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Abstract.  The probabilistic information of directional extreme wind speeds is important for precisely 
estimating the design wind loads on structures. A new joint probability distribution model of directional 
extreme wind speeds is established based on observed wind-speed data using multivariate extreme value 
theory with the t-Copula function in the present study. At first, the theoretical deficiencies of the Gaussian-
Copula and Gumbel-Copula models proposed by previous researchers for the joint probability distribution of 
directional extreme wind speeds are analysed. Then, the t-Copula model is adopted to solve this deficiency. 
Next, these three types of Copula models are discussed and evaluated with Spearman’s rho, the parametric 
bootstrap test and the selection criteria based on the empirical Copula. Finally, the extreme wind speeds for a 
given return period are predicted by the t-Copula model with observed wind-speed records from several areas 
and the influence of dependence among directional extreme wind speeds on the predicted results is discussed. 
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1. Introduction 
 

The importance of considering wind directionality effect in estimating probabilistic wind load 

effects on structures has been well recognized (Zhang and Chen 2015). Cook (1983) analyzed the 

wind directionality effect for the first time and indicated the risk should be distributed uniformly by 

direction. Cook and Miller (1999) improved this method and showed the geographic variation of the 

correlation of extreme wind speeds between adjacent sectors. The pioneering work of Cook (1983) 

and Cook and Miller (1999) proposed a solution of wind directionality effect, while the definite 

expression of the joint probability distribution of directional extreme wind speeds has not been 

obtained. The estimation of a joint probability distribution model of directional extreme wind speeds 

can be decomposed into two aspects based on the Sklar theorem (Sklar 1959). The first aspect is the 

estimation of the one-dimensional marginal cumulative distribution function in each sector and the 

second one is the estimation of the Copula model to consider the correlation of extreme wind speeds 

among different sectors (Simiu et al. 1985, Kanda and Itoi 2001, Itoi and Kanda 2002, Zhang and 
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Chen 2015, 2016).  

The first aspect involves fitting the one-dimensional probability distribution based on the 

pioneering theoretical work of Fisher and Tippett (1928). Von Mises (1936) represented the three 

asymptotic distributions of Fisher and Tippett (1928) as the Generalised Extreme Value Distribution. 

Gumbel (1958) defined clear formulations for these asymptotic distributions as Fisher-Tippett Type 

I, Type II, Type III distributions. Cook and Harris (2004), Harris (1996, 2006, 2009) and Naess (2001) 

considered extreme wind speed distribution as belonging to the domain of the Fisher-Tippett Type I 

distribution because the parent distribution of wind speeds is generally regarded as the Weibull 

distribution. While, Simiu et al. (1996, 2001), Holmes and Moriarty (1999) and Kasperski (2007) 

considered that the Fisher-Tippett Type III distribution is appropriate for extreme wind speeds which 

are limited in magnitude for geophysical reasons because the Type III distribution curves in a way 

that approaches a limited value for long return periods, while the extreme value predicted with 

Fisher-Tippett Type I is unbounded as the return period increases. Lagomarsino et al. (1992) 

indicated that applying the asymptotic treatment to samples composed by a finite number of 

independent data, errors increase on increasing the return period of the estimates concerned. Cook 

and Harris (2004, 2008) developed the FT1 penultimate distribution that accounts for asymptotic 

convergence and avoids the associated errors; this method derives from classical asymptotic analysis, 

taking into account finite values for the annual rate of independent events (Torrielli et al. 2013). The 

above distribution of analysis of extreme wind speeds were tested by Torrielli et al. (2013) and 

Harris (2014) based on simulation methods for the macro-meteorological wind speed proposed by 

Torrielli et al. (2011), Torrielli et al. (2014) and Harris (2014). The FT1 penultimate distribution 

devised by Cook and Harris performs surprisingly well (Harris 2014) and leads to a very good data 

fitting (Torrielli et al. 2013). To solve the second problem, researchers analysed the correlation of 

extreme wind speeds among different sectors with Copula theory, including the two-dimensional 

Gumbel-Copula model (Simiu et al. 1985), Partially Nested Gumbel-Copula model (Kanda and Itoi, 

2001), Fully Nested Gumbel-Copula model (Itoi and Kanda 2002, Zhang and Chen 2016) and 

Gaussian-Copula model (Zhang and Chen 2015, 2016).  

For several researchers and practitioners, it appears to be sufficient to try to fit any stochastic 

model with the most convenient Copula family and confirm that the fitting procedure is not so “bad” 

(Jaworski et al. 2010). Gumbel-Copula is one of the Extreme-Value Copulas (Genest and Rivest 

1989, Jaworski et al. 2010). It appears to be reasonable to build the joint probability distribution 

model of directional extreme wind speeds with the Gumbel-Copula model. However, the Gumbel-

Copula model has only a single parameter, so it is not able to fully reflect the complex correlation 

among 16 (or even more than 16) different sectors (Haraguchi and Kanda 1999). The Partially 

Nested Gumbel-Copula and Fully Nested Gumbel-Copula models have multiple parameters, but it 

is difficult to build the suitable nested structure. In order to avoid producing a negative probability 

density function, the parameters in the nested function should be decline from the deepest nested 

structure to the shallowest one gradually (Whelan 2004, Embrechts et al. 2001). This makes the 

problem more complicated. Zhang and Chen (2016) and Itoi and Kanda (2002) sorted the nested 

sequence in the order of wind speed dominance, but it does not always satisfy the requirement. It is 

difficult to determine the sequence of the fully nested structure or divide the directional wind speeds 

into several groups to build the partially nested structure. Zhang and Chen (2015, 2016) considered 

the statistical dependence among directional extreme wind speeds with the Gaussian-Copula model, 

but the Gaussian-Copula model has no upper tail (long return period) dependence (Sibuya 1959, 

