (Fig. 7(b)). This is because of the 

reattachment of the upper shear layer near the trailing edge 

of the cylinder.  

 

 

 

Fig. 7 Time-averaged pressure coefficient ( PC ) on the cylinder surface. (a) L = 0.5, and (b) L = 1.5. (c) Pressure 

distribution along the wall and the lower surface of the cylinder at different L for P = 3 
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Fig. 7(c) shows PC  distributions in the gap region of 

the cylinder, along the lower surface of the cylinder and 

along the plane wall at different L for a particular P = 3. For 

L = 0.25, the difference between PC  at the cylinder 

surface and wall is almost zero. This implies that the gap 

flow is unidirectional, and the core flow resembles that of a 

channel flow. As a result, the interaction between the shear 

layers of the cylinder is lost (Fig. 3). The PC  distribution 

changes with an increase in L for L ≥ 0.5 where the PC  is 

always higher on the wall than on the bottom surface of the 

cylinder. This explains why the flow exiting from the gap 

goes upward, leading to a strong coupling between the 

upper and lower shear layers of the cylinder (Fig. 4). 

 

4.4 Time-averaged drag coefficient ( DC ) and 

fluctuating lift coefficient (CL) 
 

Contours of DC  and fluctuating (rms) lift coefficient 

(CL) of the cylinder on the L-P plane are shown in Fig. 8. 

The flow regimes are also marked in the figure. The DC  is  

always positive on the entire L-P plane as expected. The  

DC  boosts when P and/or L is increased, being maximum 

in regime IV. The boost in DC  is substantial in regimes III 

and IV. The value of DC  is very small in regimes I and II 

as the flow is steady for the former regime and vortices 

from the lower side rapidly dissipate for the latter regime. 

As such, at a small L, the pressure difference between the 

front and rear faces of the cylinder is small (Fig. 7), 

resulting in the small DC . As can be seen from Fig. 7, 

when P is increased at a particular L, the pressure difference 

between the front and rear surface enhances which 

contributes to the increased DC .  

The variation in CL on the L-P plane again distinguishes 

the flow regimes. The CL is zero in regime I because of the 

steady flow and small in regime II as anticlockwise vortex 

is absent in the wake. On the other hand, the CL in regime 

III is larger than that in regime II but smaller than that in 

regime IV. It is consistent with the fact that stretched and 

regular vortices from the gap appear for regimes III and IV,  

 

 

respectively. Again, an increased P and/or L corresponds to 

an increased CL, the increase is however large in regimes 

III and IV.  

A strong relationship is observed between the flow 

regimes (presence of vortices) and the values of DC  and 

CL. The regimes are classified based on vortices in the 

wake, i.e., WU,0+L,0, WU,R+L,0, WU,R+L,S and WU,R+L,R; the 

presence, regularity and size of vortices obviously enhance 

with the flow regime changing from WU,0+L,0 to WU,R+L,R. As 

such, DC  and CL also grow when the flow regime 

changes from WU,0+L,0 to WU,R+L,R. 

 

4.5 Vortex shedding frequency and spectra 
 

Power spectra of lift coefficients of the cylinder as 

functions of L and P are presented in Fig. 9, where the 

horizontal axis is normalized based on U and a*. For the 

conditions (L = 0.1, P = 0 – 5; L = 0.25; P = 0 – 3; and L = 

0.5, P = 0), the flow was steady, and there was no peak in 

the power spectra. Power spectrum results for these 

conditions are not presented here. For other values of L and 

P, at least one definite peak is observed in the spectra. As 

seen in Fig. 9(a), for P = 0, one single predominant peak, 

marked by St, is identified. The peak heightens with 

increasing L. There are some ripples around the peak for 

WU,R+L,S wake but nor for WU,R+L,0. The difference might be 

due to the presence of the stretched vortex for the former. 

The St for P = 1 (Fig. 9(b)) is greater than that for P = 0, 

again the peaks for WU,R+L,S are accompanied by ripples. 

For higher values of P and L where the wake and wall 

vortex interaction results in a complicated wake with 

regular vortices from the upper side and from the gaps (Fig. 

