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Abstract.    In recent years, the frequency and duration of supply interruption in electric power transmission 
system due to flashover increase yearly in China. Flashover is usually associated with inadequate electric 
clearance and often takes place in extreme weathers, such as downbursts, typhoons and hurricanes. The 
present study focuses on the wind-induced oscillation of conductor during the process when a downburst is 
passing by or across a specified transmission line. Based on a revised analytical model recently developed 
for stationary downburst, transient three-dimensional wind fields of moving downbursts are successfully 
simulated. In the simulations, the downbursts travel along various motion paths according to the certain 
initial locations and directions of motion assumed in advance. Then, an eight-span section, extracted from a 
practical 500 kV ultra-high-voltage transmission line, is chosen. After performing a non-linear transient 
analysis, the transient displacements of the conductors could be obtained. Also, an extensive study on 
suspension insulator strings’ rotation angles is conducted, and the electric clearances at different strings 
could be compared directly. The results show that both the variation trends of the transient responses and the 
corresponding peak values vary seriously with the motion paths of downburst. Accordingly, the location of 
the specified string, which is in the most disadvantageous situation along the studied line section, is picked 
out. And a representative motion path is concluded for reference in the calculation of each string’s oscillation 
for the precaution of wind-induced flashover under downburst. 
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1. Introduction 
 

In the past decades, the ultra-high-voltage (UHV) and extra-high-voltage (EHV) transmission 
lines develop rapidly in China on account of their less land occupation and higher economic 
benefit. The subsequently farther electricity transmission distance will lead to a greater risk of 
encountering the severe weathers and complicated terrains. Recently, the frequency of the forced 
outage due to the wind-induced flashover, which is mostly associated with the insufficient air gap 
between the conductors and tower, increases markedly accounting for a poor operational reliability 
of the power supply system (Sun 2003). A recent statistical result has revealed that during 
2005~2011, there were more than 751 wind-induced trips that took place in the transmission lines, 
whose electric levels are higher than 110kV, and triggered at least 376 outages in China (Lu 2014). 
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However, previous studies usually focused on the selections of the transmission line’s wind load 
calculation methods and optimizations of the calculation parameters in the design code, e.g., 
reference wind velocity, span reduction factor, wind load adjustment factor and so forth (Wang et 
al. 2008, Jia et al. 2012, Long et al. 2006, Yan et al. 2010, Liu et al. 2009). Seldom studies took 
the extreme weathers, such as downbursts and tornadoes, into consideration. Nevertheless, some 
weather reports and field surveys of the accident areas (Hu 2004) had revealed that downbursts are 
extremely likely to be the cause of some flashovers. 

Downburst, a downdraft which is often accompanied with thunderstorms and rainfalls, will 
produce a fairly high wind speed in several minutes near the ground. It has been proved to be a 
major cause of many transmission tower failures around the world (Savory et al. 2001, Hawes and 
Dempsey 1993, McCarthy and Melsness 1996, Dempsey and White 1996). Thereby, many 
probabilistic models for the design of transmission tower were proposed (Oliver et al. 2000, Li 
2000), as well as many further studies of the transmission towers’ behaviors during thunderstorm 
downbursts (Savory et al. 2001, Kanak et al. 2007, Shehata and EI Damatty 2007, Shehata and EI 
Damatty 2008). By using the finite element analysis (FEA) and optimization technology, the 
tower’s critical members that are likely to fail during the downburst, and the corresponding 
configuration of the downburst were surveyed (Shehata et al. 2005, Shehata et al. 2008). In recent 
years, the bearing capacity (EI Damatty and Aboshosha 2012, Mara and Hong 2013) and response 
(Lin et al. 2012) of the tower, as well as the wind load distribution on the conductors (Aboshosha 
and EI Damatty 2013) under downbursts have gotten more attentions. Although many studies have 
taken into account the significant contribution of the conductors’ wind loadings  when 
considering the tower collapse, the wind-induced oscillation of conductor itself, which tends to 
trigger the flashover, is somewhat ignored.  