Falk et al. 2010). The dependence among directional extreme wind speeds for long return periods 

cannot be reflected correctly when the joint probability distribution model is established with the 

262



 

 

 

 

 

 

A joint probability distribution model of directional extreme wind speeds… 

Gaussian-Copula model, while the extreme wind speed for long return periods is mainly considered 

in estimating probabilistic wind load effects of structures. Jaworski et al. (2010) indicated that a 

significant estimation error can be induced when one tries to fit with Copulas that do not exhibit any 

peculiar behaviour in the tails. This may cause over estimating the wind load effects on structures.  

The t-Copula model can reflect the dependence among multi-dimensional random variables 

conveniently since it has multiple parameters, and it usually does not require the nested structure 

(Jaworski et al. 2010). Although the t-Copula is not an Extreme-Value Copula theoretically, it can 

capture the dependence among multi-dimensional extremes in the upper tail (Embrechts et al. 2002, 

Nikoloulopoulos et al. 2009). Therefore, the t-Copula is proposed to establish the joint probability 

distribution model of directional extreme wind speeds in the present study. 

 

 

2. Basic method of the proposed approach 
 

Let  1 2, , , NF v v v    be the joint probability distribution function of multi-dimensional variables 

 1 2, , , Nv v v   , with one-dimensional margins    1 , , NF v F v   . According to the Sklar theorem 

(Sklar 1959), when    1 , , NF v F v     are all continuous, there exists a unique Copula 

 1 2, , , NC p p p    such that for all  1 2, , , Nv v v     

         1 2 1 1 2 2, , , , , ,N N NF v v v C F v F v F v                    (1) 

where N denotes the size of multivariate random variables, which is equal to the number of sectors 

(16 in the present case).  

Based on the Sklar theorem, modelling the joint distribution of directional extreme wind speed 

can be divided into two aspects:  

(1) The estimation of one-dimensional marginal cumulative distribution functions 

   1 , , NF v F v    in each sector.  

(2) The estimation of Copula model  1 2, , , NC p p p     to consider the correlation of extreme 

wind speeds among different sectors.  

This section introduces the process for building the joint distribution model of directional 

extreme wind speeds using the Sklar theorem. At first, the one-dimensional marginal distribution 

function of extreme wind speeds in each sector is analysed by the extreme analysis theory of Harris 

(1996, 1999, 2006, 2009) based on the monthly maximum wind speeds (see section 2.1). Then, the 

process of establishing the t-Copula model to consider the dependence among directional extreme 

wind speeds is introduced (see section 2.2). Finally, the parameter estimation method for the t-

Copula model is discussed (see section 2.3).  

 

2.1 The fitting process of one-dimensional marginal probability distribution functions 
 

The extreme analysis theory of Harris (1996, 1999, 2004, 2006, 2009) eliminates as much of the 

error as possible and further considers the properties of extreme values among the fitting methods 

of one-dimensional extreme distributions (Zhang 2014). However, the Independent Storm method 

proposed by Harris (1996, 1999, 2004, 2006, 2009) is not appropriate for analysing wind speeds 

with the Sklar theorem since the extreme samples extracted with this method do not have the same 
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lengths in different sectors, so it is difficult to build the Copula model. Therefore, the block maxima 

method, in which extracted extreme samples in different sectors are of the same length, is adopted 

in the present study instead of the Independent Storm method. The left-censoring (Harris 2004, 

2009), improved reduced variate (Harris 1996, 1999) and weighted least-square (Harris 1996, 1999) 

methods are adopted to fit the one-dimensional marginal distributions based on the FT1 penultimate 

distribution (Cook and Harris, 2004, 2008, Harris, 2009).  

Until recently, the total observation times of wind-speed records have generally been several 

decades or even a few years. For the block maxima, the small sample size of annual maximum wind 

speed will lead to large statistical error (Zhang and Chen 2015). The daily maximum wind speeds 

are also not appropriate for estimating extreme wind speed since their temporal correlation will result 

in the inapplicability of the extreme theory. The monthly maximum wind speeds not only eliminate 

the temporal correlation but also reduce the statistical error due to the increased sample size (Zhang 

and Chen 2015). Therefore, the monthly maximum wind speeds are used to fit one-dimensional 

marginal distributions in the present study. The unit of measurement of the return period is 

accordingly adjusted from year to month, e.g., a 50-year return period is expressed as a 600-month 

return period.  

The fitting process of the one-dimensional marginal probability distribution with the monthly 

maximum wind speeds in each sector (e.g., the nth sector) is introduced as follows: 

(1) Statistically analysing the observed wind-speed data in each sector, extracting the monthly 

maximum wind speeds in the nth sector, and then sorting them from smallest to largest, 

1n mn Mnv v v       , where M denotes the number of observed sample points, i.e., it denotes 

the number of monthly maximum wind speeds in the present case.  1, ,m m M   is the index 

of the monthly maximum wind speeds; 

(2) Calculating the mean value, the mean square value and the variance of each reduced variate 

(Harris 1996, 1999) 

1

1

0

( 1)
ln( ln( )) (1 p)

( 1) ( )

m M m

m

M
y p p dp

M m m

  
     
    

          

(2) 

1

2 2 1

0

( 1)
( ln( ln( ))) (1 p)

( 1) ( )
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m

M
y p p dp

M m m

  
     
