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Abstract.  Ice accretions on stay cables may result in the instable vibration of galloping, which would 
affect the safety of cable-stayed bridges. A large number of studies have investigated the galloping vibrations 
of transmission lines. However, the obtained aerodynamics in transmission lines cannot be directly applied 
to the stay cables on cable-stayed bridges. In this study, linear and nonlinear single degree-of-freedom 
models were introduced to obtain the critical galloping wind velocity of iced stay cables where the 
aerodynamic lift and drag coefficients were identified in the wind tunnel tests. Specifically, six ice shapes 
were discussed using section models with geometric scale 1:1. The results presented obvious sudden 
decrease regions of the aerodynamic lift coefficient for all six test models. Numerical analyses of iced stay 
cables associated to a medium-span cable-stayed bridge were carried out to evaluate the potential galloping 
instability. The obtained nonlinear critical wind velocity for a 243-meter-long stay cable is much lower than 
the design wind velocity. The calculated linear critical wind velocity is even lower. In addition, numerical 
analyses demonstrated that increasing structural damping could effectively mitigate the galloping vibrations 
of iced stay cables. 
 

Keywords:  galloping vibrations; stay cables; ice accretions; aerodynamic force coefficients; critical wind 

velocity 

 
 
1. Introduction 
 

Stay cables of cable-stayed bridges, due to its light mass, low natural frequency and small 

structural damping, may experience several types of wind-induced vibrations, such as rain-wind 

induced vibration(Hikami and Shiraishi 1988, Li et al. 2013), vortex induced vibration (Zuo et al. 

2008, 2001), and buffeting (Jones et al. 1997). However, it is well known that stay cables of 

cable-stayed bridges are free of galloping vibrations since they possess a circular cross section. In 

the case that there is a yaw angle (wind direction is not perpendicular to the cable longitudinal 

axis), the effective cross section of stay cables become an ellipse shape, and the so-called dry 

galloping may occur (Flamand and Boujard 2009, Cheng et al. 2008a). Macdonald and Larose 

(2008a, 2008b) proposed a two degrees-of-freedom (DOFs) theoretical model for simulating dry 

galloping, where the quasi-steady assumption was adopted. Besides dry galloping, stay cables may 
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experience galloping vibration if some small components (or surface protrusion) are attached on 

the cable surface. Li et al. (2014) investigated the aerodynamic effects of lamp installation on the 

stay cables of Hedong cable-stay Bridge in China based on the wind tunnel tests and CFD 

simulations. It is found that galloping vibration appeared at the wind velocity around 18 m/s. 

Another common small surface protrusion for structures is the ice accretion resulting from 

special atmospheric environment, e.g., hoar frost, in-cloud icing and precipitation icing (Farzaneh 

2008). The effects of ice accretion have been investigated in the areas of power transmission lines 

(Farzaneh 2008), aviation (Lynch and Khodadoust 2001), and wind energy (Makkonen et al. 2001). 

In fact, galloping vibration was firstly observed on power transmission lines attached with ice 

accretion. Den Hartog (1956) treated galloping as a velocity-dependent, damping-controlled 

instability. To investigate its mechanism, Den Hartog (1956) studied the galloping by using a 

single degree-of-freedom (DOF) linear oscillator, where the linear critical wind velocity of 

galloping could be obtained. Parkinson and Smith (1964) conducted nonlinear analyses to estimate 

the amplitude and frequency of galloping by means of the so-called Krylov-Bogoliubov method. 

While it is straightforward to utilize the classical linear and nonlinear galloping theories to 

simulate the aerodynamics of iced stay cables, it is extremely difficult to determine the exact shape 

of ice accretion. Few public reports concerning field observations of ice shapes are available. 

Experimental simulations for ice shapes, e.g., in-cloud icing (Laforte et al. 1984, Kollár and 

Farzaneh 2010) and freezing rain (Stumpf 1994, Lu et al. 2000), seem to be a more feasible way to 

study the ice shape. In addition, theoretical icing models could be established to predict ice shape 

(Poots 1996, Farzaneh 2008, Fu et al. 2006), however, usually there is a large discrepancy between 

the prediction and experimental results. The Electric Power Research Institute in USA has 

suggested several ice shapes for transmission lines, including the crescent-shape and D-shape 

(Alto 1979). 

