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1. Introduction 
 

Vortex-induced vibration (VIV) of marine structures is 

of practical interest to ocean engineering in the actual 

application. For example, VIV-induced fatigue damage is 

one of the most common failures for cylindrical marine 

structures, such as risers, pipelines, and tendons. Recently, 

great strides have been achieved in understanding the 

mechanisms involved in this complicated dynamic process 

and the comprehensive reviews can be found in Sarpkaya 

(2004), Williamson and Govardhan (2004, 2008) and Wu et 

al. (2012). 

The majority of research efforts on VIV in the past have 

been focused on the study of rigid cylinders (Jauvtis and 

Williamson 2004, Assi et al. 2013, Bourguet and Jacono 

2014, Kim and Alam 2015, Qin et al. 2017). There are 

considerably fewer publications for VIV of slender flexible 

cylinders. Vandiver (1993) experimentally studied the VIV 

of a flexible cylinder in uniform cross-flow. An empirical 

formula was proposed to predict the drag force by using the 

transverse vibration amplitude of the cylinder. Brika and  

Laneville (1993) investigated the VIV of a flexible cable.  
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The first mode of vibration was excited. It was also found 

that different vortex-shedding patterns occur at „lock-in‟, 

similar to those observed behind rigid cylinders 

(Williamson and Roshko 1988). The switch between the 

vibration braches shows hysteresis, corresponding to the 

phase jump between the displacement and the lift. Huera-

Huarte and Bearman (2009a, b) carried out a series of 

laboratory experiments in which a flexible cylinder was 

partly submerged in water. Three different tensions were 

adopted. The initial, upper and lower branches were 

observed for the smallest tension case. Whereas the lower 

branch vanished for the other two cases. It was also found 

that the dual resonance, i.e., the in-line (IL) and cross-flow 

(CF) vibrations resonate simultaneously, was featured by 

the „figure-eight‟ trajectories, the third harmonic in lift, and 

the steady IL to CF vibration phase difference. The 2S 

vortex-shedding pattern, i.e., two single vortices alternately 

shed in one cycle, was found near the supporting ends while 

the vortex-shedding pattern in the mid-span of the cylinder 

switched between 2S and 2P (two vortex pairs alternately 

shed in one cycle). Similar findings were also reported in 

Chaplin et al. (2005). 

Due to the very demanding computational requirements 

of three-dimensional (3D) computational fluid dynamics 

(CFD) simulations, the numerical investigation on the VIV 

of a slender cylinder is rare, especially the one with a large 

aspect ratio. Newman and Karniadakis (1997) carried out a 

direct numerical simulation (DNS) of a flexible cylinder in 

uniform cross-flow. Periodic boundary conditions were 

applied to simulate the VIV of a slender cylinder with an 

 
 
 

Vortex-induced vibration of a long flexible cylinder in uniform cross-flow 
 

Chunning Ji
1, Ziteng Peng1a, Md. Mahbub Alam2b,  

Weilin Chen1c and Dong Xu1d 
 

1State Key Laboratory of Hydraulic Engineering Simulation & Safety,  
Tianjin University, Tianjin, 300072, China 

2Institute for Turbulence-Noise-Vibration Interaction and Control, Shenzhen Graduate School,  
Harbin Institute of Technology, Shenzhen, 518055, China 

 
(Received September 18, 2017, Revised December 10, 2017, Accepted December 27, 2017) 

 
Abstract.  Numerical simulations are performed of a long flexible cylinder undergoing vortex-induced vibration at a Reynolds number of 

500. The cylinder is pinned at both ends, having an aspect ratio of 100 (cylinder length to cylinder diameter) and a mass ratio of 4.2 

(structural mass to displaced fluid mass). Temporal and spatial information on the cross-flow (CF) and in-line (IL) vibrations is extracted. 

High modal vibrations up to the 6
th
 in the CF direction and the 11

th
 in the IL direction are observed. Both the CF and IL vibrations feature a 

multi-mode mixed pattern. Mode competition is observed. The 2
nd

 mode with a low frequency dominates the IL vibration and its existence 

is attributed to a wave group propagating back and forth along the span. Distributions of fluid force coefficients are correlated to those of the 

CF and IL vibrations along the span. Histograms of the x’-y motion phase difference are evaluated from the total simulation time and a 

complete vibration cycle representing the standing or travelling wave pattern. Correlations between the phase difference and the vibrations 

are discussed. Vortex structures behind the cylinder show an interwoven near-wake pattern when the standing wave pattern dominates, but 

an oblique near-wake pattern when the travelling wave pattern prevails. 
 

