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Abstract.  In this paper, a shear deformation plate theory based on neutral surface position is developed for 
free vibration analysis of functionally graded material (FGM) plates. The material properties of the FGM 
plates are assumed to vary through the thickness of the plate by a simple power-law distribution in terms of 
the volume fractions of the constituents. During manufacture, defects such as porosities can appear. It is 
therefore necessary to consider the vibration behavior of FG plates having porosities in this investigation. 
The proposed theory is based on assumption that the in-plane and transverse displacements consist of 
bending and shear components, in which the bending components do not contribute toward shear forces and, 
likewise, the shear components do not contribute toward bending moments. The neutral surface position for 
a functionally graded plate which its material properties vary in the thickness direction is determined. The 
equation of motion for FG rectangular plates is obtained through Hamilton’s principle. The closed form 
solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the 
results of eigenvalue problems. Numerical results are presented and the influences of the volume fraction 
index and porosity volume fraction on frequencies of FGM plates are clearly discussed. 
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1. Introduction 
 

Functionally graded materials (FGMs) are a new kind of materials exhibiting spatially 

continuous variation of material properties along one, two or three directions in a particular 

coordinate system. Since material interfaces are absent, the interfacial stress concentration 

phenomenon due to material mismatch as encountered in the conventional composite laminates or 

coated structures can be completely avoided. Primarily, FGMs were mainly developed as 

heat-resisting materials used in aerospace engineering (Liu et al. 2010, Houari et al. 2013, Fekrar 
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et al. 2014, Bouchafa et al. 2015, Akbaş 2015, Kar and Panda 2015, Ait Atmane et al. 2015). 

Furthermore, FGMs have been widely used in  many engineering applications, such as spacecraft 

industry, thermoelectric industry, power industry, human  plants, civil engineering and so on 

(Miamoto et al. 1999, Lu et al. 2009, Bousahla et al. 2014, Liang et al. 2014, Mansouri and 

Shariyat 2014, Yaghoobi et al. 2014, Liang et al. 2015a,b, Hamidi et al. 2015, Arefi 2015, Larbi 

Chaht et al. 2015, Pradhan and Chakraverty 2015, Sallai et al. 2015, Tagrara et al. 2015, Bennai et 

al. 2015, Ebrahimi and Dashti 2015, Sofiyev and Kuruoglu 2015, Darılmaz 2015, Kirkland and Uy 

2015, Cunedioglu 2015, Ebrahimi and Habibi 2016, Moradi-Dastjerdi 2016, Hadji et al. 2016). 

FGMs are now developed for the general use as structural components in high temperature 

environments, and consequently many studies on vibration characteristics of FGM plates are 

available in the literature, see, for example (Praveen and Reddy 1998, Yang and Shen 2001, 2002,  

Vel and Batra 2004). 

Lin and Tseng (1998) analyzed free vibration of the polar orthotropic laminated circular and 

annular plates using the first-order shear-deformation theory and an eight node element. Liew and 

Yang (2000) and Hosseini Hashemi et al. (2008) employed Ritz method for three- dimensional 

free vibration analysis of thick annular plates with different edge conditions. Sundararajan et al. 

(2005) investigated the nonlinear free flexural vibrations of functionally graded rectangular and 

skew plates in thermal environments. Temperature is assumed to vary only in the thickness 

direction. The material properties of constituents are considered to be temperature dependent. Lee 

et al. (1998) analyzed free vibration and transient dynamic response of a rotating multi-layer 

annular plate using the finite element method. The governing equations of motion were derived 

using a zigzag theory with a higher-order shear deformation global and a linear local displacement 

fields. Li et al. (2009) analyzed free vibration of FGM rectangular plates in thermal environment 

based on three dimensional theory of elasticity. Both simply supported and clamped boundary 

conditions are considered. Results are obtained for different temperature distributions. Huang and 

Shen (2004) studied nonlinear vibration and dynamic response of FGM plates in thermal 

environments. The formulations are based on the high order shear deformation theory (HSDT) 

kinematics and general von-Karman type equation, which includes thermal effects. 

