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Abstract. Nowadays, wind energy is the most rapidly developing technology and energy source and it is
reusable. Due to its cleanliness and reusability, there have been rapid developments made on transferring the
wind energy systems to electric energy systems. Converting the wind energy to electrical energy can be done
only with the wind turbines. So installing a wind turbine depends on the wind speed at that location. The
expected wind power can be estimated using a perfect probability distribution. In this paper Weibull and
Weibull distribution with multiple parameters has been used in deriving the mathematical expression for
estimating the wind power. Statistically the parameters of Weibull and Weibull distribution are estimated
using the maximum likelihood techniques. We derive a probability distribution for the power output of a
wind turbine with given rated wind speeds for the regions where the wind speed histograms present a
bimodal pdf and compute the first order moment of this distribution.

Keywords: Weibull & Weibull distribution; maximum likelihood method; capacity factor; wind power;
Vrated

1. Introduction

Wind is the possible indicator of global climate change and its importance to effective wind
power generation, it is fundamentally important to install high quality wind sensors and have best
exposure conditions at observation sites. Substantial theoretical and empirical research is directed
at wind power expansion and generation Park (1981). The focus of such research includes wind
resource quantification, wind speed modeling Sen (2003), wind power production modeling,
system reliability etc. The wind speed probability distribution for a certain location is crucial in
determining the performance of energy conversion systems Seshaiah and Sukkiramathi (2016).
When the wind speed distribution is determined, the wind power density distribution can easily
obtained accordingly. For this reason, the proper specification of the wind speed distribution is of
special importance in the assessment of wind energy potential .Garcia A and Torres (1998).

This paper is intended as an introduction to the use of the multiple-parameter Weibull and
Weibull distribution to model single-site hourly average wind speeds He et al. (2013). Our goal is
to write down an expression for the probability distribution of the power produced by a wind
turbine at a fixed location. The Weibull distribution is widely used in life testing and reliability
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studies. Weibull distribution that is the most widely used and accepted in the specialized literature
on wind energy and other renewable energy sources. Several authors have indicated that Weibull
pdf should not be used in a generalized way, as it is unable to represent some wind regimes, such
as those which describe wind speed frequency histograms which present bimodality. Jaramillo and
Borja (2004) have used a two component mixture Weibull distribution to overcome such situations.
Let us here concentrate on only the mathematical modeling to estimate the wind power resources.
In section 2, we define the Weibull and Weibull probability distribution, compute its mean,
variance and prove some of its characteristics. In chapter 3 we estimate the parameters. In chapter
4 we derive a probability distribution for the electric power output of a wind turbine.

2. Weibull and Weibull distribution

In this section, we will see about the Weibull and Weibull distribution, denoted by WW
(v; a4, By, @3, B, w) and prove some of its basic properties. Here v[m/s] is the wind speed,
a.and a, are the scale parameters , 8, and 8, are dimensionless shape parameters.

2.1 Definition and basic properties

A random variable V that is distributed as V; with mixing parameters w; (such that
w1 + w, = 1) is said to have a two-component mixture Weibull and Weibull Distribution Carta
and Ramirez (2007). The density function of VV, which depends on the parameters(ay, 51, @2, 52)
is given by

ff(vciza}{ﬁp az:ﬁz:w)a = of(v;a, ) + (1 - (_Ul)f(v: az, B2) .
<ol ()" o[- ra-ofE @ en[-(G)) @

Proposition 2.1 The Weibull and Weibull distribution with parameters a4, 81, a5, 8, >0
has cumulative distribution function (cdf) given by

FF(v; a1, By, @y, P2, w) = PV <v) = wFw;a,pB)+ (1 —w)FW;ayB,), where F is
the CDF of Weibull two parameter

ol en -G o e )7 020 o

0, v<0

Proof:
By the fundamental theorem of calculus

P(V<v)= f_vff(vi ay, By, z, B2, w) dv
= [olp ()" e[ ()"} av

=) {3 () e[ ()]} @
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aq v an
vd —(i) vd —(—)
=- —_ B — — - B
W - (e 1 ) dv— (1-w)), ™ <e 2 dv