               (3) 

2 2 2ym m my                                (4) 

where p denotes the non-exceedance probability and   ln lny p    is the reduced variate for 

extreme analysis. The expression for the Γ function is    1

0
0y mm e y dy m


    ;  

(3) Calculating the weights (Harris 1996, 1999)  

 

2

2

1

1/

1/

m
m M

m

m

w








                            (5) 

(4) According to the left-censoring, only if 0my  , the mth monthly maximum wind speed mnv  
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and its my  and 
mw  are used to fit the FT1 penultimate distribution (Harris 2004, 2009);  

(5) Fitting the FT1 penultimate distribution by the weighted least-square method (Cook and Harris 

2004, Harris 2009) 

( ) exp( exp( ( )))P v v                          (6) 

a) Calculating the fitting parameters α and Π 

      1 1 1

2 2

1 1

( ) ( )

( )

M M M

m m mn m m m mn

m m m

M M

m mn m mn

m m

w y v w y w v

w v w v

 

 

   

 

 





  

 
                 (7) 

1 1

M M

m mn m m

m m

w v w y
 

                           (8) 

where α , Π and τ are fitting parameters of the FT1 penultimate distribution. The initial value of τ is 

set as 1;  

b) Calculating the error  

2 2

1

(y )
n

m m mn

m

S w v


                         (9) 

Steps (a) and (b) are repeated using the optimization algorithm to find the optimal parameter τ to 

minimize the error 2S . Then, by substituting α , Π and τ into Eq. (6), the one-dimensional marginal 

probability distribution for the nth sector is obtained.  

 

2.2 Establishing the t-Copula model 
 

The expression for the N-dimensional t-Copula function is (Fang et al. 2002)  

          1 1 1

1 2 1 1 1 2 1, , , , ; ; , ; , , ;t N N NC p p p t k t k p t k p t k p              (10) 

Its probability density function is  

 

  

 

1
2 21

1 1

1
1

2
1 2

21

;
1

2 2
c , , , [ ]

1 1
1

2

k

NN n

n

t N N k N

t k p
k N k

k

p p p
k

k



  














 
        

       
       
               

        (11) 

where np   is the one-dimensional marginal probability of the nth sector, n=1,2,˖˖˖,N, and 
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  1 2, ; , , ,N Nt k x x x   is the N-dimensional multivariate t-distribution function of the N-

dimensional variables  1 2, , , Nx x x    (Härdle and Simar 2007):  

  

   

1

1 2

1

1 21/2 /2
2

1 2 N 1 2

, k; , ,...,

2

1
/ 2 [ ] 1 ( , ,..., ) ( , ,..., ) '

N

N N

x x

Nk N

N N

N

t x x x

k N

dx dx

k k x x x x x x
k



  



  

 
 
   

 
    

 

 
   (12) 

where k is the number of degrees of freedom of 
Nt  and [ ]  is the dispersion matrix of 

Nt , both 

of which are fitted parameters. [ ]  is an N N
 

positive-definite symmetric matrix with ones on 

the primary diagonal. [ ]   is the determinant of [ ]  .     is the transpose of 

      1 1 1

1 1 1 2 1; , ; , , ; Nt k p t k p t k p    
  .  1

1 ;t k p
is the inverse function of the one-dimensional 

standard t-distribution  1 ;t k x  (
1t  

is a function of x with k degrees of freedom, and the subscript 

1 means that the expression for 
1t  is one dimensional). The expression for  1 ;t k x  is  

 
 

 
 1 /2

2

1

1

2
; 1 /

/ 2

v
k

k

t k x x k dx
k k

 



 
 
  


                 (13) 

where Γ is the gamma function.  

Although the formula of the Copula model is complex, many mathematical software packages, 

such as MATLAB, have the built-in functions to estimate its parameters conveniently.  

The joint probability distribution function  1 2, , , NF v v v    of directional extreme wind speeds 

1 2, , , Nv v v    can be obtained with Eq. (1), Eqs. (6) and (10) 

        

         
1 2 1 1 2 2

1 1 1

1 1 1 1 2 2 1

, , , , , ,

[ ], ; ; , ; , , ;

N t N N

N N N

F v v v C P v P v P v

t k t k P v t k P v t k P v   

  

 
         (14) 

The relationship between the return period R and the joint probability distribution function 

 1 2, , , NF v v v    is  

 1 2

1
1 , , , NF v v v

R
                              (15) 

Combining Eqs. (14) and (15), the directional extreme wind speeds 1 2, , , Nv v v     for return 

period R can be obtained from  

         1 1 1

1 1 1 1 2 2 1

1
1 [ ], ; ; , ; , , ;N N Nt k t k P v t k P v t k P v

R
              (16) 
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When the extreme wind speed of each sector is estimated for a given return period, in order to 

distribute the risk uniformly by direction (Cook 1983) and to avoid the infinitely many solutions of 

Eq. (16), it is assumed that the non-exceedance probability Pn(vn) of each sector is the same, equal 

to p. The Eq. (16) become  

      1 1 1

1 1 1

1
1 [ ], ; ; , ; , , ;Nt k t k p t k p t k p

R
                     (17) 

There is only a single unknown variable p when the return period R is given and the parameters 

[ ]  and k are fitted. p can be obtained conveniently with Eq. (17) by a numerical method for a 

given return period. After p is obtained, the extreme wind speed in each sector can be solved with 

Eq. (6).  

