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Abstract.  The use of nanotechnology materials and applications in the construction industry should be 
considered for enhancing material properties. However, the nonlinear buckling of an embedded straight 
concrete columns reinforced with silicon dioxide (SiO2) nanoparticles is investigated in the present study. 
The column is simulated mathematically with Euler-Bernoulli and Timoshenko beam models. 
Agglomeration effects and the characteristics of the equivalent composite are determined using Mori-Tanaka 
approach. The foundation around the column is simulated with spring and shear layer. The governing 
equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) 
is used in order to obtain the buckling load of structure. The influences of volume percent of SiO2 
nanoparticles, geometrical parameters and agglomeration on the buckling of column are investigated. 
Numerical results indicate that considering agglomeration effects leads to decrease in buckling load of 
structure. 
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1. Introduction 
 

Concrete can be nano-engineered by incorporating nano-sized building blocks or objects (e.g., 

nanoparticles and nanotubes) to control material behaviour and add novel properties, or by grafting 

molecules onto cement particles, cement phases, aggregates, and additives (including nano-sized 

additives) to provide surface functionality, which can be adjusted to promote specific interfacial 

interactions. The nanoparticle is the elementary building block in nanotechnology and is 

comprised of up to thousands of atoms combined into a cluster of 1-100 nm. Nanoparticles have 

been shown to significantly enhance the mechanical performance of a variety of materials, 

including metals, polymers, ceramic, and concrete composites (Sobolev and Ferrada-Gutiérrez 

2005, Jo, Kim et al. 2007). A reduction in size provides an exceptional surface area-to-volume 

ratio and changes in the surface energy, surface chemistry, and surface morphology of the particle, 

altering its basic properties and reactivity (Sobolev and Ferrada-Gutiérrez 2005, Sanchez and 

Sobolev 2010, Plassard, Lesniewska et al. 2004, Scrivener 2009, Bhushan 2004, Zhou, Liu et al. 

2016, Penumadu, Dutta et al. 2009). 

Nanosilica (silicon dioxide nanoparticles, nano- SiO2), for example, has been shown to improve 
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workability and strength in high-performance and self-compacting concrete (Sanchez and Sobolev 

2010). Most research on nanotechnology role in concrete industry has focused to date on the 

investigation of structure and mechanical properties of concrete at the nanoscale (Mart and 

Mijangos 2009, Dalton, Collins et al. 2004, Trtik and Bartos 2001). Recent advances in 

instrumentations have made it possible to characterize the structure of concrete at the nanoscale 

and to measure the local mechanical properties of its micro- and nanoscopic phases (Trtik and 

Bartos 2001). Significant progress in understanding nano-scale processes in cementations 

materials has been achieved thanks to the use of nano-scale characterization techniques (Trtik and 

Bartos 2001, Beaudoin 1999). These advanced techniques include nuclear magnetic resonance, 

atomic force microscopy, micro-and nano-indentation, neutron scattering, ultrasonic force 

microscopy, and focus-ion beam (FIB) nanotomography. For example, the use of atomic force 

microscopy (AFM) has revealed that, contrary to general thought, nanoscale C-S-H has in fact a 

highly ordered structure. A better understanding of the structure of concrete at the nano-level will 

allow for a better control of concrete performance and even the tailoring of desired properties and 

is expected therefore to affect the method of production and use of concrete. 

Another application of nanotechnology in concrete has come from the “bottom-up” possibilities 

of nano-chemistry with the development of new products such as novel superplasticizers and new 

coating materials (Babazadeh, Burgueño et al. 2016, Corradi, Khurana et al. 2004). The 

development of coating materials with new self-cleaning properties, discoloration resistance, 

anti-graffiti protection, and high scratch-and-wear resistance is promising direction. In addition to 

these, self-cleaning materials based on photocatalyst technology were developed (Babazadeh, 

Burgueño et al. 2016). Titanium dioxide (TiO2) is used as a photocatalyst for the decomposition of 

organic compounds. TiO2 is active under exposure to UV light, exhibiting self-cleaning and 

disinfecting properties. Another aspect of self-cleaning is provided by the hydrophilicity of the 

surface, which helps to prevent dust and dirt from attaching to it. In the past, major developments 

in concrete technology have been achieved through the use of super-fine particles such as fly ash 

and silica fume. Recent advances in nano-chemistry and the development of new methods for 

synthesis of nanoparticles are now expected to offer a new range of possibilities for improvement 

of concrete performance (Collepardi, Ogoumah-Olagot et al. 2002, Flores, Sobolev et al. 2010). 