- a){l — exp [— (ﬁ—)“]} +(1-w) {1 — exp [‘ (ﬁ_)a]}

Proposition 2.2 Let V~ WW(v; ay, 1, @3, B, @) then V has r*® moment given by

BV =E2 - op (14 2) + A-w)f T(14+2)  [mr/s] )
In particular ¥ has mean, variance respectively as Hong and Li (2014)
EV] = 0T (14 )+ A - Bl (1+) @)
var V) = p*[r(1+ ail) -r2(1+ ail)] + B2 [r(1+ aiz) -2 (1+ aiz)] (5)
Proof:

Recall Euler’s integral for the gamma function, I'(z) = fow e *x"ldx for n> 0.
Hence for re Z>1,

E[VT] = fov v ff(v; aq, Br, @z, fa, w) AV
fov T {(u {% (é)al_l exp [— (é)al]} + f;’ v"(1l-w) {% (é)az_l exp [— (é)az]}} dv

wpy" I‘(l +ail) +(1-w)p, F(l +aL)

2

Set 7 = 1gives E[V]= wf, T (1 +ail) +(1-wp, T(1 +aiz)
Var (V) = E[V?] = (E[V])?

=g’ r(1+2)-r2(1+ )] + B2 r(1+2) -2 (1+ )]

Proposition 2.3
Let k >0 and V"'WW(U, 0(1,,31, az,ﬂz,w) . Then kV = Y"‘WW(v, 0.’1,,31, az,Bz,w)

Proof : Using proposition 2.1 we see that
Fy(v) =PV <v) =

P <t = wfi- el ()]} + - oo ()] ©

which is the cdf of WW(v; a4, 51, a3, B2, w) random variable. Since the distribution function
uniquely characterizes the law of the random variable, the conclusion follows immediately. The
above proposition confirms that the wind speed follows a Weibull and Weibull distribution
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regardless of the choice of units.

Proposition 2.4

Let Vi, V,, ...,V be independent random variables with V,~WW (a;, B;, w), for
1<i<n. Then
. _ _yn (¥ @i
P(min(Vy, Vy, v e v, V) > v) = exp( ) (Bi) ) (7
If a;=a,==a,=a then V,V, ...,V )~Weib(Bpmin, @), Where Bpin =
1
=B ) e
Proof: Clearly, min (V4,V,,.......) >v ©V;>v Vi=12,....n . Since v; are
independent.
PVi>v,Vo >0, Vy > 0) =T P(V; > v)
n
=[lp-et-ee[-G) [ ra-orp-eo[-(3) ]
| | { g 1+ B

= [T, exp [— (%)ai] = exp [_ Yicq (%)“i]

This completes the proof of the first assertation . Now suppose that a; = a,1 <i <n. Then
we may write the above as

= exp [— ?:1 (%)a] = exp [_ﬁf_“)ﬂ]

ve —on—1
= exp [_K  Broin = Zima(B; )

Which shows that min (V}, Vs, ........ V) ~WW (Bnin, @) by the uniqueness of distribution
functions and proposition 2.1.

2.2 Parameter estimation

Having established some basic properties of the Weibull and Weibull distribution and found a
probability distribution for the power output, we now turn to the problem of estimating the
parameters a,, 8;, @5, B,. Estimation of parameters can be done using several methods, but here
we use MLE technique Kolhe et al. (2003), Celik (2004).

2.2.1 Likelihood function

Let (V},Vs, .o.....V,) : @ > R™ be a random variable with probability density function
f(v,0) for a k tuple of parameters 8 € @ C R*. Recall that for a sample V(7) = v € R, the
likelihood function of, denoted by 1,(6) = 1(), is defined by 1: @ —» R,1(8) = f,(v) .Let @

denote the topological closure of @ inR. If § € @ satisfies [(8) = supges 1(0), we say that
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6 is a maximum likelihood estimate (MLE) of 6. If 8: ¢ > R,t €% ,where Ly (%) =
supgeg L(6), then we say that 6 is a maximum likelihood estimator (MLE) of 6. We may define
the log-likelihood function to be log [ (8).We first note that this definition makes sense since we
may assume that [ () > 0 for all 6. the following lemma often simplifies computations of
MLEs since the logarithm converts products to sum.