When the all-directional extreme wind speed is estimated for a given return period, instead of 

assuming that the non-exceedance probability Pn(vn) of each sector is the same, it is assumed that 

the extreme wind speed vn of each sector is the same, and equal to vall. The Eq. (16) become  

         1 1 1

1 1 1 2 1

1
1 [ ], ; ; , ; , , ;N all all N allt k t k P v t k P v t k P v

R
            (18) 

There is only a single unknown variable vall after the return period R is given, the parameters 

[ ]  and k are fitted and the one-dimensional marginal probability distribution Pn(˖) for each sector 

is obtained. vall can be obtained conveniently with Eq. (18) by a numerical method for the given 

return period.  

 

2.3 Estimation method of t-Copula model 
 

If the values of [ ]   and k of  1 2, , ,t Nc p p p     are directly estimated by the Maximum-

Likelihood Estimation method, the calculation for the case of N=16 is too large to the present 

microcomputer. The method proposed by Lindskog et al. (2003) is adopted in the present study. First, 

Kendall’s tau (an important measure of dependence) of the observed samples is estimated and [ ]  

is obtained from Kendall’s tau based on the theoretical relationship between them. Then, [ ]  is 

set to the known value and the parameter k is estimated by the Maximum-Likelihood Estimation 

method. The steps of the estimation are as follows:  

(1) Calculating Kendall’s tau (Embrechts et al. 2001) as follows 

       
1 2 1 1 2 1 1 2 2 2 1 1 2 1 1 2 2 20, , , , , , , , ,0 0n n m n m n m n m n m n m n m n m nP v v v v P v v v v        

   
(19) 

where    
1 1 2 1 1 2 2 2

0m n m n m n m nP v v v v     is the probability of concordance between the wind 

speeds 
1nv   and 

2nv  , and    
1 1 2 1 1 2 2 2

0m n m n m n m nP v v v v     is the probability of discordance 

between them; 

Calculating the correlation parameter, 
1 2n n , using the inverse expression of Kendall’s tau of the 

t-Copula (Embrechts et al. 2001, Lindskog et al. 2003)  
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1 2

1 2

0,
sin

2

n n

n n




 
  

 
                           (20) 

(2) Estimating the parameter k (the number of degrees of freedom):  

Setting [ ]  to the known value and estimating k by the Maximum-Likelihood Estimation method  

1 2
1

( , , , ) 0
M

t m m mN
m

c p p p
k 


  


                      (21) 

where the expression for  1 2, , ,t m m mNc p p p    is equal to Eq. (11).  

 
 

3. Testing and selection of Copula models 
 

Since only the Fully Nested Gumbel-Copula model and Gaussian-Copula model were expanded 

to 16-dimensional functions for the current 16-wind-sector system (Zhang and Chen 2016), the 

proposed t-Copula model is compared with them here. At first, the t-Copula model of extreme wind 

speed is established based on the monthly maximum wind speeds. The dependence of the t-Copula 

model is compared with that of the observed wind speeds by Spearman’s rho (an important measure 

of dependence) to test the accuracy of the present model (see section 3.1). In addition, the three 

Copula models are tested with the parametric bootstrap test based on the empirical Copula (see 

section 3.2). Finally, the fitting effects of the Copula models that passed the goodness-of-fit test are 

evaluated according to the selection criteria for Copula based on the empirical Copula (see section 

3.3).  

The directional hourly mean wind-speed data used in this study was processed based on the data 

set 6405 from Automated Surface Observation System (ASOS, NOAA) in DES MOINES IA USA, 

BISMARCK ND USA, ABERDEEN SD USA, LINCOLN NE USA, MINNEAPOLIS MN USA, 

SPRINGFIELD IL USA, and TOPEKA KS USA, dated from January 1st, 2000 to September 30th, 

2016. All of the stations are inland stations and mainly affected by monsoon. The wind-speed data 

from these fixed weather stations are selected as observed samples to test and select the Copula 

models. The raw data contain two-minute mean wind speeds in unit of knot and a wind direction 

with a resolution of 1°. The observation height is 33 ft (10 m) throughout the observation time. The 

hourly mean wind speed and direction are then calculated with a vector-averaging algorithm (Zhang 

and Chen 2015). After post-processing, the hourly mean wind speed is in unit of m/s and the 

resolution of the wind direction is 1°. Next, these directional wind speeds are divided into 16 

directional sectors, each of which sweeps an area from αn-11.25° to αn+11.25°, where 

αn=0°,22.5°,˖˖˖,337.5°, representing the directions N,NNE,˖˖˖,NW,NNW.  

The t-Copula model is established by the method proposed in section 3.2. Table 1 shows the 

dispersion matrix [ ] , which is fitted with the monthly maximum wind-speed data from data set 

6405 at DES MOINES IA USA; the parameter k (the number of degrees of freedom) of this t-Copula 

model is 25.00.  
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Table 1 The dispersion matrix [ ]  of the t-Copula model 

 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW 

 N 1.00                
NNE 0.41 1.00               
NE 0.27 0.62 1.00              

ENE 0.18 0.35 0.56 1.00             
E 0.13 0.22 0.25 0.56 1.00            

ESE 0.08 0.21 0.17 0.26 0.60 1.00           
SE 0.14 0.08 0.09 0.24 0.34 0.42 1.00          

SSE 0.01 0.00 0.06 0.24 0.32 0.24 0.57 1.00         
S 0.09 0.07 0.14 0.19 0.22 0.19 0.34 0.57 1.00        

SSW 0.23 0.09 0.11 0.20 0.13 0.13 0.31 0.23 0.58 1.00       
SW 0.25 0.17 0.14 0.20 0.22 0.17 0.36 0.26 0.36 0.55 1.00      

WSW 0.17 0.06 0.08 0.20 0.23 0.11 0.21 0.22 0.20 0.23 0.52 1.00     
W 0.20 0.17 0.21 0.25 0.29 0.16 0.25 0.19 0.16 0.20 0.43 0.61 1.00    