Full-scale experiments carried out by Koss et al. (2013) indicated that ice accretion could be 

produced on the bridge cable under the environment of light precipitation at moderate low 

temperatures (from 0º to 5º). Large oscillations of iced stay cables will significantly shorten its 

fatigue life, and more importantly, result in falling ice that becomes a safety issue for motorists and 

pedestrians (Gimsing and Georgakis 2012). Recently, a series of wind tunnel tests were carried out 

in the special climatic wind tunnel to investigate the ice shape on bridge cables. Koss et al. (2012) 

studied the ice shape on vertical and horizontal cables. It is found that the ice shape achieved at 

low temperature is like D-shape, and crescent-shape at high temperature. Demartino et al. (2015) 

extended their study on the ice shape of inclined stay cable, and measured the aerodynamic forces 

on the bridge cables attached with ice accretion. The results of Koss et al. (2012) and Demartino et 

al. (2015) both indicated that there is no a single cross section that can fully represent all the key 

features of ice shape on stay cables. 

By using artificial ice accretion of crescent-shape, Gjelstrup et al. (2012) conducted static and 

dynamic wind tunnel tests to measure the aerodynamic forces and oscillation responses of a 

segmental model. Theoretical analysis method was also adopted to investigate the galloping 

instability of stay cables attached with ice accretion in recent years. Gjelstrup and Georgakis (2011) 

proposed a three DOFs theoretical model based on quasi-steady assumption to determine the onset 

of ice accretion induced galloping. Demartino and Ricciardelli (2015) compared several 

quasi-steady theory based models for the galloping instability of stay cables with ice accretion, 

where dependency of the aerodynamic coefficients on the angle of attack, wind-cable angle and 

Reynolds number is discussed.  

However, little attention was paid to the critical wind velocity of real stay cables on cable 
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stayed bridges. Compared with transmission lines, stay cables have a larger diameter, higher axial 

tension and natural frequency, and a heavier mass per unit length. These structural properties may 

play a significant role in the consideration of oscillation amplitude and critical wind velocity of 

galloping for iced stay cables. In addition, the effects of mean wind profile within the atmospheric 

boundary layer cannot be ignored. In this study, the galloping vibration of iced stay cables on a 

medium-span cable-stayed bridge was comprehensively investigated. First, a series of wind tunnel 

tests were carried out to obtain the aerodynamic drag and lift coefficients of stay cables attached 

with various artificial ice accretions. Then, both linear and nonlinear single DOF approaches to 

calculate the critical wind velocity of stay cables with ice accretions were introduced. Numerical 

analyses were conducted to obtain the critical wind velocity and galloping vibration amplitude of 

iced stay cables of the investigated medium-span stay-cable bridge. The obtained results contribute 

to the bridge design as an important input. Several vibration characteristics such as the time history 

of vibration amplitude are discussed. Finally, the effects of axial distribution of ice accretion and 

structural damping on galloping vibration of iced stay cables were analyzed. 

 

 
2. Wind tunnel test set-up 
 

Wind tunnel tests were carried out in the 3 m in width by 2.5 m in height by 17 m in length 

closed-circuit test section of the HD-2 Boundary Layer Wind Tunnel (HD-2BLWT) in Wind 

Engineering Research Center, Hunan University, China. The maximum wind velocity of this test 

section is 58 m/s. HD-2BLWT is a hybrid wind tunnel with two horizontal closed-circuit test 

sections and one open-circuit test section. The other closed-circuit test section is 5.5 m in width by 

4.4 m in height by 15 m in length with a maximum wind velocity of 15 m/s, and the open-circuit 

test section is 8.2 m in width by 2 m in height by 15 m in length with a maximum wind velocity of 

18 m/s. 

The diameter and length of the cable model are 120 mm and 600 mm, respectively. The 

geometric scale of the test models is selected to be 1:1 to eliminate the Reynolds number effects. 

Two types of ice accretions, namely crescent-shape and D-shape are investigated. More 

specifically, three shapes are selected for each of them, as shown in Fig. 1. The maximum 

thicknesses of C1, C2 and C3 are respectively 10, 50 and 80 mm, corresponding to eccentricities 

of 0.08, 0.42 and 0.66. The maximum thicknesses of D1, D2 and D3 are respectively 30, 55 and 50 

mm, corresponding to eccentricities of 0.25, 0.46 and 0.42. A typical photo of the test models is 

shown in Fig. 2. 

 

 

 

Fig. 1 Ice shapes adopted in the wind tunnel tests (unit: mm) 
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Fig. 2 Photo of the test models 

 

 

The test models are made of foam plastic enclosed by balsa, which leads to a very light mass of 

test model about 0.2 kg and a rather high frequency of test model system around 50 Hz. Relatively 

high natural frequency of test models compared to that of wind-induced loading is very important 

in the application of force measurement system since the inertial force resulting from the 

oscillation of test models during the wind action could be easily removed. A circular end plate with 

a diameter of 300 mm and a thickness of 10 mm is fixed at the top of the wind tunnel via a steel 

bar to reduce the end effects. There is a gap of around 5 mm between the end plate and test model. 