Lemma25 @ isaMLEifandonlyiflog {(0) = supgyes [(log8).

2.2.2 Maximum Likelihood

The maximum Likelihood technique, with many required features is the most widely used
technique among parameter estimation techniques Cook (2001). The MLE method has many large
sample properties that make it attractive for use. It is asymptotically consistent, which means that
as the sample size gets larger, the estimates converge to the true values. the goal of the MLE
method is to find the parameter values such that the theoretical probability of the sample data is
maximized.

Let Vi, V,,........V, be independent identically distributed (i.i.d) W W (v; ay, B, @5, B2, @)
samples. Since the joint density function of independent random variables factors, we have that

l(ay, b1, @z, B2) = ?=1f(17i; ay, B, @z, B2, )

o GO enl- GO -0 52 G e[GO

i=1

a, \" 1 HZL: ‘Uial_l
= " (ﬁ_i) exp [_BlTl =1 Uial] g
n 1 '11:7-= Viaz—l
+a-o) (32) o [~ g Shw| S ®
Taking the natural log on both the sides, we obtain that the log-likelihood function is

1
Log I(ay, By, a,8,) = nloga; —nlogp, 5 Yisgvi“t + ¥ (ap — 1) logv; — n(a; —

1
1) logp, + nloga, — nlogp, s rovi+ Y i(a, -
Dlogv; —n (a; — 1) logf, + nlogw + nlog(l — w)

= nloga; — nay log By =~ Ly v + Tiy(ay — 1) logv; +

1
Bt

1
nloga, —nlogfy — oz Ximi v + Lisa(az — Dlogv — n azlogf, (9)

Taking partial derivatives w.r.t a;, B1, @y, B, we obtain (Sedghi et al. 2015 a, b)

K] —
5g; log ey, By, @z, f2)] = == + saier Ty vi™ (10)
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a5 logl(ar, Bu, sy, o)) = =2 + ok By vy (12)

5o [logL(ar, By, az )] = - = nlog By + =55t Ty vi™ — o (X, log(v) vis) +
2 Yit log(vy) (12)

[1081(611’/31' az B2)] = ——nlogf, + logﬁz =1 V% — 1a2 (Xieq log(v) v;%2) +
2 51 Tog(w) (13)

Proposition 2.6 The MLE (@&,f, @&, f,) exists and is unique if vy, vyvs v,
satisfying min( vy, v,, v3 v,) < max(vy, vg, V3 vy)andv; >0Vi=1.2,....,n

........................

Proof: The log-likelihood function is in C1*(0, o). we set the proceeding equations to zero,
we have

0=—=— nlogf + ﬁg—ﬁl z “1——(210g(v>vl“1)+2 Zlog(u)

1

1 i=1
ﬁ n
n A ~
0= 5~ nloghy +—=21 § i A (Z log(v; )vlal) +2 Z log(v;)
s Ay A
0=—7- "Zﬂz—uzgm +2 Xitqlog(wy) (14)
%1 i=1 Vit
n oy og(v; 1 23" log(v;
From (14) Loy v logv) | 1 _2 B, log)
= Uit ay n
Similarly Bim Vi logw) _ 1 _ 2 Bizy logWwi)
i=1 Vi ? a; n

This equation has a unique solution. For existence, observe that
h(a,) = log(@y, By, a2, B2)

_ n v %1 S vt
=nlog oy — 2 log (E1, ") — n E2 4 51 (ay — 1) log,
i=

Uial

P(ar — 1logv, (15)

=nlog a; —nlog (Xi=;
h(ay) = log(ay, 1, @z, f2)

- n vi*2 Xi, vi®2
=nlog a; — ~azlog (Lo~ ) —n Hro o + Nima(az — Dlogy;

=nlog a, —nlog (Ny L) —n + T, (a, — 1) logy, (16)