WNW 0.32 0.07 0.04 0.09 0.31 0.18 0.29 0.15 0.12 0.14 0.35 0.44 0.57 1.00   
NW 0.43 0.06 0.05 0.08 0.19 0.00 0.13 0.11 0.09 0.15 0.36 0.38 0.44 0.76 1.00  

NNW 0.57 0.15 0.13 0.10 0.15 0.04 0.00 -0.01 0.10 0.18 0.29 0.34 0.29 0.43 0.69 1.00 

 

 

3.1 Comparison of the dependence structures by Spearman’s rho 
 

Kendall’s tau and Spearman’s rho are two important measures of dependence (Embrechts et al. 

2001). The t-Copula model established in the Section 3.3 has the same Kendall’s tau as the observed 

samples, so Kendall’s tau cannot be used to test the dependence structure of the proposed model. 

Therefore, Spearman’s rho of the observed monthly maximum wind speeds and that of the fitted t-

Copula model are compared to test the dependence structure of the fitted model.  

Setting 
1 1 1 2

( , )m n m nv v  , 
2 1 2 2

( , )m n m nv v   and 
3 1 3 2

( , )m n m nv v   as three independent and identically 

distributed samples of two-dimensional continuous random variables, Spearman’s rho is defined as 

(Embrechts et al. 2001) 

 

        
1 2

1, 1 2, 1 1, 2 3, 2 1, 1 2, 1 1, 2 3, 2

,

3 P 0 P 0

s n n

m n m n m n m n m n m n m n m n

v v

v v v v v v v v



       
 

 

(22) 

Spearman’s rho of the t-Copula model between sector n1 and sector n2 is (Embrechts et al. 2001)  

 
1 2

1 1

, 1 2 2 1
0 0

12 , 3s n n t n n n nC p p dp dp                    (23) 

where the expression of 
1 2

( , )t n nC p p  is given by Eq. (10)
 
for the case of N=2.  

Fig. 1 compares Spearman’s rho of the fitted t-Copula model and that of the observed monthly 

maximum wind-speed samples. The results for four areas are given in Fig. 1; the others are similar 

to them and are not listed here. The values of Spearman’s rho between any two sectors are shown. 

The differences between them are small. It is shown that the dependence among samples from 

different areas can be reflected correctly by the fitted t-Copula model.  
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DES MOINES IA USA TOPEKA KS USA 

  

MINNEAPOLIS MN USA SPRINGFIELD IL USA 

Fig. 1 Spearman’s rho of the observed monthly maximum wind speeds and that of the fitted t-Copula model 

 

 

3.2 Parametric bootstrap test based on the empirical Copula 
 

Genest et al. (2009) and Genest and Rémillard (2008) summarized the goodness-of-fit test 

methods of Copula models completely and compared these methods with one another. The 

parametric bootstrap test based on the empirical Copula has a less intricate form and is easier to 

understand. It also performs well in application, so it is selected to test the t-Copula, Gaussian-

Copula and Fully Nested Gumbel-Copula models in the present study. The Cramer–von Mises 

statistic S is selected as the inspected value. 

The expression for the empirical Copula is (Deheuvels 1979)  

0 1 1

1

1
( ) ( ,..., )

M

m mN N

m

C p I p p p p
M 

                    (24) 

270



 

 

 

 

 

 

A joint probability distribution model of directional extreme wind speeds… 

where  1, , Np p p  ,  1, , 0,1Np p    , and pmn is the empirical estimate of the one-dimensional 

marginal non-exceedance probability for the mth observed monthly maximum wind speed in the nth 

wind sector. I(˖) is the indicator function, i.e., if 
1 1,...,m mN Np p p p   , then I(˖)=1; otherwise, 

I(˖)=0.  

In goodness-of-fit testing, the greater the sample size, the better the test effect (Genest et al. 2009). 

However, in this case, the number of observed samples is limited. On one hand, the monthly 

maximum wind-speed samples are usually not enough to establish the 16-dimensional empirical 

Copula function to test the 16-dimensional distribution directly; on the other hand, when the 

correlation between variates is weak, the probability of rejecting the original hypothesis is very low 

by the bootstrap test (Genest et al. 2009). Considering the above factors, when the t-Copula and 

Gaussian-Copula models are tested, only the two-dimensional marginal cumulative distributions of 

the adjacent wind directions (for which the correlation of wind speeds is stronger) are examined.  

When the Fully Nested Gumbel-Copula model is tested, the model should be examined according 

to the nested sequence. 

The steps of the parametric bootstrap test based on the empirical Copula for each group of two-

dimensional samples are as follows:  

(1) Setting j=0 and calculating the empirical estimates of the one-dimensional marginal non-

exceedance probabilities, 
2[ ]j Mp 
, with the observed monthly maximum wind speeds in both 

sectors, 2[ ]MV  ;  

(2) Calculating the empirical joint cumulative distribution function, 
0, ( )jC p , with 

2[ ]j Mp 
 by Eq. 

