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Abstract.  This study investigates the dynamic analysis of a transversely isotropic thin plate. The plate is 
made of hyperelastic John’s material and its constitutive law is obtained by taken the Frechect derivative of 
the highlighted energy function with respect to the geometry of deformation. The three-dimensional 
equation governing the motion of the plate is expressed in terms of first Piola-Kirchhoff’s stress tensor. In 
the reduction to an equivalent two-dimensional plate equation, the obtained model generalizes the classical 
plate equation of motion. It is obtained that the plate under consideration exhibits harmonic force within its 
planes whereas this force varnishes in the classical plate model. The presence of harmonic forces within the 
planes of the considered plate increases the natural and resonance frequencies of the plate in free and forced 
vibrations respectively. Further, the parameter characterizing the transversely isotropic structure of the plate 
is observed to increase the plate flexural rigidity which in turn increases both the natural and resonance 
frequencies. Finally, this study reinforces the view that non-classical models of problems in elasticity 
provide ample opportunity to reveal important phenomena which classical models often fail to apprehend. 
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1. Introduction 
 

In the last few decades, renewed efforts of researchers in elasticity have been vigorously 

channeled toward investigating theoretical and industrial problems through the prism of finite 

deformation. One reason behind this recent attention is that it has been increasingly acknowledged 

that classical models of elasticity, whose mathematical theory though now firmly established, have 

a limited range of applicability; and consequently, must be replaced by genuine non-classical 

models which they originally approximate (Ciarlet 1988). Another reason, similar in its underlying 

principle, is that finite deformation considerations provide avenue for revealing important 

phenomena which the classical infinitesimal theory of elasticity often fails to apprehend (Akinola 

2001, Fadodun 2014, Fadodun and Akinola 2017). Efforts directed at apprehending these 

phenomena have utility in many industrial settings such as aerospace, automobile, and rubber 

industries. The solution of elasticity problems for the general case of three-dimensional bodies 
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involves great mathematical difficulties; we are compelled by this circumstance to turn to the 

solution of more or less wide classes of special problems, one of which are thin plate problems 

(Amenzade 1979). Thin plates are common structural elements utilized in buildings, bridges, 

aircraft, and machinery, to name but a few. They are fabricated from steel, aluminum, concrete, 

and composite material. The phenomenon of vibration involves an alternating interchange of 

potential and kinetic energies. Vibrations serve some useful purposes in engineering applications, 

such as in vibratory testing of materials, dentist drills, electric massaging units, and material 

processing operations. However, vibration is undesirable in many other cases. The failure of most 

mechanical and structural elements can be associated with vibrations. For instance, wind-induced 

vibration in machine leads to rapid wear of parts such as gears and bearings, loosening of fasteners, 

poor surface finish during metal cutting, and excessive noise (Rao 2007). Furthermore, supersonic 

aircraft creates sonic booms that shatter doors and windows; and several spectacular failures of 

bridges, buildings, and dams are associated with the wind-induced vibration. In engineering and 

related fields, the dynamic (vibration) analysis is an important aspect in any complete structural 

investigation; and an understanding of dynamic analysis of thin plates is of much importance in 

ensuring safety in designs, constructions, and operations of a variety of machines and structures. In 

fact, the study of dynamics and statics analyses of thin plates is a subject of considerable scientific 

and practical interests that has been examined extensively, and is still receiving attention in 

literature. Imrak and Fetvaci (2009) solved the problem of deflection of a clamped rectangular thin 

plate carrying uniform loads. The approach of double series was employed and the exact solution 

was given in terms of a set of orthogonal functions. Shooshtari and Razavi (2015) investigated 

nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates. Both the cases of 

free and force vibrations were considered. The governing plate equation was transformed to an 

equivalent ordinary differential equation. The method of perturbation was used to construct an 

approximate analytical solution of the considered problem. Furthermore, the presented numerical 

results showed the effects of several parameters on the nonlinear behavior of the plate. Lychev et 

al. (2011) studied the problem of unsteady vibration of a growing circular plate. They investigated 

the case of forced vibration within the framework of small deformation theory. The material of the 

plate was assumed to be elastic and isotropic; and that the plate thickness was continually 

increasing due to influx of the material from outside. The analysis of the obtained solution 

indicated the characteristics features of the dynamic growth of the plates. Pan (2001) gave exact 

solution for simply supported and multilayered magneto-electro-elastic thick plates under statics 

loading. He expressed the homogeneous solution in terms of a new and simple formalism that 

resembled the Stroh formalism. In addition, the solutions for multilayered plates were expressed in 

terms of the propagator matrix. It must be mentioned that his solutions generalized all the previous 