Let a, = a;,a, and By = B1,B, Thisimplies
h(ay) = log(@y, fi)
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_ n vk TR, 0%
= nlog ay — = aylog (Ti, %) —n BRI 4 B (@ — 1) logv,

i=1Vi

vi“k

)—n + X (@ — Dlogy; (17)

It is evident that h(a,) - — as a;, — 0. we now consider h(a;) for large values of «; , in
particular a; = 2. Since the function v — v% is strictly convex, for a; > 2.

n n (4973
vi“k < Ui)
E > E —_
n - n

= nlog a —nlog (Tf, "L

i=1 i=1
<n viak c Vi “k
—nlog Z < —nlog Z—
4 n 4
i=1 i=1
vi
= —naylog (Z?=1;) (18)
Since the function v — —log(v) is strictly convex and by our hypothesis that
min( vy, Vp, vs,........, Vp) <max(vy, U, Vs, Vn)
l vk l Nz - log(v) c 1
—nlog Z - < —nay log z; <—nakZ - —akz og(v;)
i=1 i=1 i=1 i=1

@ Yi= log(vi) —nlog ( i=1 vi:k) < ag (Z?zllog(vi) - nlog( {‘:1%)) <
0. 9

Hence ay (Z}Lllog(vi) -n log( ?:1%)) <0 . Since log(ay) =0(ay) as ap — o, it

follows that h(ay) - — as a; — o. Hence there exists a,, @, with 0 < a; < @, < o, such
that supy, efa,,a,]: R(@k) = Supg,efomh(ax). By Weierstrass’ extreme value theorem there

exists @, € [aq, a,] such that
h(@y) = supg,efa, a,)(@k) = Supg, o h(ax) which implies & is a global maximum of

h(ak).

3. Computation of MLE

Let us compute @, .We now give a Newton Raphson algorithm for finding @

Define £ : (0,0) = R, fla) = =~ nz“l’:’—';l;’f“’” 2 Y™ log(v;) (20)
k i=1Yi
oy _om 3R vk(og)? | (S viklog(w)(S]ey vk log(v)))
f (ak) T o2 n vk tn (Z?=1"iak)2
_ o Sigylvwy) ™ (logwo-tog(v))” _ (1)

ax? (Zlnz1 viak)z
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(i vi)" (i log (v ()™ 108w -10 (4))°)
(Zr 1”iak)4
2 Zii (i) ™ (logw)- log(v,)) (Bi, vik log(v))
(Zr "lak)
Which is evidently bounded on compact subsets of (0, c0) being continuous. Fix 0 < a < @, <
b <o such that f(a)>0,f(b) <0, 0<8<|f'(ar) | and |f'(ar) | <N, for some

N >0,V ay € [a,b] . Let azy € (&, b) denote initial choice. Then m*" iteration of Newton-
Raphson method is given by

frla) = 275~

(22)

27:' 1 vlakm—l

1
&k:l_l -n S Blem-— :g(]’l) +Zl 1log(w;)
Am = Qrm-1 — = 2 (23)
n B ZK](V v ) (log(vl) log( ))
“ham-1 (27 vim=1)

4. Power distribution
Let us see about the very basic and simplified level of wind turbines.
4.1 Wind turbine

A wind turbine functions with kinetic energy. The power of wind with mass flow in
m (kTg) and velocity v (?) isgivenby P = % m|v|?

A wind turbine which converts all the kinetic energy of the wind into mechanical energy would
reduce the speed of the wind to 0.

1
P == pAlv|3
2/OIvI

Where p is the standard air density ( ) Many researchers have assumed that the air density

is independent of the wind speed cubed and constant as for the standard atmosphere being equal to
1.293 kg/m3 and A is the area (m?) covered by the rotator blades. In practical design for modern
high speed two blade turbines, Cp ranges between 0.4 and 0.5, whereas it ranges between 0.2 and
0.4 for slow wind speed turbines with more number of blades. Modern wind turbines with power
coefficients Cp is taken as 0.593 , which is its maximum possible theoretical value ~ 0.5 stated

that power output of a wind turbine is given by % pCpnAlv|3, n € (0,1) is efficiency constant
Patel (2006).