Keywords:  numerical simulation; long flexible cylinder; vortex-induced vibration; mode; fluid force coefficient; phase 

difference; vortex structure 

 



 

Chunning Ji, Ziteng Peng, Md. Mahbub Alam, Weilin Chen and Dong Xu 

infinite length. Two vibration modes, i.e., the standing and 

travelling wave modes, were found. Because of the low-

energy feature of the travelling wave mode, the standing 

wave vibration finally transformed into the travelling wave 

one. It was also reported in Newman and Karniadakis 

(1997) that the near-wake showed an oblique vortex-

shedding pattern in the travelling wave vibration, but 

exhibited an interwoven vortex-shedding pattern in the 

standing wave vibration. Bourguet et al. (2011) numerically 

investigated the VIV of a flexible cylinder in shear-flow. A 

combined standing and travelling wave pattern was 

observed. Lucor et al. (2006) studied the distribution and 

variation of the hydrodynamic forces on a flexible cylinder 

undergoing VIV in shear-flow. The influences of different 

flow profiles, i.e., linear and exponential shear flows, were 

investigated.  

In this paper, the VIV of a flexible cylinder in a uniform 

cross-flow is numerically investigated. The aspect ratio of 

the cylinder is 100, the Reynolds number and the mass ratio 

are 500 and 4.2, respectively. The normalized tension is 

170. The structural damping is set to zero in order to 

encourage large-amplitude oscillation of the cylinder. 

 

 

2. Numerical methodology 
 

The governing equations for fluid flow are the 

incompressible Navier–Stokes equations. The fluid-

structure interaction (FSI) is simulated by using the 

immersed boundary (IB) method which was first introduced 

by Peskin (1972) in the simulation of blood flow around the 

flexible leaflet of a human heart. In the framework of the IB 

method, the flow governing equations are discretized on a 

fixed Cartesian grid, which generally does not conform to 

the geometry of moving structures. As a result, the 

boundary conditions on the fluid-structure interface (which 

manifest the interaction between fluid and structure) cannot 

be imposed directly. Instead, an extra body force is added 

into the momentum equation by using interpolation and 

distribution functions to take such interaction into account. 

Compared with conventional FSI numerical methods, the IB 

method has significant advantages, particularly in the FSI 

simulations with topological changes.  

The conservative form of the second-order Adams-

Bashforth temporal-discretized governing equations of 

incompressible fluid flow using the IB method are 

1
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where, u is the velocity, p is the pressure, 

( ( ))t    h uu u u comprises of the convective 

and diffusive terms,  denotes gradient operator, the 

superscript t  is matrix transposition, and superscript 

1n , 1/ 2n , n , 1n  indicate the time step. f  

denotes the extra body force on the Cartesian grid and is 

calculated as 
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where, F  is the extra body force on the IB points, V  is 

the desired velocity of the IB points obtained by solving the 

governing equation of cylinder motion, ( , )iI  X  and 

( , )D  x  are the interpolation and distribution functions 

suggested by Peskin (2002), respectively. Note that, the 

lower-case ( ) x  represents the variables on the Cartesian 

grid x , such as u , p , f , etc., while the upper-case 

( )i X  indicates the variables on the IB points iX , such as

V , F , etc. The interpolation function projects physical 

fields from the Cartesian grids to the IB points. On the other 

hand, the distribution function maps physical fields from 

the IB points back to the Cartesian grids. 

The two-step predictor-corrector procedure is adopted 

for the decoupling of the flow governing equations (Eqs. 

(1)-(3)). The resultant pressure Poisson equation is solved 

by using the bi-conjugate gradient stabilized method – 

BiCGSTAB (Van der Vorst 1992), preconditioned by using 

the geometric multi-grid method. For the sake of 

conciseness, details of the methodology are not presented 

here. Please refer to our previous work (Ji et al. 2012) for 

further information. 