In the wind tunnel tests, it was found that a 5 mm gap between the end plate and test model is 

enough to ensure the 2-dimensional flow. The test model is installed on the turntable in the test 

section, and hence the adjustment of wind attack angle is realized by rotating the turntable. The 

surface friction effects on the oncoming mean wind velocity is within 10% based on the measured 

results. The sketch of the test model system is shown in Fig. 3(a), and the photo of the test model 

installed in wind tunnel is given in Fig. 3(b). 

Wind tunnel tests were carried out in uniform flow with a velocity of 12 m/s. The definition of 

wind attack angle is shown in Fig. 4. For the wind attack angle of 0°, the ice accretion locates at 

the windward side, and the wind direction is parallel to the symmetry axis of the cross sections of 

the test models. A range of wind attack angles (0~180° with an interval of 2°) were examined. A 

six-component force balance system was utilized to measure the aerodynamic forces on the iced 

cable models. The measurement ranges for each component is listed in Table 1, where x and z 

directions are in the horizontal plane, and y represents the vertical direction. 

 

  
(a) (b) 

Fig. 3 The test model system: (a) Sketch of the test model system and (b) Photo of the test model in the 

wind tunnel 

The top of wind tunnel

The floor of wind tunnel

Steel bar

End plate

Test model

Wind flow
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Fig. 4 Definition of wind attack angle 
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Fig. 5 Body and wind axis coordinate systems 

 
Table 1 Measurement ranges of six-component force balance system 

y(N) x(N) Mz(N·m) z(N) My(N·m) Mx(N·m) 

1200 300 200 500 100 100 

 

 

The aerodynamic forces FX and FY directly obtained from the force balance system are usually 

referred to the body axis coordinate system oxy, as indicated in Fig. 5. The corresponding 

aerodynamic force coefficients, CX and CY, can be expressed as 

)(2 2LBUFC XX                               (1) 

)(2 2LBUFC YY                               (2) 

where ρ=1.225 kg/m
3
 is the air density; U=12 m/s is the approaching wind velocity; L=600 mm is 

the length of the test model; B=120 mm is the diameter of the cable. 

The aerodynamic drag and lift coefficients, CD and CL, in the wind axis coordinate system can 

be calculated using CX and CY as 
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where α is the wind attack angle, as indicated in Fig. 5. 
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3. Results of wind tunnel tests 
 

3.1 Aerodynamic drag and lift coefficients 
 

Fig. 6 presents the aerodynamic lift and drag coefficients of the test models with crescent-shape 

ice accretions (C1, C2 and C3). It could be found from Fig. 6 that the aerodynamic lift coefficients 

of the test models C1, C2 and C3 all have a sudden decrease around the wind attack angle of 40°, 

from 0.5 to 0, from 0.8 to 0.2, from 1.0 to 0.4, respectively. The sudden decrease of the 

aerodynamic lift coefficient implies that the cable with the crescent-shape ice accretions is 

susceptible to the galloping vibration as the wind attack angle is around 40°. Compared with the 

test model C1, the aerodynamic lift coefficients of the test model C2 and C3 both have an 

additional sudden decrease near the wind attack angle of 180°, which means another 

galloping-prone region. It appears that there are more instable regions of wind attack angle with 

the increase of the thickness of crescent-shape ice accretion. The aerodynamic drag coefficients of 

test model C1, C2 and C3 all have their maximum values, around 0.6, 0.8 and 1.0, respectively, 

near the wind attack angle of 90°. It seems that the windward area of test model has a dominant 

effect on the aerodynamic drag coefficient. The aerodynamic drag coefficients of the test models in 

this study are obviously smaller than the classical result, approximately 1.2, of a smooth cylinder 

within the subcritical region. This could be attributed to the drag crisis at the critical Reynolds 

number (here in the wind tunnel tests Re=0.9936×105) and the surface roughness of the test 

models. Generally, the variations of the aerodynamic forces with the wind attack angle have a 

similar trend for test models C1, C2 and C3. 
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(c) Test model C3 

Fig. 6 Aerodynamic drag and lift coefficients for the test models with crescent-shape ice accretions 
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Fig. 7 shows the aerodynamic lift and drag coefficients of the test models with D-shape ice 

accretions (D1, D2 and D3). It could be found from Fig. 7 that the variations of the drag and lift 

coefficients with the wind attack angle have a similar trend for the test models of D1, D2 and D3. 