Incorporation of nanoparticles into conventional construction materials can provide the materials 

with advanced or smart properties that are of specific interest for high-rise, long-span, or 

intelligent infrastructure systems (Flores, Sobolev et al. 2010). The nonlinear buckling of straight 

concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation 

was investigated by Jafarian Arani and kolahchi (2016). 

To the best of authors‟ knowledge, no theoretical report has been found in the literature on 

buckling analysis of concrete columns reinforced with nanoparicles. Motivated by these 

considerations, in order to improve optimum design of concrete structures, we aim to present a 

mathematical model for simulation of embedded concrete columns reinforced with SiO2 

nanoparicles. The agglomeration effects are considered based on Mori-Tanaka approach. Herein, 

the structure is modelled with Euler-Bernoulli and Timoshenko beam models. The governing 

equations are obtained based on energy method and Hamilton‟s principal incorporating different 

boundary conditions. Using DQM, the buckling load of structure is calculated and the effects of 

different parameters such as volume percent of nanoparticles, geometrical parameters, elastic 

foundation and boundary conditions on the buckling load of concrete columns are shown. 
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2. Mori-Tanaka model and agglomeration effects 
 
In this section, the effective modulus of the concrete column reinforced by SiO2 nanoparticlesis 

developed. Different methods are available to obtain the average properties of a composite (Mori 

and Tanaka 1973). Due to its simplicity and accuracy even at high volume fractions of the inclusions, 

the Mori-Tanaka method (Mori and Tanaka 1973) is employed in this section. The matrix is 

assumed to be isotropic and elastic, with the Young‟s modulus mE  and the Poisson‟s ratio m . The 

constitutive relations for a layer of the composite with the principal axes parallel to the r,θ and z 

directions are (Mori and Tanaka 1973) 
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where plnmkijijij ,,,,,,,  are the stress components, the strain components and the stiffness 

coefficients respectively. According to the Mori-Tanaka method the stiffness coefficients are given 

by (Mori and Tanaka 1973) 
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where the subscripts m  and r  stand for matrix and reinforcement respectively. mc   and 
rc  are 

the volume fractions of the matrix and the nanoparticles respectively and kr  ،lr  ،nr  ،pr , mr are the 

Hills elastic modulus for the nanoparticles (Mori and Tanaka 1973). The experimental results show 

that the assumption of uniform dispersion for nanoparticles in the matrix is not correct and the most 
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of nanoparticles are bent and centralized in one area of the matrix. These regions with concentrated 

nanoparticles are assumed to have spherical shapes, and are considered as „„inclusions‟‟ with 

different elastic properties from the surrounding material. The total volume rV  of nanoparticles can 

be divided into the following two parts (Shi and Feng 2004) 

inclusion m

r r rV V V 
                              (3)

 

where 
inclusion

rV  and 
m

rV  are the volumes of nanoparticles dispersed in the spherical inclusions and 

in the matrix, respectively. Introduce two parameters   and   describe the agglomeration of 

nanoparticles 
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However, the average volume fraction rc  of nanoparticles in the composite is 
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Assume that all the orientations of the nanoparticles are completely random. Hence, the effective 

bulk modulus (K) and effective shear modulus (G) may be written as 
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where , , ,r r r r    may be calculated as 
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where, Km and Gm are the bulk and shear moduli of the matrix which can be written as 
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Furthermore, ,  can be obtained from 
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Finally, the elastic modulus (E) and poison‟s ratio (υ) can be calculated as 
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3. Governing equations 
 

Fig. 1 shows a concrete column reinforced with SiO2 nanoparticles considering agglomeration 

effects. The surrounding foundation is described by the Winkler foundation model with spring 

constant wK  and Pasternak foundation model with shear constant pG . 

The concrete column is modeled with Euler-Bernoulli and Timoshenko beam models. 