solutions, such as piezoelectric, piezomagnetic, and purely elastic solutions, as special cases. An et 

al. (2015) presented exact solution of bending problem of clamped orthotropic rectangular thin 

plates. They transformed the governing plate equation to a coupled system of fourth order ordinary 

differential equations using the generalized integral transform technique. The resulting ordinary 

differential equations were then solved numerically. Liu and Chang (2010) derived a closed form 

expression for the transverse vibration of a magneto-electro-elastic (MEE) thin plate, and obtained 

exact solution for the free vibration of a two-layered composite. Based on the Kirchhoff’s plate 

theory, they investigated the bending of a transversely isotropic MEE rectangular plate and 

presented the governing equation in terms of transverse displacement. The natural frequencies of 

the MEE plate were evaluated analytically, and the effects of different volume fractions were 

presented. Altekin (2017) used Mindlin plate theory and studied free transverse vibration of shear 
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deformable super-elliptical plates with uniform thickness. Sensitivity analysis was carried out to 

determine the influence of the thickness, the aspect ratio, and the shape of the plate on the natural 

frequencies. Wu et al. (2007) proposed Bessel function approach for obtaining exact solutions for 

free-vibration analysis of rectangular plates with three edge conditions. The cases of fully simply 

supported, fully clamped, and two opposite edges simply supported and the other two edges 

clamped were considered. It was shown that the proposed method provided simple, direct, and 

highly accurate solutions for the considered family of problems. Abdelbari et al. (2016) presented 

a simple hyperbolic shear deformation theory for analysis of functionally graded plates resting on 

elastic foundation, and the obtained Navier-type analytical solutions for simply-supported plates 

were compared with the existing solutions to demonstrate the accuracy of the proposed theory. 

Zhong et al. (2013) used the finite cosine integral transform method to obtain analytical solution 

for the natural frequencies and mode shapes of a vibrating rectangular thin plate on foundation 

with four edges free. In the analysis procedure, Kirchhoff’s plate was considered and the 

foundation was modelled as the Winkler elastic foundation. The presented numerical result was in 

agreement with known results in literature. In view of recent design in structural engineering, 

Fadodun and Akinola (2017) proposed flexural model for the design of an isotropic non-classical 

thin plate. The obtained plate equation generalized the famous Kirchhoff’s plate model. It was 

observed that the plate made of hyperelastic John material exhibits in-plane forces which classical 

model fails to apprehend. Further, it was shown that the considered plate could be used as a 

substitute for Kirchhoff’s plate on elastic foundation. The present study is motivated by the 

increasing use of transversely isotropic material in the design of modern structures. Furthermore, 

most structural elements such as thin plates, rods, beams, columns, pipes, and fibers use for the 

design of modern aircrafts, ships, bridges, missiles, and railway tracks are manufactured by 

processes that induce transversely isotropic elastic properties in them. The dynamic analysis of 

these bodies due to wind-induced load is of great importance for safety of designs. Therefore, this 

work investigates the free and forced vibrations of transversely isotropic thin plate. It is assumed 

that the plate is made of non-classical hyperelastic John’s material. The three-dimensional motion 

equation is presented in terms of first Piola-Kirchhoff’s stress tensor. In the reduction to an 

equivalent two-dimensional plate equation, the obtained model generalizes the classical motion 

equation of plate. It is obtained that the plate under consideration exhibits harmonic forces within 

its planes. In the case of free vibration, the presence of harmonic forces within the planes of the 

plate increases its natural frequencies. Similarly, in the case of forced vibration, the harmonic 

forces increase the resonance frequency of the plate. Further, the parameter characterizing the 

transversely isotropic structure of the plate is observed to increase the plate flexural rigidity which 

in-turn increases both the natural and resonance frequencies. This paper is organized as follows: 

section two presents the three-dimensional equation of motion, section three details a reduced 

two-dimensional equation of a vibrating plate, section four highlights the effect of transversely 

isotropic on the flexural rigidity of the plate, sections five and six present the natural frequencies 

and exact solution of forced vibration of thin plate respectively, while section seven concludes the 

study. 

 

 

2. Three-dimensional equation of motion 
 

2.1 Statement of the problem 
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Consider a rectangular plate in the reference configuration 
3

0  , with arbitrary supports. 