The maximum values of the aerodynamic lift coefficient for the test models of D1, D2 and D3 

appear at the wind attack angle of approximately 90°, which are 0.5, 0.7 and 0.9, respectively. Two 

local minimum values of the aerodynamic lift coefficients exist for all the test models of D1, D2 

and D3 within the wind attack angle regions of 20~40° (around -0.8, -1.0 and -0.35, respectively) 

and 160~170° (around -0.65, -0.75 and -0.65, respectively). Accordingly, several sudden decrease 

regions of the aerodynamic lift coefficients for the test models with D-shape ice accretions are 

identified within the wind attack angle regions of 20~40°, 80~90° and 160~170°. Compared with 

Fig. 6 of crescent-shape case, it seems that the negative slopes in Fig. 7 of D-shape case are 

smaller. Unlike the results of the crescent-shape test models, the maximum values of the 

aerodynamic drag coefficients of the D-shape test models occur at the wind attack angle of 0°. 
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Fig. 7 Aerodynamic drag and lift coefficients for the test models with D-shape ice accretions 
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3.2 Galloping coefficient 
 

According to the classical galloping theory proposed by Den Hartog, the necessary condition 

for galloping vibration is (Den Hartog 1956) 

0 D

L C
d

dC


                                (4) 

in which, CD+dCL/dα is the galloping coefficient. 

Figs. 8(a) and 8(b) present the galloping coefficients for the test models with the crescent-shape 

and D-shape ice accretions, respectively. The local minimum values of galloping coefficients and 

their corresponding wind attack angles for crescent-shape and D-shape models are summarized in 

Tables 2 and 3, respectively. It could be found from Fig. 8(a) and Table 2 that the minimum values 

of galloping coefficients -13.6, -9.7 and -16.9 for the crescent-shape test models C1, C2 and C3, 

respectively, occur at the wind attack angle of 42°, 180° and 34°, which correspond to the angles 

associated to the sudden decrease regions of aerodynamic lift coefficient. On the other hand, the 

minimum values of galloping coefficients -10.4, -10.5 and -10.2 for the D-shape test models D1, 

D2 and D3, respectively, appear to be larger than those of the crescent-shape test models (except 

for C2). This indicates that stay cables with crescent-shape ice accretion is more inclined to 

experience galloping vibration than those with D-shape ice accretion. 
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Fig. 8 Galloping coefficients 

 

 
Table 2 Local minimum values of galloping coefficient for crescent-shape cable 

Test model C1 C2 C3 

Minimum peak value -13.6 -8.6 -4.5 -5.5 -9.7 -16.9 -11.9 

α(°) 42 40 124 150 180 34 180 
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Table 3 Local minimum values of galloping coefficient for D-shape cable 

Test model D1 D2 D3 

Minimum peak value -8.0 -5.7 -10.4 -4.6 -10.5 -3.8 -2.6 -10.2 

α(°) 22 90 170 32 92 160 42 84 

 

 

4. Single DOF galloping analysis of iced stay cable 
 

In the aerodynamic instability analysis of iced stay cables in this study, the following 

assumptions are made: (1) only a particular mode is included; (2) the size and shape of ice 

accretion are identical along the span of stay cable; (3) the effect of axial flow is neglected; (4) the 

effect of turbulence in approaching flow is neglected. Based on the above assumptions, a single 

DOF oscillator of aerodynamics, in which only the vertical vibration is taken into account, can be 

used to simulate the 3-dimensional continuous stay cable, as indicated in Fig. 9. The aerodynamic 

forces can be modeled based on the quasi-steady theory with experimentally obtained aerodynamic 

coefficients. The single DOF oscillator is widely utilized since it could retain the essential 

aerodynamics of galloping mechanism. Furthermore, due to its simplicity, the single DOF 

oscillator could facilitate the comprehensive understanding of effects of a series of other factors 

like mean wind profile and structural properties on the galloping vibration of iced stay cables on 

the cable-stayed bridges. The equation of motion governing the vertical vibration of the oscillator 

can be expressed as, 

   2 21
2 ( )sin ( )cos

2
D r r L r rm y y y U B C C                        (5) 

where, m is the mass of the oscillator; ξ is the structural damping ratio; ω is the circular frequency; 

ρ is the air density; U is the approaching wind velocity; B is the diameter of the cable; α is the 

wind attack angle related to the test model; αr is the variation of wind attack angle due to the 

vertical vibration of the cable 

 