As a typical wind-sensitive structure, the transmission line’s load distribution along its length 
suffers a remarkable variation due to the time-varying distance between the studied conductors and 
storm center in the motion process of downburst. Thus, the motion path of a moving downburst is 
a crucial factor for the calculation of wind-induced oscillation of a specific multi-span 
transmission line, especially when the spans are different. Accordingly, this study generates the 
temporal wind field of a specified transmission line section, which is extracted from a practical 
500kV UHV transmission line, under various moving downbursts with different motion paths 
primarily. Then in association with the precise finite element model, the relevant cases are 
numerically surveyed to get a comprehensive understanding of the effect of the motion path on the 
transient responses of the conductors. Eventually, a representative motion path is picked out so as 
to simplify the design work referring to the precaution of downburst-induced flashover. It is worth 
noting that, the present paper mainly focuses on the rotation angles of the suspension insulator 
strings (SISs), which could reflect the discrepancy of different SISs’ risk of flashover more 
directly. 

 
 

2. FEA Modelling of multi-span conductor 
 

It is stated that the catenary is adopted to describe the initial shape of a conductor span under its 
own weight. Suppose that the sag length of a conductor span is f, the span length is L. If f/L < 0.1, 
the initial shape of a conductor under its own weight could be approximately regarded as a 
parabola (Sun 2010) 
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Fig. 2 Determination process of the multi-span conductor’s initial stable shape 
 
 

Table 1 Characteristic parameters of conductors and insulator strings 

No. of the conductor span 
Span length

Ln (m) 

Sag length 

fn (m) 

Insulator 

strings 

Elevation of each 

string’s hanging 

point (m) 

Length 

LsN (m) 

n=1 228 3.431 DSIS1 21 7.64 

2 326 7.014 SIS1 42 5 

3 331 7.231 SIS2 42 5 

4 441 12.840 SIS3 33 5 

5 442 12.890 SIS4 36 5 

6 393 10.193 SIS5 33 5 

7 426 11.977 SIS6 33 5 

8 331 7.231 SIS7 48 5 

Total length Lt (m) 2918  DSIS2 21 7.64 

Elasticity modulus EC 

(N/m2) 
6.5E10 ESIS (N/m2) 3.0E10 

qC (kg/m) 1.349 qSIS (kg/m) 6.8 

External diameter  

DC (m) 
26.82E-03 DSIS (m) 0.15 
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3. Three-dimensional moving downburst simulation 
 
For the stationary downburst, the wind field is axisymmetric with a high-pressure area at a 

specific distance away from the stagnation point (Chay and Letchford 2002). However, with 
regard to the long-span conductor, it seems that moving downburst is more harmful due to its 
larger damaging area. Meanwhile, its translational momentum will change the storm into a 
non-stationary event and lead to a strengthened wind field in the advancing side and a weakened 
one in the opposite side.  

It has been documented that the vertical component of wind velocity would marginally affect 
the wind load of the transmission tower (EI Damatty and Aboshosha 2012). Meanwhile, the dynamic 
effect of the downburst load is negligible, because the period of oscillation of the load often far 
exceeds the towers’ natural vibration periods (Shehata et al. 2005). However, in the calculation of 
the conductor’s transient response, the dominated natural vibration periods of the conductor are 
usually longer than those of the tower’s, and the vertical wind velocity will affect the wind 
directions, which might further influence the aerodynamic coefficients in the calculation of wind 
load. Thus, a three dimensional temporal wind field of the studied multi-span conductor under 
moving downburst, including mean and fluctuating components, is to be established to inspect the 
time-varying wind-induced oscillation of conductor accurately. In order to achieve the temporal 
wind field readily, the classical vector summation method (VSM) is used to obtain the 
low-frequency temporal mean component, whereas the deterministic–stochastic hybrid model 
(DSHM) is used to get the high-frequency fluctuating part. 

Primarily, based upon the impinging jet model, a revised model proposed for the stationary 
downburst by Li et al. (2012) incorporating the nonlinear growth of boundary layer is chosen, 
which has been validated by the results of a detailed CFD (Computational Fluid Dynamics) 
simulation. In the analytical model, the radial and vertical mean wind velocity iv  and iw  of a 
certain point can be expressed as a function of its radial distance to the storm center, ri, and height, 
zi, respectively: 

                           

mm VS RS

mm VS RS

( , ) ( ) ( )

( , ) ( ) ( )
i i i i i

i i i z i r i

v z r v v z v r
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Fig. 3 Radial and vertical profiles of the wind velocities 
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where αm is the angle between the motion path and transmission line, c m0

1
sin ,

2
x L   

0 c m

1
cos

2
y L   . 