Assume the plate deforms onto current configuration 
3  due to certain transverse surface 

loads distributed on its surface such that the particles in the middle surface attain the deflections 

and velocities directed perpendicularly to the reference middle surface. At a certain time, which is 

assumed to be the initial, the plate is suddenly released from all external loads. The unloaded plate, 

which has initial deflection and velocity, begin to execute natural or free vibration. The particles 

located in the middle surface move in the direction perpendicular to the plate; and the deformation 

function )( i 


, 3,2,1i , is assumed to take the form 

),,( 321  


 















),,(

),,(

2133

213

txxwcx

txxw
x

xx







   2,1                  (1)

 

where ),,( 321 xxx  is the material coordinate in the reference configuration 0 , t  is the time, 

),,( 21 txxw  is the transverse displacement (deflection) of the plate, and c . 

 

2.2 Energy function and constitutive relation 
    

The energy function for an isotropic hyperelastic non-classical John’s material is (John 1960, 

Fadodun and Akinola 2017) 

)
~~

(
2

1
)

~~
( 2

1

2

1 EUSEUSW                        (2) 

where  ,  are the Lame’s constants, )
~~

(1 EUS   is the trace of second rank tensor )
~~

( EU  , 

E
~

 is the unit second rank tensor, U
~

 is the left stretch symmetric second rank tensor such that
DOU

~~



  and 

TU 


2~
,  


  is the gradient of deformation function 


, 

T


  

is the transpose of 


 , 
DO

~
 is the orthogonal rotation tensor, and   is the usual scalar (dot) 

product. 

On the basis of Eq. (2), Akinola (1999) employed asymptotic averaging method to construct 

energy function for the corresponding transversely isotropic material 



 2

0

2

11

2

12

~
)

~~
(

2

1
)

~~
( UEUSEUSW                 (3) 

where


is the unit vector characterizing the direction of anisotropy of the medium, and 210 ,,   

are the effective material constants defined by (Akinola 1999) 

 2
,  




















 20 1

1
2 



 ,  






















2

)2(
1

)2( 2

1  

and for any function  T,0 ,   denotes its geometric average over   given by 
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





 d
1

,  (   being volume of  ). 

In the case of degeneracy to isotropic, the energy function in Eq. (3) naturally reduces to energy 

function in Eq. (2) when 

 2
,   1

,  and   00   

Let P
~

 denote the first Piola-Kirchhoff’s stress tensor which is energy conjugate to the 

geometry of deformation 


  (deformation gradient), then the Frechet derivative of the energy 

function in Eq. (3) with respect to the geometry of deformation 


  gives the constitutive law 

P
~

. 









W
P
~

                               (4) 

The Frechet derivatives of terms in Eq. (3) are 

)
~

(2
)

~~
( 2

1 DO
EUS










                        (5)     

DOEUS
EUS ~

)
~~

(2
)

~~
(

1

2

1 





                       (6) 

and  

                           


 








2

)
~

( 2U
                          (7) 

respectively.             

Substituting Eqs. (3) and (5)-(7) in Eq. (4) gives the constitutive law for the material of the 

plate under consideration 




 02112 2
~

)2)
~~

((
~ DOEUSP               (8) 

 

2.3 Three-dimensional equation of state 
 

Using the constitutive law in Eq. (8), the associated three-dimensional motion equation for the 

considered problem is 

2

2
~

t
fP










                          (9) 

where f


 is the body force and   is the mass density of the material of the plate.  

 

 
3. An equivalent two-dimensional equation of a vibrating thin plate 

 

3.1 Three-dimensional equation of state 
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Let the gradient of deformation 


  be the geometry of deformation of the plate from the 

reference configuration 0  onto current configuration  . Then, by definition (Fadodun and 

Akinola 2017) 


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
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

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 Substituting Eq. (1) in Eq. (10) gives 
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32
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1

1
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                 (11) 

where ),,( 21 txxww  . 

The polar decomposition of the gradient of deformation in Eq. (11) into product of left 

symmetric stretch tensor U
~

and orthogonal rotation tensor 
DO

~
 

DOU
~~




                             (12) 

 such that 
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and 


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



















100
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001
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respectively. 
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3.2 Two-dimensional motion equation of plate 
 

Let mnP , 3,2,1, nm  denote the components of the first Piola-Kirchhoff’s stress tensor P
~

. 

Substituting Eqs. (11), (13)-(14) in Eq. (8) and invoking the constrain of zero stress ( 033 P ) 

along the perpendicular axis to the plane of the plate give 

Kwx
x

w
xP 












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where 
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2
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
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


  is the Laplacian operator and 
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is a constant. 

In view of Eq. (1), and neglecting the body force ( 0


f ), the components form of the 

governing equation in Eq. (9) are 

031
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




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Substituting Eqs. (15(a))-(15(e)) in Eqs. (16(a))-(16(c)) give the two-dimensional equation 

governing the free-vibration of thin plate under consideration 

0)4(
2

2
2

02

4 





t

w
whwD                   (17)  

where the coefficient D  given by  
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





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
 2
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2
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)(2

12

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h
D                    (18) 

is the flexural rigidity of the plate, h  is the uniform thickness of the thin plate, 
2  is the 

Laplacian operator, 
224   is the Biharmonic operator, and ),,( 21 txxww   is the 

transverse displacement. 