4), a peak at 2St along with the predominant peak at St 

characterizes WU,R+L,R wake. Obviously, the different wakes 

are distinguished by different power spectrum 

characteristics. 

Fig. 10 presents the global view of St variations as a 

function of P and L. The dominant peak frequency in the 

power spectra is pondered as the St. The St augments with P 

for a given L (Fig. 10) corresponding to the shrink in vortex 

formation length with increasing P (Fig. 4). 

 

Fig. 8 Contours of (a) time-averaged drag coefficients ( DC ) and (b) rms lift coefficient (CL). The dashed lines represent 

the boundaries between the regimes 
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The correspondence between formation length and St 

can be found in Bloor (1964), Alam et al. (2011), and 

Zheng and Alam (2017). The augmentation largely occurs 

in regime II, the maximum St (= 0.18) occurring L = 0.25, P 

= 5, where the wake consists of a single row of regular 

vortices. While less sensitive to L for a smaller P (< 2), the 

St is more sensitive to L for a larger P (> 2), though 

generally declining with L for both small and large P. 

 

 

5. Conclusions 
 

The effect of gap height (L) and inlet-flow nonlinearity 

(Couette-Poiseuille pressure gradient P) on the flow  

 

 

 

 

structure around a square cylinder is numerically 

investigated for L = 0.25 - 2.0 and P = 0 - 5. Results of 

vorticity, time-mean drag coefficient DC , fluctuating (rms) 

lift coefficient (CL), power spectrum of lift, and Strouhal 

number St are presented. The flow structure is found to be 

highly sensitive to both P and L. Four distinct flow regimes 

(I, II, III and IV) are identified based on P and L. Regime I 

(WU,0+L,0) is characterised by a steady flow, appearing at 

small L, for example at L  0.5 for P = 0. The critical L 

value decreases from 0.5 to 0.1 as P increases from 0 to 5. 

Regime II (WU,R+L,0), appearing at a lager L than regime I, 

features single-row vortex street where vortices from the 

upper side of the cylinder survive and those from the gap 

between the cylinder and wall disappear. When P and/or L 

increases, regime II is followed by Regime III (WU,R+L,S) 

where vortices from the gap are not regular in size but 

 

Fig. 9 The power spectra of fluctuating lift coefficient at different P and L 

 

Fig. 10 Contours of Strouhal number (St) at different L and P. The dashed lines represent the boundaries between the 

regimes 
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stretched while those from the upper side is regular. Regime 

IV (WU,R+L,R) prevails at a high P and L, characterized by 

regular vortices from both upper side and gap.  

Following the flow structure dependence on P and L, the 

aerodynamic parameters DC , CL, and St vary greatly with 

change in L and/or P. The DC  and CL both enlarge with 

increasing P and/or L, being maximum in regime IV and 

minimum in regime I. The values of DC  and CL follow  

the vortex appearance (WU,0+L,0, WU,R+L,0, WU,R+L,S, WU,R+L,R) 

in the wake. As such, a strong relationship is observed  

between the flow regimes and the values of DC  and CL. 

The DC  and CL also grow with the flow regime changing 

from WU,0+L,0 to WU,R+L,R. 

Power spectra of lift forces reflect different features at 

different flow regimes. While no peak appears for regime I, 

a single peak appears for regime II. For regimes III and IV, 

the predominant peak is accompanied by some ripples and 

another peak at superharmonics, respectively. The St grows 

with P for a given L, the growth largely occurring in regime 

II. The maximum St is observed as 0.18 at L = 0.25, P = 5. 

The St is less sensitive to L for a smaller P (< 2) and more 

sensitive to L for a larger P (> 2). 

For steady flow (regime I), the velocity profile takes a 

parabolic shape, maximum velocity occurring the near the 

middle of the gap. For the unsteady flow (regimes II, III and 

IV), the maximum velocity shifts to the lower surface of the 

cylinder. When the shear layer is separated from the lower 

leading edge, there is a region of recirculating flow 

(negative velocity) near the lower surface of the cylinder. 

The recirculating flow is absent when the shear layer is 

attached and separates from the trailing edge.  