The flexible cylinder is modelled as a pined-pined top 

tension cable on the consideration of the large aspect ratio 

of a marine riser in reality. The bending stiffness of the 

cylinder is neglected. The mass ratio is 
2/c fm D  , 

where c  is the cylinder mass per unit length, f  is the 

fluid density, and D is the cylinder diameter. The 

normalized tension is 
2 2/ fT D U   , where   is the 

tension, and U  is the free-stream velocity. The non-

dimensional phase velocity in a vacuum is calculated as 

/T m  . The non-dimensional i
th

 natural frequency in 

a vacuum is , /i v if   , where i  is the normalized i
th

 

wavelength. The non-dimensional governing equation for 

the structural dynamic can be expressed as follows. 

( , )
( , ) ( , )

2

C x y
m x y T x y     (4) 

where, ( , )x y  is the displacement normalized by the 

cylinder diameter, 
2( , ) 2 ( , ) / fC x y F x y DU   is the 

hydrodynamic force coefficient,  ( , )F x y  is the 

hydrodynamic force. The superscripts .. and ” represent the 

second-order time and space derivatives, respectively. The 

governing equation is discretized by using the 3D 2-node 

cable element. Each node has three degree of freedoms 

(DOF). The Newmark-   method which is unconditionally 

stable and second-order accurate is adopted for time 

marching.  
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To examine the accuracy of the numerical methodology, 

the VIV of an isolated cylinder in cross-flow was simulated. 

The computational domain size is 200D and 100D in the 

streamwise and transverse directions. An uniform mesh 

with the non-dimensional grid spacing of 

1 64x D y D     is used for discretization. The 

Reynolds number is Re=100, the mass ratio is m=1.25, the 

reduced velocity is / 4.46r nU U f D  , 
nf  is the 

natural frequency of the vibration system. Table 1 compares 

the vibration amplitude, hydrodynamic forces and vibration 

frequency between the present and published results. A 

good agreement is achieved between the results. More 

validation cases can be found in Chen et al. (2015a, b). 

 

 

3. Results and discussions 
 

3.1 Simulation parameters 
 

The simulation is carried out in a rectangular 

computational box [ 8 ,32 ]D D   [ 10 ,10 ]D D 

[0,100 ]D discretized by a Cartesian mesh with a resolution 

of 512  192  384 (streamwise  transverse  spanwise). 

The flexible cylinder is initially placed at the origin of the 

X-Y plane. In the vicinity of the cylinder (a square region of 

[ 2 ,22 ]D D  [ 2 ,2 ]D D  in the X-Y plane), a uniform 

mesh with a grid spacing of / 32x y D     is used.  

 

 

 

 

 

Beyond that, a stretched mesh is adapted on the 

consideration of keeping the total number of grids within a 

reasonable range. Along the cylinder span, totally 385 

planes are adopted with a grid spacing of 0.26z D  . 

The Dirichlet inflow boundary condition is used together 

with free-slip side boundary conditions. A Neumann-type 

boundary condition is adopted at the outflow. The number 

of IB points for the cylinder is 202 on the X-Y plane to 

ensure at least one IB point is allocated in each grid cell. 

Other simulation parameters are: the Reynolds number 

Re=500, the non-dimensional tension is T=170, the mass 

ratio m=4.2 and the normalized time step size is 

/tU D =0.0025.  

 

3.2 Vibration response 
 

Fig. 1 shows the maximum and root-mean-square 

(r.m.s.) amplitudes of the displacement in the IL and CF 

directions, respectively. Note that the time-averaged 

streamwise displacement is deducted in the calculation of 

the IL amplitudes. Both IL and CF amplitudes are 

symmetric about the cylinder‟s midpoint at z/D=50. The IL 

max amplitude, maxx , shows two major peaks on which 

eleven minor peaks superimposed while the CF max 

amplitude, maxy , demonstrates two major peaks on each 

side and a flattened and spanwise elongated peak in the 

middle. Obvious fluctuations can be found on this mid-span  

 

 

Table 1 Comparison of the VIV of an isolated cylinder in cross-flow 

 
maxY D  

meandC  
maxlC  St 

Shiels et al. (2001) 0.58 2.22 0.77 0.196 

Shen et al. (2009) 0.57 2.15 0.83 0.190 

Bourguet and Jacono (2014) 0.57 2.08 0.88 0.188 

Present work 0.57 2.09 0.75 0.185 

  
(a) Maximum amplitude (b) Root-mean-square amplitude 

Fig. 1 Distribution of the displacement amplitude along the span 
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peak. The largest maxx  is 0.49D achieved at z/D=25 and 