Proposition 4.1

P has cdf FE,(v) = w {1 — exp [_#(Z_Z) 1]} +(1-w) {1 — exp[ e 1 (;Z)_z]} (24)

And pdf ffp(v) =
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_;z_v% 1a1v%_li% _ _;z_v% 10(2V%_1i%
{exp[ Blal(pA) ]}Blal . (pA) +(1 w){exp[ Bz“z(pA) ]}quz 5 (pA) (25)

Proof:
1 1
FE,(v) = P(P < v) = P V<(2v>3 — FF <2v>3
(V) = <v)= =Ca) |7 A
a

= w{l— exp [—ﬁ(;—:)T } +t(1-w) {1—exp [_&C_Z)

Differentiating both sides with respect to v, we get the pdf
() 1 (Zv)%_ 1 al( 2 )(217)
V) =wyexp|—co (= —= 5 )=
? P18\l ([, 3 \pa) \pa
+a ) 1 (217)% 1 a, ( 2 )(21])%_1
—w)iexp|—=—x|— — ===
P178,2 Al |[5,7 3 \pa) \pa
1 <2v)% 1 ()leas_l_1 ( 2 )%
=X - a\ 2 O A
PITB\%a) [[B," 3 4

+(1-w) {exp [_ é (;_Z)%]} leaz 0tzvlf_1 (ﬁ%‘l)?

Power distribution of wind turbine
Suppose V~ WW (v; ay, By, @3, B2, w). Let =%pAV3, where p and A are constants. In

a
3

)

a1
b
3

reality , p is stochastic ,but we assume the variability of p is negligible.

The Wind energy available in the wind cannot be extracted completely by any real wind turbine,

as the air mass would be stopped completely in the intercepting rotor area Jowder and Fawzi
(2009). For wind turbine machines that has power with maximum efficiency between rated and
cut-off speed and an increasing power between cut-in and rated speed, wind speed of wind turbine
with power coefficient Cp and efficiency coefficient n producing power P is given by

0 Vturbine < Vcut-in

|4 Vcut—in sV< VUrated

Vrated Vrated < V< Ucut—off
0 V= Veut-off

(26)

Viurbine =

Where v cyein < Vratea < Veut—off. are specified by the manufacturer. For example, the GE

1:5 MW SLE. wind turbine has cut-in wind speed v.yi—in = 3_5% rated wind speed
Vrated = 14% and cut-off wind speed vcyr_orf = 25%
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0 Vturbine < Veut—in
1 3
5 PCPWAV Vcut—in sV< VUrated

Prurbine = (27)
l; pCPnAvrated3 Vratea <V < Vceut—off

0 V= vcut—off

It is evident Viyypine anNd Prrpine are discontinuous random variable, but we can still
compute their distribution functions and moments.

Proposition 4.2. P, pime has cdf

FEyurine (V)

( 0 —o<v<0
| {1 -w (e_(%;l_m)al - e_(vmﬁ#z_m)aj +w <e_("c1t:?_;oﬁ)a1 - e_("cu;;;f/)”)} 0<v<s 2 PCPUAchc in®
{| e I}: C:ﬁ Tl (1 - a))e le (CPZJDA)%Z + g_(vm;?;z_in)uz to (e_(vcug—?]”)ul - e_(vcu;—?ﬁ)uz> E pCPr]Avcucﬂ‘n3 <V< % pCPnAVrated3
(1 % PCPNAV grea® S V<
(28)
Proof:
Itis evident that P(Pyrpine < 0) IS
P({V < Veut- in} u {V < Veut- off} = FF(vcut in) + (1 - (FF(vcut—off))
a
=ofi-en (52" £ 0w (e [-052)")
- foli- el (22" o - e - ()
=1—-w (e_(vai?%m)al — e_(va;?%m) 2) +w (e_(vcu;'—_laff)a1 - e_(”ﬂt%_-;ﬁ)‘”) (29)