 

Fig. 9 Single degree-of-freedom model for galloping vibration of iced stay cable 
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arctanr

y

U
                                    (6) 

The critical condition of galloping vibration will be satisfied if the sum of structural damping 

and aerodynamic damping equals to zero, and hence the critical wind velocity of galloping 

vibration can be obtained from, 

4 1
cr

DL

m
U

B CdC d



 
  


                       (7) 

The continuous stay cable in reality is actually an infinite DOF system. Modal analysis is 

employed in this study to investigate the single-mode galloping mechanism of iced stay cables, 

where the governing equation of the ith mode of iced stay cable can be written as 

   * * * 2 * *2 ,i i i i im y y y F x t                          (8) 

in which 

 * 2

0

l

i im m x dx                             (9) 

     * 2

0

1
, ( )sin ( )cos

2

l

i D r r L r r iF x t U B C C x dx           
    

(10) 

where mi*and Fi*(x,t) are the generalized mass and aerodynamic force of the ith mode of the cable, 

respectively; y* is the generalized displacement; ωi and ξi are circular frequency and damping 

ratio of the ith mode of the cable, respectively; φi(x) is the mode shape function of the ith mode of 

the cable; l is the length of the cable; m  is the mass of the cable per unit length. 

The lowest critical wind velocity of galloping vibration usually corresponds to the fundamental 

mode of stay cable. Hence, the examination of the critical wind velocity of the fundamental mode 

is emphasized. The fundamental mode shape φ1(x) could be assumed to be sinπx/l, and hence the 

corresponding generalized mass and aerodynamic force m1*and F1*(x,t) can be expressed as 

*

1 / 2m lm                             (11) 

   * 2

1 , ( )sin ( )cos /D r r L r rF x t U Bl C C                   (12) 

Substituting Eqs. (11) and (12) into Eq. (8), one obtains, 

   * * 2 * 2

1 1 1

2
2 ( )sin ( )cosD r r L r rm y y y U B C C         


          (13) 

As a result, the corresponding linear critical wind velocity of the fundamental mode of an iced 

stay cable can be obtained from 

,1

1 1 1
cr

DL

m
U

B CdC d

  

 
  


                    (14) 

The critical wind velocity in Eq. (14) corresponds to a particular wind attack angle. It should be 

262



 

 

 

 

 

 

Aerodynamic stability of iced stay cables on cable-stayed bridge 

 

noted that the “effective” wind attack angle, α+αr, depends on the vertical vibration of the 

oscillator, as shown in Eq. (6). This indicates a nonlinear consideration of the aerodynamic forces 

of the cable with ice accretion in the calculation of the critical galloping wind velocity at the 

effective wind attack angle is involved. The nonlinear critical wind velocity could be identified 

through the relationship between the cable amplitude and wind velocity. In this study, the 

Runge-Kutta numerical method is adopted to obtain the galloping response of iced stay cable 

based on Eq. (13) together with the experimental results of the aerodynamic drag and lift 

coefficients in Sections 2 and 3. 

The mean wind profile is not considered in preceding discussions. Let the bridge deck level, zd, 

as the reference height, mean wind velocity at the height of z, Uz, can be calculated based on the 

power law and expressed as (Simiu and Scanlan 1996), 

 z d dU U z z



                            (15) 

sind cz z x  
                            (16)

 
where, Ud is the mean wind velocity at the level of bridge deck; αc is the inclined angle of stay 

cable; x is the distance to the deck end of stay cable; γ is the selected power-law exponent. 

Substituting Eqs. (15) and (16) into Eq. (10) and let φi(x) = sinπx/l, one has 
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

           (17)

 

Comparing Eq. (17) with Eq. (12), the relationship between U and Ud can be obtained 

2

0

2

sin
(1 ) sin

d l
c

d

l
U U

x x
dx

z l

 





                        (18)

 

For a specific stay cable and terrain category, αc, l, zd and γ are known, hence, the relationship 

between Ud and U could be linearly expressed as 

dU U
                              (19) 

where β is a constant coefficient for a specific stay cable on the cable-stay bridge. Based on 

Equation (19), the critical wind velocity, Ucr,1, in uniform flow could be conveniently converted 

to that in atmospheric boundary flow, Udcr,1. 