75. It is comparable to the largest maxy  of 0.89D obtained 

at z/D= 90. This is different from the VIV response of an 

elastically-supported rigid cylinder in which the IL 

amplitude is one order of magnitude smaller than the CF 

counterpart. The flattened CF peak in the mid-span implies 

the presence of the travelling wave pattern in this region 

while the augmented CF peaks near the ends indicate the 

prevailing standing wave pattern. Moreover, the peak 

amplitudes near both ends roughly double the one in the 

middle, suggesting the perfect reflection of the propagating 

wave. The IL and CF r.m.s. amplitudes show similar 

patterns discussed above except that the variation is 

smoother. The amplitudes are approximately symmetric 

about the midpoint, and have the maximum values of 0.16D 

and 0.38D in the IL and CF directions, respectively. 

Fig. 2 shows the time-space distribution of the IL and 

CF displacement. The combined standing and travelling 

wave pattern is obvious in the CF displacement. For 

example, in the mid-span, the CF displacement shows the 

standing wave pattern during 19.5< /tU D <24 but 

displays the travelling wave pattern during 32.5< /tU D

<40. The two patterns alternately dominate the CF vibration. 

The IL displacement shows a multi-component vibration 

pattern with a low-frequency dominated component 

travelling with high-frequency ones. The standing wave 

pattern is observed at the very ends due to the wave 

reflection. The above observations are consistent with the 

spanwise distribution of the IL and CF amplitudes, as 

shown in Fig. 1.  

An interesting phenomenon observed is that a wave 

group composed of several individual waves propagates  

 

 

 

back and forth along the span. Because the structural 

damping is zero, the amplitude of the wave group is not 

significantly reduced, despite some fluctuations in the IL 

displacement. When the wave group is reflected from one 

end, the displacement shows the standing wave pattern. On 

the other hand, when the wave group propagates half-way 

to the other end, the displacement shows the travelling wave 

pattern in the mid-span.  
Fig. 3 shows the distribution of the power spectral 

density (PSD) of the displacement calculated by using the 

fast Fourier transform. It can be seen that the IL vibration 

shows the co-existence of three components, i.e., the 2
nd

, 

10
th

 and 11
th

 mode of vibration. Among these, the 2
nd

 mode 

is predominant while the 10
th 

mode is rather weak. The CF 

vibration consists of the 5
th

 and 6
th

 mode of vibration, with 

the former slightly prevalent. The multi-mode vibration is 

the unique feature of the VIV of a flexible cylinder, 

especially for the one with a large aspect ratio. A possible 

reason is related to the IL bending of the cylinder which 

gives rise to the varying local normal velocity (thus the 

varying local reduced velocity) along the cylinder. It should 

be noticed that the 2
nd

 mode of vibration in the IL direction 

is not related to the periodical vortex shedding but is caused 

by the low-frequency propagating wave group.  

The PSD plots of the displacement only show the time-

averaged characteristics of the vibration modes. To 

investigate their temporal evolutions, the time histories of 

the vibration mode in the IL and CF directions are 

calculated by applying the mode decomposition method 

(Huera-Huarte and Bearman 2009a). Obvious mode 

competition is observed, as seen in Fig. 4. In the CF 

vibration, the competition is between the 5
th

 and 6
th

 modes 

while in the IL vibration, the competition is between the 

10
th

 and 11
th

 modes. The mode competition of the IL  

 

Fig. 2 Time-space distribution of the IL (upper) and CF (lower) displacement 
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displacement is not well demonstrated due to the existence 

of the predominant 2
nd

 mode. However, by filtering out this 

low-frequency component, the competition is revealed as 

will be discussed in Section 3.3. Upon closer inspection on 

the modal histories, it can be found that when the wave 

group is reflected from the lower end (z/D=0), the CF 

vibration shows the co-existence of the 5
th

 and 6
th

 modes. 

However, when the wave group echoes off the upper end 

(z/D=100), the CF vibration shows a single-mode pattern, 

either 5
th

 or 6
th

 mode.  