For 0<v=- pCpnAv pCpr)Av note that v <= pCPnAvr ovSy,

- FE,, .. (v) = P(0 < Pturbine < v) + P(Pturbine = 0)
_(Ycut—in 1 _(Ycut—in @2
= P(% pCpNAVyy_in® < Pturbine < v) +1—w<e ( B1 ) e ( B2 ) ) +
Veut—off\%1 Veut—off\*2
w(e_( B1 ) —e_( B2 ) >

a1
3

a
1 3\3 )
1 v ( 1 <2§PCP7’A"cut—in )

1 2v TZ —
wll—e [31 (CpnpA) + (1 —w ) 1—e [;2 (CpnpA) —w il — e B, "L CpnpA } _
)
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az
1 az
( 1 <27 pCP"A”cut—in3> 3 \

1-w) i1 e R\ Cpmed }

: : — ai _ az
+1_w(e-<—"cﬁf o)™ _e-<—"“‘é;‘">“2) +w(e-(—”“‘2:’”> ) )

—1— we_Bllal(C:nﬁ) ’ — (1 —w ) {1 _ e_gz;“Z(CPZWUPA> ’ } + e_(vwi?%in) ’ 4+ w {e_(”cug——loﬁ) _
_(Yeut-of£\*2
5 } (30)
For % PCpNAVLqreq® < v < oo | itisevidentthat FE,, . (v)=1. (31)
Eqg. (28) is combination of (29), (30) and (31).

Proposition 4.3

Elpearnine’] = (2 pCona)’ {m e (F(1+3—r'(wé—im)al)4 (1+ 3—(,;—))> +

aq

o= o (1 (12,289 ) - (122, (32)) s

_ a _ a
{e_(vrg%d)al - e_(vcuz—l()ff) 1} + Vratea” (1 — ) {e_(vr???d)az - e_(vcu;?;ff) 2}

Proof:
E[prurpine’] = f_oooo Pturbine’ d (ffpturbine (v))
=17 (5 coman) " {ofse (2" e - (2) v+
e - )i (1) e - ()} v
#1227 (3 pConavranea®) ™ foof2 (32) exo[= ()]} av+
freeert( - w) (2 pConavyaed®)” {22 (£) exp [~ (2)]} Jav (32)
Let y; = (%)al , dy; = %(é)al_l dv ,when v =v.1_in = ¥1 = (vc’;;l‘in)al,

Vrated

B, )alv UV ="Vcut-off 2> V1= (vcut—_off)al (33)

UV ="Vrated = Y1 = ( B,
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and y, = (é)“z , dy, = Z (ﬁvz) az-1 dv , when v=v_in & Vo= (va;g;;n)az |
V = Vrated = Y2 = (UT;—ZM)(ZZ V= Veyr—off = V2 = (v”‘;—;"ﬁ)az (34)

Using (33) and (34) we get

("rated) 3r )
( PCPUA) rﬁ13rw f(vcut m)al Yy e_ylde"(g PCPTIA) rﬁzgr(l -
B1

(”rated) 3r 1 (ch;—off)al
v az V2 ze V2 S pLpl w), ay Vrated™ € V1
)f( cut— Ln) ¢ Vdy;+ (2 ¢ A) " f( ratezli) . nd
B1
1 (”cut off)oc2
+(3 pConA) "(1 - w) f(,,m gy Urated TR, (35)

Let us consider the Gamma function fo e Yy ldy = I'n.

Let t; =1 +Z—r Jt, =1 +z—r, This implies

Yrated
E[pturbiner] = ( pCpnA) rﬁ13rw f(vcut m)
( B1 )
(Vratfed)a2 L (cht—off)al
b2 o Y22t e2dy,+ (E pCPnA) " f(”ra:itlz a1 Vratea® € 1dy;
B1 )

1 1
o V117le yld}’f"(g PCPUA) T8, -

]

(”a‘tgtz—in)
(cht off)az
Vrated ez d:VZ

+(5 pCnA) (1~ w) |

SN
= Gocona) fo o (025 ) (14 2 5)")) o -
w) (F (1 + 2_:’ (v,«;_zed)az) -T (1 + Z_Z, (vm‘;;z_in)a’z)> } +vrated37“w {e_(vrg%d)al ~
_(M)“l}
e B1
Forarea” (1 -y fo OB e—(””‘;—;"”)az} n