For a square cylinder in a uniform flow the PC  is 

positive on the front surface and negative on the other three 

surfaces. For a cylinder in non-uniform flow with a large P 

where the stagnation point moves sufficiently away from 

the nominal stagnation point, negative pressure is possible 

on the lower-front surface of the cylinder because of the 

flow accelerating for a longer length on the lower-front 

surface. An increase in P affects the pressure distribution 

more on the top surface than on bottom surface while an 

increase in L does the opposite.  

 

 

Acknowledgments 
 

The authors acknowledge financial assistance from DST 

(INDIA) (San No. 100/IFD/3613/2008-09 

and  SR/S4/MS/820/13 dated 07.05.2015), from Deanship 

of Scientific research of KFUPM through grant IN151026 

and from Research Grant Council of Shenzhen Government 

through grant JCYJ20160531191442288. 

 

 

References 
 

Alam, M.M. and Zhou, Y. (2013), “Intrinsic features of flow 

around two side-by-side square cylinders”, Phys. Fluids, 25, 

085106-21. 

Alam, M.M., Moriya, M., Takai, K. and Sakamoto, H. (2002), 

“Suppression of fluid forces acting on two square prisms in 

tandem arrangement by passive control of flow”, J. Fluid. 

Struct., 16, 1073-1092. 

Alam, M.M., Zhou, Y. and Wang, X.W. (2011), “The wake of two 

side-by-side square cylinders”, J. Fluid Mech., 669, 432-471. 

Bailey, S.C.C., Kopp, G.A. and Martinuzzi, R.J. (2002), “Vortex 

shedding from a square cylinder near a wall”, J. Turbulence, 3, 

003.  

Bhattacharyya, S. and Maiti, D.K. (2004), “Shear flow past a 

square cylinder near a wall”, Int. J. Eng. Sci., 42, 2119-2134. 

Bhattacharyya, S. and Maiti, D.K. (2005), “Vortex shedding from 

a square cylinder in presence of a moving wall”, Int. J. Numer. 

Meth. Fl., 48, 985-1000. 

Bhattacharyya, S., Maiti, D.K. and Dhinakaran, S. (2006), 

“Influence of buoyancy on vortex shedding and heat transfer 

from a square cylinder in wall proximity”, Numer. Heat Tr, 

Part A, 50(6), 585-606. 

Bloor, S.M. (1964), “The transition to turbulence in the wake of a 

circular cylinder”, J. Fluid Mech., 19, 290-309. 

Cao, S., Zhou, Q. and Zhou, Z. (2014), “Velocity shear flow over 

rectangular cylinders with different side ratios”, Comput. Fluids, 

96, 35-46. 

Cheng, M., Tan, S.H.N. and Hung, K.C. (2005), “Linear shear 

flow over a square cylinder at low Reynolds number”, Phys. 

Fluids, 17, 078103. 

Cheng, M., Whyte, D.S. and Lou, J. (2007), “Numerical 

simulation of flow around a square cylinder in uniform shear 

flow”, J. Fluid. Struct., 23, 207-226. 

Davis, R.W. and Moore, E.F. (1982), “A numerical study of 

vortex shedding from rectangles”, J. Fluid Mech., 116, 475-506. 

Davis, R.W., Moore, E.F. and Purtell, L.P. (1984), “A numerical-

experimental study of confined flow around rectangular 

cylinders”, Phys. Fluids, 27, 46-59. 

Dhinakaran, S. (2011), “Heat transport from a bluff body near a 

moving wall at Re=100”, Int. J. Heat Mass Trans., 54, 5444-

5458. 

Franke, R., Rodi, W. and Schonung, B. (1990), “Numerical 

calculation of laminar vortex shedding flow past cylinders”, J. 

Wind Eng. Aerod., 35(1-3), 237-257. 

Hwang, R.R. and Sue, Y.C. (1997), “Numerical simulation of 

shear effect on vortex shedding behind a square cylinder”, Int. J. 

Numer. Meth. Fl., 25, 1409-1420. 