(24);  

(3) Fitting the Copula model (t-Copula model, Gaussian-Copula model or Fully Nested Gumbel-

Copula model), 
, ( )jC p , with 

2[ ]j Mp 
. One subscript of 

, ( )jC p  is set as θ to distinguish the 

fitted model 
, ( )jC p  from the empirical Copula, 

0, ( )jC p ;  

(4) Calculating the Cramer–von Mises statistics     
2

0, ,1

M

j j m j mm
S C p C p
  , where mp  is 

the mth row of 
2[ ]j Mp 
;  

(5) If j<J (J is often set to several hundred), setting j=j+1 and generating M two-dimensional random 

numbers, 
2[ ]j Mp 
, with 

,0 ( )C p
. Returning to step 2 with the generated samples 

2[ ]j Mp 
. If 

j=J, going to step 6;  

(6) Calculating the P-value approximately with  01

1 J

value jj
P I S S

J 
   . The P-value can be 

considered the probability that Sj>S0;  

(7) If 
0valueP P , the original hypothesis is rejected, otherwise it is accepted. P0 is the significance 

level and is usually set as 0.05.  

Testing is performed on the Copula models based on the wind-speed data at 7 representative areas 

in the USA. When the t-Copula and Gaussian-Copula models of the wind speeds of each region are 

tested, all of the two-dimensional marginal cumulative distributions of the adjacent wind directions 

pass the goodness-of-fit test. This indicates that the t-Copula and Gaussian-Copula models can be 

used to establish the joint probability distribution model of directional extreme wind speeds. 

However, the Fully Nested Gumbel-Copula models for wind speeds at all of the tested areas are 

rejected at the second-deepest nested structure, which indicates that the Fully Nested Gumbel-
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Copula model is not appropriate for building the joint probability distribution model of directional 

extreme wind speeds.  

The data from DES MOINES IA USA and TOPEKA KS USA are taken as examples to discuss 

the reason for this phenomenon. Fig. 2 (left) shows the frequency histogram of the variables in the 

second-deepest nested structure of the Fully Nested Gumbel-Copula model. Fig. 2 (right) shows the 

probability density plot of the fitted Gumbel-Copula model in the second-deepest nested structure. 

Obviously, the trends of the two figures are different. Fig. 2 (left) has obviously lower tail, while the 

upper tail of the probability density plot of the fitted Gumbel-Copula model is very tall in Fig. 2 

(right). Fig. 2 (left) and Fig. 2 (right) do not match well, thus the Fully Nested Gumbel-Copula model 

is rejected at the second-deepest nested structure.  

 
 
 

  

DES MOINES IA USA 

  

TOPEKA KS USA 

Fig. 2 The frequency histogram of the variables in the second-deepest nested structure (left)  

The probability density plot of the fitted Gumbel-Copula model in the second-deepest nested structure 

(right) 
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3.3 Selection criteria based on the empirical Copula 
 

For the evaluation of general statistical models, the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) have been widely used, however, the AIC and BIC are 

applicable for cases in which the number of samples is much larger than the number of parameters 

(Burnham and Anderson 2003). The dependence among extreme wind speeds in the 16 wind sectors 

should be considered and many parameters should be fitted in the present study, which may cause 

the AIC or BIC to give an unreasonable judgement. An improved Akaike information criterion, AICc, 

can correct the result from the AIC with small sample sizes (Burnham and Anderson 2003), but its 

correction term of multi-dimensional distribution is too complicated.  

Trivedi and Zimmer (2007) summarized several methods for assessing Copula models. The 

selection criterion based on the empirical Copula is suitable for comparison between different kinds 

of Copula models, and it is easy to use due to its less intricate form (Durrleman et al. 2000, Trivedi 

and Zimmer 2007). Therefore, this criterion is proposed to select Copula models.  

Durrleman et al. (2000) proposed an assessment method for Copula models based on the 

empirical Copula, in which the discrete L2
 norm between the empirical Copula and the fitted Copula 

model is used as the selection criterion of the fitted Copula model. The smaller the L2
 norm, the 

better the fitting effect. The expression for the L2 norm between the empirical Copula and the fitted 

Copula model is  

          
2

1/2
2

0 0

1

M

m mM N M N L
m

C p C p C p C p  


 
   

 
            (25) 

where [ ]M Np   is the one-dimensional marginal non-exceedance probability for each sample, and 

mp  is the mth row of [ ]M Np  . 0 ([ ] )M NC p   is the value of the empirical Copula (Eq. (24)) for each 

sample. ([ ] )M NC p   
is the value of the fitted Copula model for each sample. 0 ( )mC p  is the value 

of the empirical Copula for the mth sample, and ( )mC p  is the value of the fitted Copula model for 

the mth sample.  

Because the Fully nested Gumbel-Copula model does not pass the goodness-of-fit test, its further 

analysis is not needed. The L2 norm between the empirical Copula and the fitted Copula model is 

calculated when the fitted Copula model is the t-Copula model or Gaussian-Copula model.  

 

 
Table 2 The L2

 norm between the empirical Copula and the fitted Copula model (t-Copula model or Gaussian-

Copula model) 

areas t-Copula Gaussian-Copula 

DSM 0.1379  0.1562  

BIS 0.0945  0.0994  

ABR 0.1078  0.1104  

LNK 0.0785  0.0800  

MSP 0.0904  0.0995  

SPI 0.3007  0.3154  

TOP 0.1012  0.1163  
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Table 2 shows the L2
 norms based on the wind-speed data at the 7 representative areas in the 

USA. All of the results show that the L2 norm between the empirical Copula and the fitted t-Copula 

model is smaller than that between the empirical Copula and the fitted Gaussian-Copula model. This 

indicates that the t-Copula model generally fits better with the observed data than the Gaussian-

Copula model.  