  

3.1 Euler-Bernoulli beam 
 

The displacements of an arbitrary point in the Euler-Bernoulli beam are (Brush and Almorth 

1975) 
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where )(xU  and )(xW  are displacement components in the mid-plane. The von Karman type 

nonlinear strain–displacement relations are given by 
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Fig. 1 Geometry of the concrete column reinforced with SiO2 nanoparticles considering agglomeration 

effects 
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The stress-strain relations can be written as 

,11 xxx C  
                             (26)

 

where C11 is elastic constant which can be calculated by Mori-Tanaka model. The strain energy of 

the structure can be expressed as 

.)(
2

1

0 
L

A
xxxx dAdxU 

                      (27)
 

Submitting Eqs. (24) and (25) into (27) gives 
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where the resultant force (Nx) and bending moment Mx, are defined in Appendix A. The external 

work due to the foundation can be written as (Ghorbanpour Arani, Kolahchi et al. 2015) 
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The governing equations of structure can be derived from the Hamilton‟s principle as 
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where 
M

xN  is the axial load applied to the concrete column. Introducing the following 

dimensionless quantities 
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and substituting Eqs. (A4)-(A6) into the governing equations yields 
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3.2 Timoshenko beam 
 

The displacements of an arbitrary point in the Timoshenko beam are (Brush and Almorth 1975) 
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where   is the rotation of beam cross-section 
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The stress-strain relations can be written as 
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where C11 and C55 are elastic constants which can be calculated by Mori-Tanaka model. The strain 

energy of the structure can be expressed as 
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Submitting Eqs. (35) to (37) into (40) yields 
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The external work due to the foundation is the same as Eq. (29). The governing equations of 

structure can be derived from the Hamilton‟s principle as 
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Based on dimensionless parameters in Eq. (32) and substituting Eqs. (A4)-(A6) into the 

governing equations yields 
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4. DQM 
 

The main idea of the DQM is that the derivative of a function at a sample point can be 

approximated as a weighted linear summation of the function value at all of the sample points in 

the domain. The functions f and their k
th
 derivatives with respect to x can be approximated as 

(Kolahchi, Rabani Bidgoli et al. 2015, Kolahchi, Safari et al. 2016a) 
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where N is the total number of nodes distributed along the x-axis and ijC is the weighting 

coefficients, the recursive formula for which can be found in (Kolahchi and Moniribidgoli 2016b). 

Using DQM, the governing equations can be expressed in matrix form as 
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where KL is the linear stiffness matrix; KNL is the nonlinear stiffness matrix and Kg  is geometric 

stiffness matrix. Also, bd and dd represent boundary and domain points. Finally, based on an 

iterative method and eigenvalue problem, the buckling load of structure may be obtained. 

 
 
5. Numerical results 
 

The governing equations for buckling of structure are established for Euler–Bernoulli beam 

model and Timoshenko beam model in the last section. The material constants used in the 

calculation are: concrete column with elastic modules of GPaEm 20=  and SiO2 nanoparticles 

with elastic modules of GPaEr 75= . Based on DQM, the buckling load of structure is calculated 
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and the effects of SiO2 nanoparticles volume percent, geometrical parameters, elastic foundation 

and boundary conditions are showed. 

At the first, the convergence and accuracy of DQM are studied for both Euler–Bernoulli and 

Timoshenko beam models. The effect of the grid point number in DQM on the buckling load of 

the concrete column is demonstrated in Figs. 2 and 3 for Euler-Bernoulli and Timoshenko beam 

models, respectively. As can be seen, fast rate of convergence of the method are quite evident and 

it is found that 15 DQM grid points can yield accurate results. In addition, with increasing 

thickness to length ratio (h/L) of column, the buckling load increases due to increase in stiffness of 

system. 

In order to show the effect of SiO2 nanoparticles volume percent in the concrete, Figs. 4 and 5 

are plotted for Euler-Bernoulli and Timoshenko beam models, respectively. It can be found that 

with increasing the volume percent of SiO2 nanoparticles, the nonlinear buckling load increases. It 

is due to the fact that with increasing volume percent of SiO2 nanoparticles, the stiffness of 

structure increases. Hence, the SiO2 nanoparticles volume fraction is effective controlling 

parameters for buckling of the concrete column. In addition, the buckling load predicted by 

Euler-Bernoulli model is higher than Timoshenko one. It is because that the flexibility of 

Timoshenko model is higher than Euler-Bernoulli model. Hence, the results predicted by 

Timoshenko beam model is more real with respect to Euler-Bernoulli one. 