By using VSM, the temporal mean radial wind velocity of each element node on the conductor, 
( , ( ))i i iV z r t , could be attained. Then both the radial and vertical fluctuating wind speed could be 

expressed as the product of an amplitude modulation function and a stationary Gaussian stochastic 
process (Chen and Letchford 2004, Pan et al. 2008) 

( , ( )) ( , ( )) ( , )

( , ( )) ( , ( )) ( , )
i i i i i i i i

i i i i i i i i

v z r t a z r t z t

w z r t a z r t z t




 
  




                     (5) 

Where                      ( , ( )) ( ) ( , ( ))i i i i i i ia z r t I z V z r t                          (6) 

and (Chen and Letchford 2005)  

1

6( ) 0.088 (10 / )i iI z z                             (7) 

In Eq. (5), ( , )i iz t and ( , )i iz t  can be obtained via DSHM, in which the normalized power 
spectrum density (PSD) models proposed by Kaimal et.al and Panofsky et.al respectively are used. 
 
 
4. Aerodynamic coefficients’ measurement tests 

 
4.1 Equipment and test models 
 
In order to obtain the accurate aerodynamic coefficients of the specific 4-bundled conductors 

aforementioned, the wind tunnel tests were conducted in ZD-1 boundary layer wind tunnel in 
Zhejiang University. The size of its test section is 4 m (width) ×3 m (height) ×18 m(length). The 
wind tunnel is supplied by a 1000 kW direct current motor, and the test wind speed ranges from 3

～55 m/s. The high frequency force balance (HFFB), which is made by ME-SYSTEM Corporation, 
was used to measure the three component aerodynamic forces, including two forces and a moment. 
In the current test, the upper measuring limit of the HFFB was set to be 20 N for force and 4 N m
for moment respectively, and the sampling frequency was 500 Hz. 

The truncated rigid model (TRM), which was used to simulate the sub-conductor, was made by 
wood and would be twined by some plastic bubble strips to take the sub-conductor’s surface 
roughness into account, as shown in Fig. 5. Meanwhile, the TRM had a plexiglass base plate to 
provide a reliable fixation in the experiments. To introduce the mutual shielding effect between the 
sub-conductors, all the 4 sub-conductors were built in the tests. Moreover, two clapboards were set 
up to generate a two-dimensional (2D) homogeneous turbulence, as shown in Fig. 6. 

 
4.2 Equivalent aerodynamic coefficients 
 
For the future investigation of the single sub-conductor’s wind-induced response and usage 

quantity saving of the HFFB, only one sub-conductor’s three component aerodynamic forces were 
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where uir(t) and wir(t) are the velocities in x and z directions of the ith node of the conductor 
undergoing vibration, and Vix(zi,ri(t)) could be computed by  

                       u( , ( )) ( , ( )) sini x i i i i iV z r t V z r t                         (14) 

where βu is the angle between Vi (zi,ri(t)) and transmission line. 
In Eqs. (13) and (14), Vi (zi,ri(t)) and Wi (zi,ri(t)) are the total velocities of the horizontal and 

vertical wind respectively, which could be obtained by  

( , ( )) ( , ( )) ( , ( ))

( , ( )) ( , ( )) ( , ( ))
i i i i i i i i i

i i i i i i i i i

V z r t V z r t v z r t

W z r t w z r t w z r t

  


 




                    (15) 

 
 

6. Case study 
 
In case studies, in order to make most of the entire transmission line section lie in the high wind 

speed area of the downburst in the height range, the jet diameter of the downburst, D, is set to be 
1250 m. Based upon the value of wind velocity in the design process, let vmm=25 m/s. The 
remaining calculation parameters Vm=vmm/3, t0=1024 s, CD and CL under different wind attack 
angles are listed in Table 2 (for simplicity’s sake, only the values in the γ range from 0° to 45° are 
listed, and the remains could be obtained through the symmetry principle). In accordance with 
Table 2, it is found that CL is relatively small in comparison with CD. Moreover, in case of listed 

wind attack angles except 0°, CD is about 1.0. Thus, in the following computing, the lift force is 
ignored and the value of CD is set to be 1.0. 