In the degeneracy to isotropic thin plate case 
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E
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)21)(1(
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E
, 

E ,   being the Young Modulus and Poisson’s ratio of the material of thin plate respectively, 

then, the two-dimensional Eq. (17) reduces to 

0
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where the coefficient 
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D                   (20b)  

is the corresponding flexural rigidity of the resulting isotropic thin plate. 

Meanwhile, the governing equation for the free vibration of an isotropic classical Kirchhoff’s 

plate is (Ventsel and Krauthammer 2001, Eq. (9.3)) 

0
2

2
4* 






t

w
wD                          (21)  

Remark 1. The obtained Eq. (17) describes the free-vibration of a transversely isotropic 

non-classical thin plate made of hyperelastic John’s material. 

 

Remark 2. It is observed that Eq. (19) which governs the free-vibration of the corresponding 

isotropic plate is a special case of Eq. (17); and is a generalization of the bending model obtained 

by Fadodun and Akinola (2017). 

 

Remark 3. The existence of the middle term in Eq. (17)-(19) shows that the non-classical thin plate 

under consideration exhibits time-dependent in-plane harmonic force which classical Kirchhoff’s 

plate model does not apprehend. 

 

 

 

 

32



 

 

 

 

 

 

Dynamic analysis of a transversely isotropic non-classical thin plate 

4. Effect of transversely isotropic on the flexural rigidity of thin plate   

 

Theorem: Given the effective material constants, 
j , 2,1,0j , the flexural rigidities D  

and 
*D  defined in Eqs. (18) and (20(a)) for transversely isotropic and isotropic thin plates 

respectively, satisfy the inequality 
*DD  . 

 

Proof: 

From the definitions of D  and 
*D , it is sufficient to show that 

ITI FF  , where 

)22(

)(2

012

021








TIF                          (22) 

and 

)2(

2

12

21






IF                             (23)  

respectively. 

Now, using Eqs. (22) and (23)  

























12

0

2

0

2

2
1

1









I

TI

F

F
                         (24) 

Since 
0 , then, Eq. (24) implies that  

                                   1
I

TI

F

F
                             (25) 

Finally, in view of Eqs. (18), (20(a)), (22)-(25), we conclude that 

*DD                               (26)  

 

Remark 4: The implication of the above theorem is that a transversely isotropic non-classical 

thin plate under consideration is stiffer than the corresponding isotropic thin plate. That is, the 

transversely isotropic structure of the plate increases its flexural rigidity. 

 

 

5. Natural frequencies                                 
   

It is well-known that the problem of a freely vibrating plate is often reduced to an eigenvalue 

problem. The most important part of the problem of free vibration of plate is to determine the 

natural frequencies and the mode shapes of the vibration associated with each natural frequency. 

The natural frequencies are the eigenvalues and associated shape functions are the eigenfunctions.  
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Values of these parameters are necessary for establishing the dynamic stresses caused by 

variable load. In the present case, we investigate the natural frequencies of a simply supported 

transversely isotropic non-classical thin plate. The plate occupies the region  

ax  10 ,  bx  20  , 
22

3

h
x

h
  

Then, we solve the equation 

                  0)4(
2

2
2

02

4 





t

w
whwD                     (27)  

subject to the boundary and initial conditions 

                 0w    and 0
2

1

2






x

w
   at    ax ,01                   (28) 

                 0w   and   0
2

2

2






x

w
  at   bx ,02                   (29) 

                  0w   and  ),( 210 xxv
t

w





  at 0t                  (30) 

where 0v  is the initial velocity at point ),( 21 xxP  and 
hba ,, . 

Let the natural frequencies of the plate problem under consideration be denoted as mn , 

,...3,2,1, nm . 

In order to determine mn , we assume a solution of the form 











1 1

21 sinsinsin
m n

mnnmmn txxCw                  (31) 

where 
a

m
m


  , 

b

n
n


  . 

It is obvious that Eq. (31) satisfies the boundary and initial conditions in Eqs. (28)-(30). 