 

 

Fig. 2 Accuracy of DQM for Euler- Bernoulli beam model 

 

 

Fig. 3 Accuracy of DQM for Timoshenko beam model 
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Fig. 4 The effect of SiO2 nanoparticle volume percent on buckling load for Euler-Bernoulli beam model 

 

 

 

Fig. 5 The effect of SiO2 nanoparticle volume percent on buckling load for Timoshenko beam model 

 

 

 

Fig. 6 Comparison of steel and SWCNT as reinforcer for Euler-Bernoulli beam model 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Thickness to length ration, h/L

D
im

en
si

o
n

le
ss

 b
u

ck
li

n
g

 l
o

ad
, 

P

 

 

c
r
=0

c
r
=0.05

c
r
=0.10

c
r
=0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Thickness to length ration, h/L

D
im

en
si

o
n

le
ss

 b
u

ck
li

n
g

 l
o

ad
, 

P

 

 

c
r
=0

c
r
=0.05

c
r
=0.10

c
r
=0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.4

1.6

1.8

2

2.2

2.4

2.6

Thickness to length ration, h/L

D
im

en
si

o
n

le
ss

 b
u

ck
li

n
g

 l
o

ad
, 

P

 

 

=0

=0.5

=0.75

=1.0

53



 

 

 

 

 

 

Mehdi Zamanian, Reza Kolahchi and Mahmood Rabani Bidgoli 

 

 

Fig. 7 Comparison of steel and SWCNT as reinforcer for Timoshenko beam model 

 

 

 

Fig. 8 The volume percent of SiO2 nanoparticles in inclusion effect for Euler-Bernoulli beam model 

 

 

 

Fig. 9 The volume percent of SiO2 nanoparticles in inclusion effect for Timoshenko beam model 
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The effects of agglomeration ( ) respectively for Euler-Bernoulli and Timoshenko beam 

models, respectively on the buckling load along the thickness to length ratio are demonstrated in 

Figs. 6 and 7. It is worth noting that the buckling load decreases with increasing  . It is due to the 

fact that considering agglomeration effect leads to lower stiffness in structure. However, the 

agglomeration effect has a major effect on the buckling behaviour of structure. In addition, with 

increasing h/L ratio, the buckling load is increased for both models. 

Figs. 8 and 9 illustrate the influence of volume percent of SiO2 nanoparticles in inclusion ( ) 

on the buckling load along the h/L ratio respectively for Euler-Bernoulli and Timoshenko beam 

models. It can be concluded that the buckling load is increased with increasing  . The above 

results are reasonable, since with increasing   the stiffness of structure increases. 

 

 

6. Conclusions 
 

Agglomeration effect on the buckling load of a concrete column reinforced with SiO2 

nanoparticles was the main contribution of this work. The column was simulated with Bernoulli 

and Timoshenko beam models mathematically. The characteristics of the equivalent composite 

were determined using Mori-Tanaka model. Applying DQM, the bulking load of structure is 

calculated and the effects of volume percent of SiO2 nanoparticles, agglomeration and geometrical 

parameters are shown. Results indicate that with increasing the volume percent of SiO2 

nanoparticles, the nonlinear buckling load increases. In addition, the buckling load predicted by 

Euler-Bernoulli model was higher than Timoshenko one. It was also worth to mention that the 

buckling load of concrete column decreases with considering agglomeration effects. Obviously, 

with increasing volume percent of SiO2 nanoparticles in inclusion, the buckling load was increased. 

Finally, it is hoped that the results presented in this paper would be helpful for mathematical 

modelling of concrete structures and using nanotechnology for production of them. 
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Appendix A 
 

The resultant force (Nx, Qx) and bending moment Mx, are defined as 

 A
xxx dAN ,

                             (A1) 

, A
xxx dAzM 

                            (A2) 

,
A

xzsx dAKQ 
                           (A3) 

where sK  is shear correction factor. The work done by the foundation is denoted by 

(Ghorbanpour Arani, Kolahchi et al. 2015, Kolahchi, Rabani Bidgoli et al. 2015). Substituting Eqs. 

(4) and (5) into Eqs. (8)-(10) yields 

 

,
2

1
2

1111 


















x

W
AC

x

U
ACNx

                     (A4) 

,)(
2

2

2

2

11 
































x

W

x
zf

x

W
ICM x



                  (A5) 

.55 












 

x

W
ACKQ sx

                        (A6)

 

57



 