In particular , peyrpine has mean

E[pturbine] = (% pCpnA) {:81 3w <I—v (1 +ail' (vrg_ied)cn) _r (1 +ail’ (%;;m)a%)) +
g2y (r (1 2 () -1 (142, (o)) Lt fo OB -
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_("cut—off)a1 _(Vrated)a2 _(vC“f—Off)az
e 1 + VpgreaS (1 — w)ie \ B2 — e B2 (37)
We can define the capacity factor of a wind turbine to be the ratio Chang and Tu (2007)

CF = E[pturbine]

1
E pCP nAvratedg

An expression for CF using (37)

cr = s o (r (2 (22 - (e 2 (29)°)) 420 w1 (s
() - (2 ()7
. _(Vm_rea)“i _(”cut—off)“l . _(M)“Z _("cut—Off)az
+tVrated” W {e 1 —e 1 } * Vrated (1 - w) {e B2 - e B2 }
- ) o (r(e 2 (™) - (1 2 (e))) + () -
o) ( (142 (2 ) - r (14 2, () ) )

rw {e—(”r;’;—fd)m _ e-(%—l"”)al} +A - w) {e—(vr?%")az e )az} (38)

4.3 Turbine — Location

Let us suppose that a particular location wind speed data follow
WW(v; a4, By, @, B, w) distribution. Furthermore, suppose a manufacturer can manufacture wind
turbines with fixed cut-in and cut-off speeds vqyi—in and Veur—ofr » Fespectively, but can adjust
the rated wind speed v, € [Veut—in; Veut—off]- Rehman and Ahmad (2004).

Define a function CF : [Veyt—ini Veut-off ) = R DY

cr = (&) {or (14 2. - (1 2, 52) + (& - o (r 1+
2D -r (2 (™)) vo [ EED L

w) {6_(312)a2 —~ e_(vcu;—_zw)az} (39)

e er) = <a(r( G)") (2 (55)")
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(&) 0| T (@] - a-a(r(+2.(0))-
r@ﬁcwﬂn+@a~w@%®ﬁﬁ@”1

o (T E@ET ca-ol @ @ e
R UCEHORENCEACSE)
-2 - (r(1e 2 (2)) - (142 (")) @0

We now compute the value Vrated which maximizes E[peyrpinel
Define a function Pyyg : [Veut—ins Veut—orf) — R DY

s = o) 5 0142, G)") = (12052597 4 -
R O S T ) I B
+13(1 — w) {e_(%)“z - e_(vcuzi_zoff)w} (41)

Pay @) =3 pCrna {{m o " (2 (@) ()" e[ - )

1) (ﬁ)“l-le_%)%}}

v

+2 pCpnA {(1 - w) {,32 3,7 (éf (%) (é)“z‘l} +302(1 — ) {e_(ﬁ_z)az +

SRR CTOR ]

e {e_(ﬁil)al - 6_(%12‘—_10”>a1} +3v*(1 - w) {e_(ﬁiz)az - e_(vcu;—_zoff)az} (42)

Setting the RHS equal to 0, we see that F,,, has no critical points in the domain [vcyt—in;
Veut-ofy ). Rather, since P,y > 0 ON [Veyrin: Veut—opr ) W only conclude that
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SUPDE[Veyr—in; Veut—off ) s Payg (V) = % pCpnAvye_orp® These derivations will give the expected
value of the Wind power and the estimation of capacity factor.

5. Conclusions

Wind power stochastic characteristics play a vital role in planning, design and operation of the
wind turbines. So installation of a ideal wind turbine is very intrinsic. The capacity factor is a very
significant index of productivity of a wind turbine. In this paper a mathematical formulation using
multiple parameter Weibull distribution has been derived to compute the capacity factor and
expected power output of wind turbines with précised cut-in, cut-off and rated speed. The
parameter estimation is done using the maximum likelihood method. The revealed model could be
applied in particular regions where the wind speed distribution presents a bimodal pdf.
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