 

 

5. Numerical examples 
 

The Yangpu Bridge, which is located in Hainan Province, China, is taken as an example to 

analyze the galloping responses of stay cable with ice accretion. It is a medium size of 

cable-stayed bridge with a main span of 460 m, as shown in Fig. 10. The number list of stay cables 
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from pylon to midspan within the main span is from M1 to M18, and their structural parameters, 

including the length l, the diameter B, the mass per unit length m , the fundamental frequency f1, 

the tensile force Ft and the inclined angle αc, are shown in Table 3. For the longest stay cable M18, 

l=243.4 m, B=151 mm, f1=0.545 Hz, m =96.9 kg/m, Ft=6377 kN, αc=26.9944º. The height of 

bridge deck zd=50 m, and terrain category “A” is adopted with γ=0.12 according to Chinese Code. 

The value of β is computed and given in Table 3. 

 

 

 
 

Fig. 10 Elevation view of Yangpu Bridge in Hainan province, China 

 
Table 3 Structural parameters of stay cables of Yangpu Bridge 

Number l (m) m (kg/m) f1 (Hz) B (mm) Ft (kN) αc(º) β 

M1 71.3 39.7 1.87 105 2599 76.90 0.940 

M2 79.0 42.2 1.69 105 2726 69.20 0.937 

M3 86.5 45.7 1.54 107 2969 62.54 0.936 

M4 94.6 49.2 1.31 109 3135 56.87 0.934 

M5 103.2 49.2 1.30 109 3260 52.05 0.933 

M6 112.5 53.2 1.19 114 3542 47.99 0.931 

M7 122.2 60.8 1.06 121 3793 44.58 0.930 

M8 132.3 60.8 1.00 121 3909 41.64 0.929 

M9 142.7 64.5 0.92 124 4118 39.14 0.928 

M10 153.3 68.6 0.85 129 4356 36.99 0.927 

M11 164.1 72.6 0.80 133 4622 35.12 0.925 

M12 175.1 72.6 0.76 133 4774 33.47 0.924 

M13 186.3 77.7 0.70 136 4989 32.06 0.923 

M14 197.5 77.7 0.68 136 5228 30.77 0.922 

M15 208.9 81.7 0.64 139 5453 29.66 0.921 

M16 220.3 85.9 0.61 144 5702 28.67 0.919 

M17 231.8 91.3 0.58 147 6176 27.77 0.918 

M18 243.4 96.9 0.55 151 6377 26.99 0.917 
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Nonlinear analyses for the galloping responses of iced stay cable utilizing Eqs. (13) and (19) 

are carried out under selected wind attack angles based on the information given in Tables 1, 2 and 

3. Specifically, wind attack angle of 42° for test model C1, 40°, 124°, 150° and 180° for test model 

C2, 34° and 180° for test model C3, 22°, 90° and 170° for test model D1, 32°, 92° and 160° for 

test model D2, and 42° and 84° for test model D3 are investigated.  

 
5.1 Critical wind velocity 
 

Nonlinear analyses for galloping responses of all the stay cables listed in Table 3 have been 

investigated. Fig. 11 presents the critical wind velocity for all stay cables, M1 ~ M18, on the 

mid-span of the Yangpu Bridge. The structural damping ratio of 1% is adopted, and it is assumed 

that the ice accretion exists on the full span of the cable. In addition, the ice shape of model C2 and 

the wind attack angle of 40° are selected for the numerical calculation. It could be found from Fig. 

11 that the critical wind velocity of stay cable increases with the decrease of the cable length. 

Hence, only the results of the longest stay cable M18 under selected wind attack angles with six 

abovementioned ice shapes are presented here for the sake of brevity. Numerical simulation starts 

from wind velocity of 1 m/s with an increment of 1 m/s, and stops at 50 m/s, which is higher than 

the design wind speed (44.7 m/s) at the bridge deck level of the Yangpu Bridge. 

The nonlinear critical wind velocities, Ucr,1 and Udcr,1, for crescent-shape and D-shape stay 

cables under the abovementioned wind attack angles are summarized in Tables 4 and 5, 

respectively. The minimum nonlinear critical wind velocities at the bridge deck level (Udcr,1) of 

test models C1, C2, C3, D1, D2 and D3 are 18.3, 18.3, 20.2, 22.0, 27.5 and 27.5 m/s, respectively, 

corresponding to the wind attack angle of 42°, 40°, 34°, 22°, 92° and 84°. Compared to the design 

wind speed, the results indicate that galloping vibrations of stay cable M18 may take place if there 

exist ice accretions. 
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Fig. 11 Critical wind velocities for all stay cables on the mid-span of the Yangpu Bridge (ice shape of 

model C2, wind attack angle of 40°) 
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Table 4 Nonlinear critical wind velocities of crescent-shape stay cable 