Islam, S.U., Zhou, C.Y., Shah, A. and Xie, P. (2012), “Numerical 

simulation of flow past rectangular cylinders with different 

aspect ratios using the incompressible lattice Boltzmann 

method”, J. Mech. Sci. Tech., 26, 1027-1041. 

Kumaran, M. and Vengadesan, S. (2007), “Flow characteristics 

behind rectangular cylinder placed near a wall”, Numer. Heat 

Tr.-A, 52, 643-660. 

Lankadasu, A. and Vengadesan, S. (2008), “Onset of vortex 

shedding in planar shear flow past a square cylinder”, Int. J. 

Heat Fluid Fl., 29, 1054-1059. 

Lee, B.S., Kim, T.Y. and Lee, D.H. (2005), “Control of vortex 

shedding behind a rectangular cylinder near the ground”, 

Numer. Heat Tr.-A, 47, 787-804.  

Leonard, B.P. (1995), “Order of accuracy of QUICK and related 

convection–diffusion Schemes”, Appl. Math. Model., 19, 640-

653. 

Li, Z., Lan, C., Jia, L. and Ma, Y. (2017), “Ground effects on 

separated laminar flows past an inclined flat plate”, Theor. 

Comp. Fluid Dyn., 31, 127-136. 

Maiti, D.K. (2011), “Dependence of flow characteristics of 

rectangular cylinders near a wall on the incident velocity”, Acta 

Mech, 222, 273-286. 

Maiti, D.K. (2012), “Numerical study on aerodynamic 

characteristics of rectangular cylinders near a wall”, Ocean 

Eng., 54, 251-260. 

340



 

Couette-Poiseuille flow based non-linear flow over a square cylinder near plane wall 

Maiti, D.K. and Bhatt, R. (2015), “Interactions of vortices of a 

square cylinder and a rectangular vortex generator under 

Couette Poiseuille flow”, J. Fluids Eng. – ASME, 137, 051203-

1. 

Martinuzzi, R.J., Bailey, S.C.C.R. and Kopp, G.A. (2003), 

“Influence of wall proximity on vortex shedding from a square 

cylinder”, Exp. Fluids, 34, 585-596. 

Patankar, S.V. (1980), “Numerical Heat Transfer and Fluid Flow”. 

Hemisphere Publishing Corporation, Taylor and Francis Group, 

New York. 

Rastan, M.R., Sohankar, A. and Alam, M.M. (2017), “Low-

Reynolds-number flow around a wall-mounted square cylinder: 

flow structures and onset of vortex shedding”, Phys. Fluids, 29, 

103601-19. 

Samani, M. and Bergstrom, D.J. (2015), “Effect of a wall on the 

wake dynamics of an infinite square cylinder”, Int. J. Heat 

Fluid Fl., 55, 158-166. 

Schlichting, H. and Gersten, K. (2000), “Boundary-Layer Theory”, 

Springer, New York. 

Sohankar, A. (2008), “Large eddy simulation of flow past 

rectangular-section cylinders: side ratio effects”, J. Wind Eng. 

Aerod., 96, 640-655. 

Sohankar, A., Norberg, C. and Davidson, L. (1997), “Numerical 

simulation of unsteady low-Reynolds number flow around 

rectangular cylinders at incidence”, J. Wind Eng. Aerod., 69, 

189-201. 

Wang, X.K. and Tan, S.K. (2008), “Comparison of flow patterns 

in the near wake of a circular cylinder and a square cylinder 

placed near a plane wall”, Ocean Eng., 35, 458-472. 

Yu, D., Butler, K., Kareem, A., Glimm, J. and Sun, J. (2013), 

“Simulation of the Influence of aspect ratio on the 

aerodynamics of rectangular prisms”, J. Eng. Mech. - ASCE, 

139, 0733-9399. 

Zheng, Q. and Alam, M.M. (2017), “Intrinsic features of flow past 

three square prisms in side-by-side arrangement”, J. Fluid 

Mech., 826, 996-1033. 

Zovatto, L. and Pedrizzetti, G. (2001), “Flow about a circular 

cylinder between parallel walls”, J. Fluid Mech., 440, 1-25. 

 

341