Allahverdizadeh et al. (2008) developed a semi-analytical approach for nonlinear free and 

forced axi-symmetric vibrations of a thin circular FGM plates. The formulation is based on the 

classical plate theory (CPT) kinematics and the geometric nonlinearity is incorporated in von- 

Karman sense. Woo et al. (2006) provided an analytical solution for the nonlinear free vibration 

behavior of FGM plates. The governing equations for thin rectangular FGM plates are obtained 

using the von-Karman theory for large transverse deflection, and mixed Fourier series analysis is 

used to get the solution. 

Shufrin and Eisenberger (2005) used Kantorovich method for stability and vibration analysis of 

plates. Based on the first and higher order shear deformation plate theory, they obtained the 

vibration and stability equations for an isotropic plate and proposed a method to obtain the 

frequencies and critical buckling load. Comparing the results of theories, they said that the first 

order theory is in fairly good agreement with higher order theory. 

Based on the Reddy’s third-order shear deformation plate theory, exact closed-form solutions in 

explicit forms are presented by Hosseini-Hashemi et al. (2011a) for transverse vibration analysis 

of rectangular thick plates having two opposite edges hard simply supported. Also, Baferani et al. 

(2011) presented an accurate solution for free vibration of functionally graded thick rectangular 

plates resting on elastic foundation. Dehghan and Baradaran (2011) solved the eigenvalue 

equations based on a mixed finite element (FE) and differential quadrature (DQ) method to obtain 
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the natural frequency and buckling load parameters. Bessaim et al. (2013) proposed a new 

higher-order shear and normal deformation theory for the static and free vibration analysis of 

sandwich plates with functionally graded isotropic face sheets. Belabed et al. (2014) presented an 

efficient and simple higher order shear and normal deformation theory for bending and vibration 

of FG plates. Hebali et al. (2014) proposed a new quasi-3D hyperbolic shear deformation theory 

for the static and free vibration analysis of FG plates. Mahi et al. (2015) developed a new 

hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, 

functionally graded, sandwich and laminated composite plates. Nguyen et al. (2015) studied the 

bending, vibration and buckling behavior of FG sandwich plates using a refined higher-order shear 

deformation theory. Bennoun et al. (2016) developed a novel five variable refined plate theory for 

vibration analysis of FG sandwich plates. 

Amini et al. (2009) investigated the free vibration of FGM plates on elastic foundations by 

using three dimensional linear elasticity theory. Ait Atmane Hassen et al. (2010) also analysed the 

Free vibration of simply supported functionally graded plates (FGP) resting on a Winkler–

Pasternak elastic foundation using a new higher shear deformation theory. Using a new 

four-variable refined plate theory, Hadji et al. (2011) investigated the free vibration analysis of 

functionally graded material (FGM) sandwich rectangular plates. The theory presented is 

variationally consistent and strongly similar to the classical plate theory in many aspects. It does 

not require the shear correction factor, and gives rise to the transverse shear stress variation so that 

the transverse shear stresses vary parabolically across the thickness to satisfy free surface 

conditions for the shear stress. Benachour et al. (2011) developed a model for free vibration 

analysis of plates made of functionally graded materials with an arbitrary gradient. Closed form 

solutions are obtained by using Navier technique, and then fundamental frequencies are found by 

solving the results of eigenvalue problems. El Meiche et al. (2011) developed a refined hyperbolic 

shear deformable plate theory for buckling and vibration of FGM sandwich plates. Zidi et al. 

(2014) studied the bending response of functionally graded material (FGM) plate resting on elastic 

foundation and subjected to hygro-thermo-mechanical loading. Tounsi et al. (2013) presented a 

refined trigonometric shear deformable plate theory for thermoelastic bending of FGM sandwich 

plates. The same theory was used to study the mechanical behavior of FG plates (Bourada et al. 