 

 

 

 

 

 

3.3 Modal decomposed vibration response 
 

As discussed above, the IL displacement has multiple 

components and is dominated by the 2
nd

 mode of vibration 

with a rather low frequency. However, this low-frequency 

vibration component is not connected to vortex-excited 

vibration due to its significant difference from the vortex-

shedding frequency. To clearly show the characteristics of 

the vortex-induced vibration, in this section and hereafter, 

the low-frequency component is filtered out, and the 

retained high-frequency vibration is investigated. The  

 

Fig. 3 Power spectral density of the IL and CF displacement 

 

Fig. 4 Time histories of the streamwise and transverse vibration mode 
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purpose of this treatment is to purify the „contaminated‟ 

results by the 2
nd

 mode of vibration and thus the vibration 

characteristics are more meaningful in physics. 

Fig. 5 shows the decomposition of the IL displacement 

at the mid-span point. The low-frequency component x  is 

identified by using the multilevel wavelet decomposition 

function, i.e. wavedec2, in Matlab and removed from the 

original signal x .  Wavedec2 returns the wavelet 

decomposition of a two-dimensional matrix, i.e., the time-

space variation of vibration responses, using a wavelet 

named „sym7‟ in this study. The retained vibration response  

 

 

 

 

still contains multiple components as indicated by the 

varying amplitude of x . To check the accuracy of the 

decomposition, Fig. 5 also shows the reconstructed signal X 

which is virtually equivalent to the original one.  

Fig. 6 shows the temporal and spatial evolution of the 

decomposed low-frequency vibration x  and the remained 

x . For /tU D < 60, x  shows the 2
nd

 mode of vibration 

with a maximum amplitude roughly 0.4D. However, it 

incorporates the 1
st
 mode of vibration when /tU D > 60  

 

 

Fig. 5 Mode decomposition of the IL displacement at the mid-span point. x is the original signal, x  is the low-frequency 

component, x  is the retained high-frequency component, X is the reconstructed signal 

 

Fig. 6 Time-space distribution of the low-frequency (upper) and high-frequency (lower) components of the IL 

displacement 
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despite the amplitude is reduced. The x  shows a pattern 

similar to that of the CF displacement in Fig. 2. Standing 

wave pattern dominates near the two ends of the cylinder 

while the travelling and standing wave patterns alternately 

appear in the mid-span with the former prevalent. The back 

and forth propagation of a wave group is observed again in 

x . However, upon closer inspection, it can be seen that the 

IL wave group is slightly ahead, about one-tenth of the 2
nd

 

modal period, of its CF counterpart.  

Fig. 7 shows the max and r.m.s. amplitudes of x . Both 

display larger peaks near the ends and smaller ones in the 

middle, although this trend is less prominent in the r.m.s. 

amplitude. This is similar to the variation of maxy  along 

the span and can be attributed to the wave reflection at the  

 

 

 

 

ends. Compared to the amplitudes of the original 

displacement x, the two major peaks disappear and the 

eleven minor peaks are thus more protruding. The maxima 

of the max and r.m.s. amplitudes are 0.2D and 0.07D, 

respectively, which are substantially smaller than the CF 

counterparts. From this point of view, the IL vibration 

amplitude (vortex-induced) is roughly one order of 

magnitude smaller than that in the CF direction, which 

agrees with the observations in the VIV of an elastically-

mounted rigid cylinder.  

Fig. 8 shows the frequency spectra and the mode 

decomposition of x . The competition between the 10
th

 

and 11
th

 modes of vibration is clearly demonstrated. 

 

 

 

Fig. 7 Distribution of the maximum and root-mean-square amplitudes of the IL displacement along the span 

 

 

Fig. 8 Power spectral density (upper) and vibration mode history (lower) of the high-frequency component of the IL 

displacement 
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3.4 Hydrodynamic forces 
 

Fig. 9 shows the spanwise distributions of the time-

averaged and r.m.s. force coefficients. It is seen that 

,D meanC  shows six peaks along the span similar to the CF 

vibration amplitude. However, ,D rmsC  shows a distribution 

with eleven peaks, although the two peaks adjacent to the 

mid-span peak are less protruding, which is analogous to 

the IL vibration amplitude. This difference can be explained 

as follows. The ,D meanC  is closely correlated with the 

time-averaged pressure difference around the cylinder. At 

the antinodes of the CF displacement, the time-averaged 

pressure behind the cylinder is lower than that at the CF 

vibration nodes due to the larger CF amplitude. This causes 

a larger drag at the CF vibration antinodes. However, 

,D rmsC  is linked with the instantaneous IL vibration and the 

local vortex-shedding, and thus shows the same variation 

with that of the IL amplitude. In the mid-span, ,D rmsC  is 

obviously smaller than that near the ends. This can be 

attributed to the local smaller IL vibration amplitude. As 

expected, the mean lift coefficient ,L meanC  is close to zero 

with small fluctuations. The r.m.s. lift coefficient, ,L rmsC , 

behaves similarly to the CF vibration amplitude along the 

span, see Fig. 9 (b).  