Test models C1 C2 C3 

Wind attack angles (°) 42 40 124 150 180 34 180 

Critical wind velocity(Ucr,1, m/s) 20 20 40 28 24 22 28 

Critical wind velocity(Udcr,1, m/s) 18.3 18.3 36.7 25.7 22.0 20.2 25.7 

 

 
Table 5 Nonlinear critical wind velocities of D-shape stay cable 

Test models D1 D2 D3 

Wind attack angles (°) 22 90 170 32 92 160 42 84 

Critical wind velocity(Ucr,1, m/s) 24 52 50 32 30 48 50 30 

Critical wind velocity(Udcr,1, m/s) 22.0 47.7 45.9 29.3 27.5 44.0 45.9 27.5 

 

 
Table 6 Comparison of linear and nonlinear critical wind velocities 

Test models Wind attack angles 

(°) 

Galloping 

coefficients 

Linear results  

(Ucr,1, m/s) 

Nonlinear results  

(Ucr,1, m/s) 

C1 42 -13.6 2.6 20 

C2 40 -8.6 4.2 20 

C3 34 -16.9 2.1 22 

D1 22 -8.0 4.5 24 

D2 92 -10.5 3.4 30 

D3 84 -10.2 3.5 30 

 

 

The linear critical wind velocity could be obtained from Eq. (14) by utilizing the local 

minimum values of galloping coefficients shown in Tables 1 and 2. These results are listed in 

Table 6 (Column 4), together with those obtained from nonlinear analyses (Column 5). It is found 

that the obtained linear critical wind velocity (within the range from 2.1 to 4.5 m/s) is far smaller 

than the nonlinear value (within the range from 20 to 30 m/s). Hence, the critical galloping wind 

velocity will be underestimated by using the local minimum values of galloping coefficient. This is 

mainly due to the relative large contribution from the vertical vibration of cable to the “effective” 

wind attach angle. 

Fig. 12 presents the cable amplitudes (one-side) at various wind velocities (Uniform flow, U) 

for ice accretions of C1, C2, C3, D1, D2 and D3, respectively. It could be found from Fig. 12 that 

the increase of cable amplitude with the wind velocity beyond the critical value is relatively not 

very intensive. This may result from the extremely narrow range of the negative slope of the 
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aerodynamic lift coefficient of the iced stay cables, as presented in Figs. 6 and 7. In this case, the 

“effective” wind attack angle is very easy to move out of the negative slope range (Wu et al. 

2013).  
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(c) Test model C3 (d) Test model D1 
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(e) Test model D2 (f) Test model D3 

Fig. 12 Cable amplitudes of M18 at selected wind velocity for various ice accretions 
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For example, the one-side amplitude for test model C2 at the wind velocity of 20 m/s with an 

wind attack angle of 40° is about 0.24 m, which contributes an “effective” wind attack angle of 

4.71° to the galloping system. This value is larger than the region of sudden decrease of the 

aerodynamic lift coefficient, approximately 2° as indicated in Fig. 6. This situation becomes even 

more obvious for high modes of the stay cables (with higher oscillation frequency). Assuming the 

cable vibrate harmonically, the amplitude of velocity of the cable, which contributes to the 

“effective” wind attack angle as indicated in Eq. (6) will be the amplitude of displacement 

multiplied by the vibrating frequency. 

Figs. 13(a)-13(f) present time histories of the displacement of the cable under the wind 

velocities U=15, 19, 20, 30, 40, 50 m/s for the test models C2, respectively. Wind attack angle is 

selected to be 40°, which is the most susceptible to galloping vibration. Obviously, the cable 

vibration will be convergent if the wind velocity is smaller than the critical wind velocity, as 

shown in Figs. 13(a) and 13(b). Also, if the wind attack angle is not fixed within the sudden 

decrease region of the aerodynamic lift coefficient, the cable is stable even if the wind velocity is 

up to 50 m/s, as given in Fig. 13(g). 

 

 

 

  

(a) α=40º, U=15 m/s (b) α=40º, U=19 m/s 

  
(c) α=40º, U=20 m/s (d) α=40º, U=30 m/s 

Continued- 
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(e) α=40º, U=40 m/s (f) α=40º, U=50 m/s 

 

(g) α=60°, U=50 m/s 

Fig. 13 Time histories of the displacement of cable vibration (test model C2) 

 

 

 

5.2 Effects of longitudinal distribution of ice accretion along the cable 
 

Although the galloping critical wind velocity of the stay cable M18 of the Yangpu Bridge is 

lower than the design wind velocity, it is a rare event that all the above mentioned conditions for 

galloping vibration are concurrently satisfied. For example, the ice accretion may be coagulated 

only on a part of the stay cable, rather than the full span. Fig. 14 presents the nonlinear critical 

galloping wind velocity at the bridge deck level of the stay cable M18 for different lengths of ice 

accretion (ice shape of model C2) formed on the cable. The wind attack angle of 40° is adopted. 