Various calculation cases corresponding to multiple motion paths, which fall into two 
categories aforementioned, are studied to gain a comprehensive understanding of the conductors’ 
transient responses. For each case, a transient analysis is performed, whereby the time-histories of 
displacements of the nodes could be attained, namely dx(t), dy(t) and dz(t). Subsequently, the 
time-varying rotation angle of each SIS, θ(t), is calculated, which has an advantage in the 
comparison of the air gaps of SISs with different lengths. The rotation angle could be calculated by 

2 2
s

( )
( ) arcsin

( )

x N
N

N y N

d t
t

l d t
 


                       (16) 

where the subscript N represents the sequential number of SIS, lsN is the length of Nth SIS. 
 
 

Table 2 Measured CD and CL under various wind attack angles 

γ(°) 0 9 18 27 36 45 

CD 0.934 0.990 1.012 1.010 1.009 0.982 

CL 0.022 0.011 0.004 -0.009 -0.011 -0.006 
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Fig. 12 Time-history curves of the responses in the first category 
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Fig. 13 θNmax of each SIS in the 4 cases in the first category 
 
 
Comparison of each SIS’s maximum rotation angle θNmax in each case is conducted and the 

results are summarized in Fig. 13. From the figure, a similar trend, that the extremums of the SISs’ 
wind-induced oscillations along the entire line always occur at SIS3 and SIS6, can be found in all 
the 4 cases. Furthermore, it can be found that when d=1.0D, it seems to be the most 
disadvantageous for all SISs, which is mainly as a result of the distinct radial wind speed profile of 
the downburst, as shown in Fig. 3(b). Meanwhile, it should be noticed that when d takes a smaller 
value, Viy increases while the concerned Vix decreases, which will lead to a reduction of the 
concerned wind load in the direction perpendicular to the transmission line. 

 
6.2 Motion path intersects with the transmission line 
 
Various cases are considered likewise in which the intersection point locates at the position of 

SIS4, midpoint(lies between SIS4 and SIS5), SIS5, SIS6 and αm varies from 15° to 90° with a 
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specified interval of 15°. Fig. 14 shows the time-history results of the displacements of SIS4, 
including dx4(t) and dy4(t), and the corresponding rotation angles of SIS1,SIS4,and SIS7 in the case 
of that the intersection point locates at the midpoint and αm=90°. Obviously, θ(t) experiences a 
relatively large positive peak and a minor negative one in the motion process of downburst, which 
is different from that in the first category. This is mainly due to that when a downburst passes 
across the transmission line, the direction of the radial wind velocity reverses. And the discrepancy 
of the peak values is due to the translational momentum of the moving downburst, which will lead 
to an asymmetric pressure distribution in the surrounding area of storm center. 

In addition, concluding from all the calculation results(including both categories), it can be 
found that despite the fact that a larger dy may occur in the first category, dy is still considerable 
compared to dx in some cases especially when the lengths of considered adjacent spans differ a lot. 
Moreover, it is found that fluctuating component of wind speed has a slight contribution to the 
results, which may be due to the low turbulence intensity adopted or the introduction of 
conductor’s motion state in the present study. Furthermore, compared to the results in the 
atmospheric boundary layer, the variations of the rotation angles here suffer a gentle change in the 
time domain, which can approximately be seen as a long period change. Yet this is 
disadvantageous to the flashover because its lengthened duration of crisis will decrease the success 
rates of automatic reclose. 