 

3.5 Phase difference of x’-y motion 
 

According to the suggestion of Bourguet et al. (2011), 

the phase difference between the IL and CF displacements 

is defined as 

[ , mod 360 ]x y x y       (5) 

where, p and q are two integer numbers defining the level of 

synchronization. In this paper, p = 1 and q = 2 are adopted 

considering the dominant frequencies of x  and y as 

shown in Figs. 3 and 8. Note that the vibration response  

 

 

 

corresponding to the 2
nd

 mode of IL vibration is excluded 

because it is caused by the travelling wave group. As stated 

in Bourguet et al. (2011), when 0< x y  <180, the trajectory 

of the cylinder motion is counter-clockwise, i.e., the 

cylinder moves upstream when approaching the CF 

vibration maxima. On the contrary, when 180< x y  <360, 

the trajectory is clockwise. The switches between the 

counter-clockwise and the clockwise orbits usually match 

the nodes and anti-nodes of vibration. Bourguet et al. 

(2011) stated that when 0< x y  <180, energy-transfer is 

from fluid flow to structure vibration, and thus the large-

amplitude vibrations are excited. However, when 180< x y 

<360, energy-transfer is reversed and the vibrations are 

damped out. However, Vandiver et al. (2009) affirmed that 

315 < x y  < 90 is favorable to large-amplitude VIV as the 

motion of the cylinder at the peaks in the CF vibration is 

opposed to the flow. Conversely, 135< x y  <270 is 

unfavorable to significant VIV.  

Fig. 10(a) depicts the histograms of x y   evaluated 

from the whole time. It is seen that the distribution of x y   

shows a staggered pattern along the span, concentrating on 

either 20 or 220 at different sections. This pattern exhibits 

a connection with the variation of the IL and CF vibration 

amplitudes. From the ends to the mid-span, the odd IL 

peaks match the zones with x y  =20 while the even IL 

peaks agree with the zones with x y  =220. Similarly, from 

the ends to the mid-span, the ascent sections of the CF 

amplitude curve correspond to x y  =20 while the descent 

sections are linked with x y  =220. This alternating 

favorable and unfavorable VIV zone pattern is highly 

coincident with the findings in Vandiver et al. (2009). It can 

also be observed that the transition from the counter-

clockwise to the clockwise trajectory links with the anti- 

 

  
(a) Time-averaged force coefficients (b) Root-mean-square force coefficients 

Fig. 9 Distribution of the time-averaged and root-mean-square force coefficients. 
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nodes of the CF vibration while the change from the 

clockwise to the counter-clockwise orbit relates with the 

nodes of the CF vibration. 

Figs. 10 (b)-10(d) present the histograms of x y   from a 

complete vibration cycle representing the standing (52.5<

/tU D <57.5) and travelling (34< /tU D <40 and 64<

/tU D <70) wave patterns, respectively. In the standing 

wave pattern, x y   shows a similar pattern to that discussed 

above, although the histograms is much purer and the zones 

are narrower. Between the zones, x y   displays sharp 

transitions. However, the distribution of x y   in the 

traveling wave pattern is distinct. It shows a continuous 

variation with in the zones, i.e., increasing along the wave 

propagation direction (ascending within 34< /tU D <40 

and descending within 64< /tU D <70), which implies 

that the mid-span is dominated by the travelling wave 

vibration without obvious nodes and anti-nodes. However, 

x y   displays phase jumps of 360 between the zones. It is 

also noticed that x y   shows invariant sections near the 

upper (34< /tU D <40) and lower (64< /tU D <70) 

ends, indicating the local standing wave vibration caused by 

the wave reflection. Comparing Figs. 10(a), 10(c) and 

10(d), it can be found that the interlaced structures in Fig. 

10(a) are actually the superimposed „footprints‟ of the phase 

difference in traveling wave pattern. The varying phase 

difference along the cylinder span can be attributed to the 

different phase velocities of the CF and IL vibrations in the 

traveling wave pattern. As discussed in Vandiver et al. 