 

4. Application and discussion 
 

In this section, the influence of using different block maxima on the estimated parameters of the 

Copula model is first discussed based on the wind-speed data from DES MOINES IA USA (see 

section 4.1). After that, the extreme wind speeds for a given return period are estimated by the t-

Copula model and the independent case (in which the dependence among directional wind speeds 

are ignored), for the 7 representative areas. At last, the influence of dependence among directional 

extreme wind speeds on the predicted results is discussed (see section 4.2). 

 

4.1 The influence of using different block maxima on the estimated parameters of the 
Copula model 

 
Zhang and Chen (2015) established the Gaussian-Copula model for annual maxima with monthly 

maxima and thought that the covariance matrix of monthly maximum variables was equal to that of 

the annual maximum variables. In this regard, we have a different view.  

The underlying Gaussian variable is defined as follows (Zhang and Chen 2015) 

 1

n ny p                               (26) 

where Φ-1 is the inverse function of the one-dimensional standard normal distribution, and pn is the 

one-dimensional marginal probability of the nth sector, for n=1,2,˖˖˖,N. When pn is obtained from 

monthly maxima or annual maxima, yn is named the monthly maximum variable or annual maximum 

variable, respectively.  

The influence of using different block maxima on the estimated parameters of the Copula model 

is discussed here based on the wind-speed data from DES MOINES IA USA. Because the number 

of annual maxima is small, the covariance matrix [ρGau] of the Gaussian-Copula model is estimated 

with the quarterly and monthly maximum variables. The results are shown in Fig. 3, where 
1 2,Gau n n  

is the parameter in the 
1

thn   row and 
2

thn   column of [ρGau]; the x-axis is set as 
1 2,Gau n n   of the 

quarterly maximum variables and the y-axis as 
1 2,Gau n n  of the monthly maximum variables.  

The values of 
1 2,Gau n n  of the quarterly maximum variables are obviously different from those 

of the monthly maximum variables, as shown in Fig. 3. The covariance matrix of the monthly 

maximum variables is not equal to that of the quarterly maximum variables. It can be reasonably 

deduced that establishing the Gaussian-Copula model for annual maxima with the covariance matrix 

of the monthly maximum variables is not appropriate.  

 

4.2 Estimation of extreme wind speeds and discussion 
 

The cumulative distributions of extreme wind speeds are fitted for the 7 representative areas in 
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the USA. The directional factors of the basic wind speeds, namely the ratio between the directional 

extreme wind speeds and the all-directional extreme wind speeds, are showed in Table 3 for a 50-

year return period.  

In Fig. 4, the top-left, top-right, bottom-left and bottom-right figures are the results from DES 

MOINES IA, TOPEKA KS, MINNEAPOLIS MN and SPRINGFIELD IL, respectively. The results 

of the other 3 areas are similar to the results shown in these figures, so they are not shown here. The 

cumulative distribution of extreme wind speeds is fitted by the t-Copula model. The fitting effect for 

each sector is shown in Fig. 4(a). The fitted results match well with the observed samples on the 

whole. Fig. 4(b) shows the directional extreme wind speeds for a 50-year return period predicted by 

the t-Copula model and the independent case. In Fig. 4(b), the results of the t-Copula model and the 

independent case are almost the same. Fig. 4(c) shows the all-directional extreme wind speeds 

predicted by the t-Copula model and the independent case for various return periods. In Fig. 4(c), 

the results for low return periods are obviously overestimated by the independent case. The 

overestimation decreases gradually with the increase of the return period, which means that the 

extreme wind speeds in different sectors become independent gradually with the increase of the 

return period. 

In the independent case, the one-dimensional marginal probability distributions of each sector 

are independent of each other. The all-directional extreme wind speed of the independent case, Vind, 

for a given return period R is obtained from  

 
1

1
1

N

n ind

n

P v
R 

                              (27) 

where Pn(˖) is the one-dimensional marginal probability distribution in the nth sector, i.e., Eq. (6). 

 

 

 
Table 3 The directional factors of the basic wind speeds for a 50-year return period for the 7 representative 

areas  

 DSM BIS ABR LNK MSP SPI TOP 

N 0.684 0.760 0.999 1.040 0.829 0.753 1.009 

NNE 0.899 0.734 0.960 0.925 0.873 0.751 1.068 

NE 0.721 0.846 1.098 0.898 0.913 0.910 0.734 

ENE 0.793 0.913 0.835 0.738 1.172 0.975 0.842 

E 0.711 0.817 0.805 0.998 0.851 0.701 0.962 

ESE 0.618 0.822 0.834 0.834 0.864 0.776 0.722 

SE 0.655 1.062 0.985 0.806 0.932 0.786 0.943 

SSE 0.949 1.052 1.197 0.865 1.003 0.895 0.928 

S 0.841 0.923 0.796 1.165 0.937 0.869 0.923 

SSW 0.834 0.723 0.928 0.926 1.003 0.908 1.136 

SW 0.990 0.757 0.807 0.904 1.051 1.061 0.935 

WSW 1.221 1.171 0.954 0.828 1.088 1.157 1.053 

W 1.073 1.074 0.917 0.906 0.877 0.940 0.883 

WNW 1.021 1.026 0.903 0.806 0.977 0.823 0.829 

NW 0.890 1.010 0.865 0.845 1.010 0.786 1.018 

NNW 0.819 0.914 0.934 0.934 0.858 0.837 0.937 
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Fig. 3 The 
1 2,Gau n n  of the quarterly maximum variables and that of the monthly maximum variables (DES 