The results of the whole transmission line section are processed in the way the same as 
employed for the cases in the first category, and depicted in Fig. 15. It can be found that, in many 
cases, the results of θNmax exceed the values in the cases that belong to the first category, especially 
the cases in which αm has a large value. It indeed means a higher risk of flashover. In the aspect of 
whether variation trend or value, a big difference is found if the motion path changes. From the 
results shown, an overall increasing trend of each SIS’s θNmax with the enhanced αm in a specified 
range could be found. This is mainly due to the increase of Vix. Furthermore, in the cases of that αm 
is small, when the intersection point moves from the middle part of the transmission line to the 
endpoint, the overall trend of all the 7 SISs’ θNmax remains unchanged, and the extremum, whose 
value gradually increases with αm, takes place at SIS2 or SIS3. In the cases of that αm is relatively 
large, the location variations of the intersection point will strengthen the inhomogeneity of the 
wind pressure distribution along the line section, and the location of the extremum will move to be 
adjacent to where the intersection point lies. 
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Fig. 15 θNmax of SIS1～7 in all the 24 cases in the second category 

 
 
A further statistical analysis has been applied to the data. The sequential number of SIS, which 

is found to be the most dangerous in each certain case, is listed in Table 3. Mostly, for the studied 
transmission line section, SIS3 seems to be in the most adverse situation rather than the SIS 
overlapped with the intersection point, which may be induced by the relatively large value of the 
jet diameter compared with each span length. 

Meanwhile, concluding from the results of all the calculation cases, it is found that compared to 
the either SIS at the endpoints of the line section, the remaining SISs suffer a higher risk of 
flashover. Furthermore, mostly when the downburst moves directly through the SIS with a motion 
path perpendicular to the transmission line, it poses a greatest threat to the specific SIS. Actually, 
in the design process of a specific tower, the peak rotation angle of each SIS θNmm is mainly 
concerned, rather than the corresponding motion paths. Thus, in order to simplify the design 
process, this specific motion path might be seen as a representative of the various calculation cases 
when considering a given SIS. With some additional calculations, the results of all SISs’ 
representative cases are complemented, as listed in Table 4, as well as the final results of θNmm 

considering all the calculation cases (including the representative cases). Obviously, some SISs’ 
(e.g., SIS1, SIS4, SIS5) results of θNmm exceed the results of θNmax of their respective representative 
cases just a little bit. However, the results of the representative cases are still proved to reflect the 
results of all cases in an acceptable range. 

 
 

Table 3 No. of the SIS which suffers the greatest risk of flashover in each motion path 

 Location of the intersection point 
αm(º) SIS4 Midpoint SIS5 SIS6 

15 2 2 3 3 
30 2 2 2 3 
45 3 3 3 3 
60 3 3 3 4 
75 3 3 3 6 
90 3 3 6 6 
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Table 4 Comparison of θNmm concluded from all cases with θNmax in the representative cases  

N θNmm (°) 
Location of the 

intersection point 
αm (°) 

θNmax in the representative 
cases(°) 

1 34.79 Midpoint 45 34.52 
2 45.80 SIS2 90 45.80 
3 55.58 SIS3 90 55.58 
4 49.33 SIS6 60 49.22 
5 48.72 SIS6 60 48.51 
6 55.49 SIS6 90 55.49 
7 35.93 SIS7 90 35.93 

 
 

7. Conclusions 
 

This paper investigates the effects of motion paths on the wind-induced conductor swing of the 
transmission line under moving downburst. The results show that: 

 In the case of that the motion path is parallel to the transmission line, the temporal 
response of each SIS reaches its peak value successively, and the most adverse situation 
occurs when d=1.0D. 

 In the case of that the downburst moves across the conductors, there is a relatively large 
positive peak and a minor negative peak in the time-history curve of each SIS’s rotation 
angle. The location of critical SIS that suffers a greatest risk of flashover along the entire 
line section, and the corresponding maximum rotation angle directly depend on the motion 
path of downburst, and are also affected by the length of each span and characteristic 
parameters of downburst to some extent. 

 Due to the adopted low turbulence intensity and the introduction of conductor’s motion 
state in the load calculation, the effect of the fluctuation component on the response is 
fairly small. Moreover, in a moving downburst, longer risk duration of flashover is found, 
which may lead to a higher possibility of the forced outage. 

 Due to the uncertainty of the initial location, motion path, occurrence and duration time of 
the moving downburst, it should only be considered in some particular areas. For a 
particular SIS’s precaution of downburst-induced flashover, a recommended calculation 
case, that the storm center moves directly through the given SIS in the direction 
perpendicular to the transmission line, is given, whose results may reflect the results of all 
the cases in an acceptable range. 
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