Substituting Eq. (31) in Eq. (27) yields 

h

hD nmnm

mn





))(4()( 22

02

222 
                  (32) 

In the reduction to an isotropic non-classical thin plate (
*DD  , 

*

mnmn   ,  2
, 

00  ), we have 

                 
h

hD nmnm

mn





)(4)( 22222*

* 
                   (33) 

Meanwhile, the natural frequencies 
K

mn  for a rectangular, simply supported, isotropic 

classical Kirchhoff’s plate are (Ventsel and Krauthammer 2001, Eq. (9.11)) 
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)( 22
*

nm

K

mn
h

D



                            (34) 

Comparing Eqs. (32) and (33), and in view of Eq. (26) 

                                    
*

mnmn                                 (35) 

Further, comparing Eqs. (33) and (34) yields the inequality 

                  

                                   
K

mnmn  *
                             (36) 

Remark 5: The inequality in Eq. (35) shows that a transversely isotropic non-classical thin plate 

has higher natural frequencies than the corresponding isotropic thin plate. That is, the 

transversely isotropic structure of the plate increases its natural frequencies. Further, it is 

observed in Eq. (36) that an isotropic non-classical thin plate under consideration has higher 

natural frequencies than an isotropic classical Kirchhoff’s plate.  

 
 
6. Exact solution of forced vibration of thin plate                                 

 
Consider the forced vibration of a transversely isotropic non-classical thin rectangular plate of 

sides a  and b . The plate is assumed to be fully simply supported and subjected to a surface 

transverse load txxpp cos),( 210 , where   is the frequency of forced vibration, which is 

equal to the frequency of a disturbing loading. In this case, the governing equation of motion of 

plate is 

p
t

w
whwD 






2

2
2

02

4 )4(                     (37) 

where txxpp cos),( 210  is a variable, time-dependent, transverse load.  

The boundary and initial conditions are 

                     0w    and 0
2

1

2






x

w
   at    ax ,01                   (38) 

                     0w   and   0
2

2

2






x

w
  at   bx ,02                    (39) 

                      0w   and  0




t

w
    at      0t                   (40) 

In the solution of the above problem Eqs. (37)-(40), the deflection ),,( 21 txxww   and 

applied load ),,( 21 txxpp   are expressed in the form of infinite Fourier series 
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                          









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                           









1 1

21 s i ns i n)(
m n

nmmn xxtgp                   (42) 

where )(tmn  and )(tgmn  are functions to be determined. It can be easily verify that Eq. (41) 

automatically satisfies the prescribed boundary conditions in Eqs. (38) and (39). 

Substituting Eqs. (41) and (42) in Eq. (37) gives  

                          
h

tg
t

dt

d mn

mnmnmn



)(

)(2

2

2

                     (43) 

where 
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
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))(4()( 22

02

222 
  

Expanding the applied load tpp cos0  in the form  



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
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
1 1

21 sinsincos
m n

nmmn xxtpp                  (44) 

implies that 

tptg mnmn cos)(                           (45) 

 

a b

nmmn dxdxxxpp
0 0

21210 sinsin                  (46) 

The solution of Eq. (43) in view of Eqs. (44) and (45) gives 

                   
)(

c o s
s i nc o s)(
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Using the initial conditions in Eq. (40) yields 

                         
)(

c o s
22 
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h
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X   and  0mnY                  (48) 

The constants mnp  are determined from Eq. (46) 
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p
pmn 2

016


 ,    ,...5,3,1, nm                 (49)  

Substituting Eqs. (47)-(49) in Eq. (41) gives 
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
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,...7,5,3,1, nm                            

In the case when the load frequency   coincides with any natural frequencies mn  of the 

plate, that is  

mn                                (51) 

the plate vibrates in the resonance state. 

The corresponding resonance term of series in Eq. (51) takes the form 

2102
sinsin

sin8
xxp

h

tt
w nm

mn

mn
mn 

















                 (52) 

Eq. (52) represents a vibration with amplitude that indefinitely increases with time. 

 

Remark 6: Eq. (51) and the inequalities in Eqs. (35) and (36) indicate that a transversely 

isotropic non-classical thin plate resonates at higher frequency than the corresponding isotropic 

thin plate. Further, an isotropic non-classical thin plate also resonates at higher frequency than an 

isotropic classical Kirchhoff plate.  

 

 
7. Conclusions 

   

The study presents a two-dimensional equation for investigating and analyzing the vibration of 

a transversely isotropic thin plate structures in various areas of engineering. In the case of free and 

force vibrations of a fully simply supported rectangular plate, it is obtained that the non-classical 

plate under consideration has higher natural and resonance frequencies than the classical Kirchhoff’ 

plate. Further, the parameter characterizing the transversely isotropic structure of the plate 

increases its flexural rigidity which in turn increases both the natural and renounce frequencies. 

This work finds applications in the analysis and modern design of building foundations and bridge 

decks.                                                   
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