Four types of the distribution of ice accretion, l/4, l/2, 3l/4 and l, are considered, where the ice 

accretion always starts from the cable end at the pylon. It could be found from Fig. 14 that the 

critical wind velocity increases with the decrease of the length of the ice accretion. The critical 

wind velocities at the bridge deck level are 18.3, 22.0, 42.2 and 124.7 m/s for the length of ice 

accretion of l, 3l/4, l/2 and l/4, respectively. It should be noted that, even if the ice accretion exists 

along the full span of the cable, the shape may change at various locations. 
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Fig. 14 Nonlinear critical galloping wind velocities with the ice accretion length 

 

 

5.3 Effects of structural damping 
 
One widely-used countermeasure to mitigate the wind-induced vibration of stay cable is to 

increase effective structural damping, e.g., by installing dampers near the end of the cable. Fig. 15 

presents the relationship between the nonlinear critical galloping wind velocity and the structural 

damping ratio for the stay cable M18, where the structural damping ratios of 0.1%, 0.2%, 0.5%, 

1%, 2% and 5% are examined. The ice shape of model C2 and the wind attack angle of 40° are 

adopted here. It could be found from Fig. 15 that the critical wind velocity of stay cable decreases 

linearly with the increase of the structural damping ratio. The critical wind velocity is as low as 5.5 

m/s for the structural damping ratio of 0.1%, while the critical wind velocity can be enhanced to 

78.9 m/s, which is higher than the design wind velocity at the bridge deck level, 44.7 m/s, for the 

structural damping ratio of 5%. Consequently, it appears that increasing structural damping is an 

effective approach for the mitigation of galloping vibration of stay cable with ice accretion. 
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Fig. 15 Nonlinear critical galloping wind velocities with structural damping ratio 
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6. Conclusions 
 

The galloping vibration of stay cables with ice accretions on a medium-span cable-stayed 

bridge is comprehensively investigated. Six iced cable models, including three types of 

crescent-shape (C1, C2 and C3) and three types of D-shape (D1, D2 and D3), are tested in the 

wind tunnel with a geometric scale of 1:1 to identify their aerodynamic drag and lift coefficients. 

Sudden decreases of the aerodynamic lift coefficients are observed for all six test models. The 

galloping coefficients, which are widely applied to the classical galloping theory and calculated 

based on the measured aerodynamic force coefficients, have the minimum values of -13.6, -9.7, 

-16.9, -10.4, -10.5 and -10.2 for test models of C1, C2, C3, D1, D2 and D3, respectively. Both 

linear and nonlinear critical galloping wind velocities are analyzed utilizing a single 

degree-of-freedom model based on the quasi-steady theory together with the experimentally 

identified aerodynamic force coefficients. The nonlinear results show that the minimum critical 

wind velocities for the longest stay cable of the Yangpu Bridge are respectively 18.3, 18.3, 20.2, 

22.0, 27.5 and 27.5 m/s corresponding to test models C1, C2, C3, D1, D2 and D3. Typically, the 

linear critical galloping wind velocities are far lower than those from nonlinear analyses. It should 

be noted that these nonlinear critical galloping wind velocities are lower than the design wind 

velocity at the bridge site. On the other hand, there exist limit cycle oscillations of the iced stay 

cables beyond the nonlinear critical galloping wind velocity. The main reason is that the sudden 

decrease region of the mean lift coefficient is so narrow that the cable can easily move out of it 

even for small oscillation amplitude of stay cables. In addition, the effects of longitudinal 

distribution of ice accretion and structural damping on the nonlinear critical galloping wind 

velocity are investigated. The results demonstrate that a shorter ice accretion and a larger structural 

damping will both result in a larger critical wind velocity. 

Several issues should be considered before a conclusion for the possible galloping vibration of 

stay cable with ice accretion is given. Usually, the extreme wind speed and the serious ice disaster 

may not be likely to occur simultaneously. Also, the critical wind velocity might be higher than the 

results of this study considering the effects of the variation of the size and shape of ice accretion 

along the cable and the oncoming turbulence. 
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