MOINES IA USA) 

 

  

DES MOINES IA USA TOPEKA KS USA 

  

MINNEAPOLIS MN USA SPRINGFIELD IL USA 

(a) The fitted cumulative distribution of extreme wind speeds in each sector 

Continued- 
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DES MOINES IA USA TOPEKA KS USA 

  
MINNEAPOLIS MN USA SPRINGFIELD IL USA 

(b) The predicted directional extreme wind speeds for 50-year return period 

  
DES MOINES IA USA TOPEKA KS USA 

Continued- 
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MINNEAPOLIS MN USA SPRINGFIELD IL USA 

(c) The predicted all-directional extreme wind speeds for various return periods 

Fig. 4 The predicted extreme wind speeds 

 

 
Table 4 The directional dependence factors of the basic wind pressure for the 7 representative areas 

  1 年 10 年 50 年 100 年 

DSM 1.056  1.023  1.015  1.010  

BIS 1.019  1.006  1.003  1.002  

ABR 1.033  1.013  1.008  1.004  

LNK 1.031  1.008  1.004  1.003  

MSP 1.031  1.011  1.007  1.002  

SPI 1.089  1.026  1.010  1.006  

TOP 1.036  1.011  1.005  1.002  

Maximum  1.089  1.026  1.015  1.010  

 

 

 

The directional-dependence factor of the basic wind pressure is defined as  

0

2 2

_ (1/ 2 ) / (1/ 2 )w cor ind tV V                          (28) 

where Vt is the predicted all-directional extreme wind speeds of the proposed t-Copula model.  

Table 4 shows the directional-dependence factors of the basic wind pressure for the 7 

representative areas.  

It is shown that the basic wind pressure is overestimated by up to 8.9% for a 1-year return period 

when the dependence is ignored; the overestimation decreases to less than 2.6% for a 10-year return 

period. The dependence factors are not larger than 1.5% for 50- and 100-year return periods, which 

are negligible in civil engineering. One can speculate that the directional extreme wind speeds 

become independent gradually when the target area is mainly affected by monsoon. In such a case, 

although the Gaussian-Copula model cannot correctly reflect the dependence among directional 

extreme wind speeds for long return periods in theory, it can produce similar results to the t-Copula 

model.  
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Fig. 5 The predicted directional extreme wind speeds for 50-year return period in Hong Kong China 

 

 

The extreme wind speeds for long return periods are mainly caused by typhoons in typhoon-

prone areas. A typhoon can cause high wind speeds in multiple directions simultaneously, so the 

directional extreme wind speeds for a long return period are very likely to be correlated with one 

another in typhoon-prone areas. Therefore, the result must be overestimated by the independent case. 

Fig. 5 shows the predicted directional extreme wind speeds for a 50-year return period in Hong Kong, 

China (a typhoon-prone area) of the t-Copula model, the Gaussian-Copula model and the 

independent case. These wind-speed data are obtained from weather stations and Monte Carlo 

typhoon simulation. The typhoon wind-field model in Meng et al. (1995) is adopted in this typhoon 

Monte Carlo simulation. The key typhoon parameters and probability models are referenced from 

Xiao et al. (2011). 

 

 

In Fig. 5, the results of the Gaussian-Copula model are close to those of the independent case. 

The results are overestimated by the Gaussian-Copula model since the Gaussian-Copula model 

cannot correctly reflect the dependence among directional extreme wind speeds for long return 

periods. However, the t-Copula model can consider the dependence since its theory is more stringent 

for the upper tail (long return period). Its results should be more reasonable.  

 

 

5. Conclusions  
 

A new joint probability distribution model of directional extreme wind speeds is established by 

the multivariate extreme value theory with the t-Copula model. It is compared with other methods 

based on extreme wind speed data and several conclusions are obtained:  
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• The t-Copula model is more appropriate for building the joint probability distribution model 

of directional extreme wind speeds than the Gaussian-Copula model in theory due to its 

ability to capture the upper tail dependence among extreme values. The t-Copula model can 

reflect the dependence among multi-dimensional random variables conveniently because it 

has multiple parameters and usually does not require the construction of the nested structure 

similar to the nested Gumbel-Copula model. 

• The comparison of Spearman’s rho of the fitted t-Copula model with that of observed 

monthly maximum wind speeds shows that the dependence among samples in different 

sectors can be reflected correctly by the fitted t-Copula model. 

• The goodness-of-fit test results show that the fitted Fully Nested Gumbel-Copula model 

cannot match well with the observed monthly maximum wind speeds, while the t-Copula 

model and Gaussian-Copula model are applicable for establishing the joint probability 

distribution model of directional extreme wind speeds.  

• The L2 norm between the empirical Copula and the t-Copula model is smaller than that 

between the empirical Copula and the Gaussian-Copula model, which indicates that the t-

Copula model is generally more appropriate than the Gaussian-Copula model for fitting the 

joint probability distribution model of directional extreme wind speeds. 

• The fitted covariance matrix of quarterly maximum variables and that of monthly maximum 

variables are different, and it is not appropriate to establish the Gaussian-Copula model for 

annual maxima with the covariance matrix of monthly maximum variables. 

• The overestimation of predicted extreme wind speed of the independent case decreases 

gradually with the increase of the return period in a monsoon area. It can be speculated that 

the extreme wind speeds in different sectors become independent gradually in a monsoon 

area. Therefore, both the Gaussian-Copula model and the independent case are appropriate 

for predicting the extreme wind speeds for long return period in such an area. However, 

neither of them is appropriate in a typhoon-prone area. 
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