(2009), the phase velocity of a slender cylinder is dictated  

 

 

 

by the bending stiffness and the added mass. In this study, 

the cylinder is modeled as a tension dominated cable. Its 

non-dimensional phase velocity in a vacuum is 

/T m   which is frequency independent. As a result, 

the IL and CF phase velocity should be exactly the same, 

even if the IL frequency is twice of the CF one as in this 

study. However, in fluid, the added mass 
am  of a vibrating 

cylinder can significantly alter the non-dimensional phase 

velocity / ( )aT m m   , especially when the mass 

ratio is small. Considering that the IL and CF vibrations are 

distinct in both amplitude and frequency, the added mass, 

and thus the non-dimensional phase velocity, is different in 

the IL and CF vibrations. Consequently, the phase 

difference is variant along the cylinder span, as shown in 

Figs. 10(c) and 10(d). 

 

3.6 Near-wake pattern 
 

Fig. 11 shows the vortex-shedding patterns in the near-

wake at two time instants. The vortices are visualized by 

using the iso-surfaces of 2 =-5  – the second eigenvalue 

of the symmetric tensor 
2 2S Ω , where S  and Ω  are 

respectively the symmetric and asymmetric parts of the 

velocity gradient tensor u . The color on the iso-surfaces 

indicates of the vorticity in the spanwise direction. Fig. 

11(a) shows the vortex-shedding pattern at /tU D =55 

corresponding to the standing wave pattern. It is observed 

that the spanwise vortex structures are generally parallel to 

the cylinder indicating the prevalence of the interwoven 

vortex-shedding pattern. This is different from the vortex-

shedding pattern at /tU D =66 as shown in Fig. 11(b).  

 
               (a)                    (b)                   (c)                    (d) 

Fig. 10 Histograms of the phase difference between the IL and the CF vibrations. (a): the whole time, (b): the standing 

wave pattern (52.5< /tU D <57.5), (c): the travelling wave pattern (ascending) (34< /tU D <40) and (d): the travelling 

wave pattern (descending) (64< /tU D <70). 
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At /tU D  =66, the separated vortex structures are 

oblique to the cylinder due to the predominant travelling 

wave vibration. The vortex shedding is phase locked to the 

traveling wave and create large lifts moving with wave 

crests. Note that the vortex structures change their oblique 

directions if the propagation of the traveling wave flips over 

(not shown here). 

 

 

4. Conclusions 
 

A numerical investigation is carried out on the vortex-

induced vibration of an isolated cylinder in cross-flow at a 

Reynolds number of 500. The immersed boundary method 

is applied to solve the interaction between the fluid and the 

flexible cylinder. The structural dynamics is simulated by 

using a 3D 2-node cable model. The slender cylinder, with 

an aspect ratio of 100, is top tensioned and pin-pin 

supported. The normalized tension is 170, and the mass 

ratio is 4.2. The investigation leads to the following 

conclusions. 

 

(1)  The IL and CF displacements show the co-existence of 

multiple components. Mode competitions between the 

10
th

 and 11
th

 modes (IL) and between the 5
th

 and 6
th

 

mode (CF) are observed. 

(2) The standing and travelling wave patterns alternately 

dominate the IL and CF vibrations. 

(3) The 2
nd

 mode with a very low vibration frequency 

dominates the IL vibration and its existence is attributed  

 

 

to the wave group propagating back and forth along the 

span. 

(4)  ,D meanC  and ,L rmsC  show a variation similar to that of 

the CF displacement while ,D rmsC  displays a 

distribution matching the IL displacement. 

(5) Histograms of the x’-y motion phase difference are 

evaluated from a complete vibration cycle representing 

the standing or travelling wave pattern. In the standing 

wave dominated vibration, the sharp transition from the 

counter-clockwise to the clockwise orbit is connected 

with the CF vibration anti-node while that from the 

clockwise to the counter-clockwise trajectory is 

associated with the CF vibration node. The variation of 

the phase difference is smooth in the travelling wave 

governed vibration without sharp transitions. 

(6) Vortex structures behind the cylinder show the 

interwoven near-wake pattern when the standing wave 

pattern dominates, but the oblique near-wake pattern 

when the travelling wave pattern prevails. 
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