2012, Bachir Bouiadjra et al. 2012, Kettaf et al. 2013, Khalfi et al. 2014, Bakhti et al. 2013, 

Bouderba et al. 2013, Ait Amar Meziane et al. 2014, Draiche et al. 2014, Nedri et al. 2014, 

Sadoune et al. 2014, Attia et al. 2015). Bouguenina et al. (2015) presented a numerical analysis of 

FG plates with variable thickness subjected to thermal buckling. Belkorissat et al. (2015) studied 

the vibration properties of FG nano-plate using a new nonlocal refined four variable model. 

Bakora and Tounsi (2015) investigated the thermo-mechanical post-buckling behavior of thick 

P-FG plates resting on elastic foundations. Tebboune et al. (2015) presented a thermal buckling 

analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric 

shear deformation theory. Zemri et al. (2015) studied the mechanical response of FG nanoscale 

beam using a refined nonlocal shear deformation theory beam theory.     

Since, the material properties of functionally graded plate vary through the thickness direction, 

the neutral surface of such plate may not coincide with its geometric middle surface. Therefore, 

stretching and bending deformations of FGM plate are coupled. Some researchers (Morimoto et al. 

2006, Abrate 2008, Zhang and Zhou 2008, Saidi and Jomehzadeh 2009, Yahoobi and Feraidoon  

2010, Bachir Bouiadjra et al. 2013, Eltaher et al. 2013, Bourada et al. 2015, Meradjah et al. 2015, 

Hadji and Adda Bedia 2015, Al-Basyouni et al. 2015, Meksi et al. 2015, Ait Atmane et al. 2016, 

Bellifa et al. 2016) have shown that there is no stretching-bending coupling in constitutive 
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equations if the reference surface is properly selected.  

In FGM fabrication, porosities can occur within the materials during the process of sintering. 

This is because of the large difference in solidification temperatures between material constituents 

(Zhu et al. 2001). Wattanasakulpong et al. (2012) gives the discussion on porosities happening 

inside FGM samples fabricated by a multi-step sequential infiltration technique. 

Wattanasakulponga and Ungbhakorn (2014) also investigate linear and non linear vibration 

problems of FGM beams having porosities. However in the open literature, it has not found any 

works on the behaviour of FGM plates with porosity. Recently, Ait Yahia et al. (2015) investigated 

the wave propagation in FG plates with considering the porosity effect.  

The purpose of this paper is to obtain the analytical solution for free vibration of FGM plate 

with porosities. The analysis is based on hyperbolic shear deformation theory and the exact 

position of neutral surface. The present theory has only four unknowns and four governing 

equations, but it satisfies the stress-free boundary conditions on the top and bottom surfaces of the 

plate without requiring any shear correction factors. The displacement field of the proposed theory 

is chosen based on a constant transverse displacement and hyperbolic variation of in-plane 

displacements through the thickness. The partition of the transverse displacement into the bending 

and shear parts leads to a reduction in the number of unknowns and governing equations, hence 

makes the theory simple to use. Also, the effect of porosities that can happen inside the FGM 

fabricated by multi-step sequential infiltration technique is taken into account. Numerical results 

for fundamental frequencies are investigated. 

 

 

2. Problem formulation 
 

Consider a rectangular plate made of FGMs of thickness h , length a , and width b  made by 

mixing two distinct materials (metal and ceramic) is studied here. The coordinates x , y  are along 

the in-plane directions and z  is along the thickness direction. The top surface material is ceramic 

rich and the bottom surface material is metal rich. For such plates, the neutral surface may not 

coincide with its geometric mid-surface. The applied compressive force may be assumed to act at 

the mid-surface of the plate for all the practical purposes, but the in-plane stress resultants act 

along the neutral surface. The noncoincidence of line of action of stress resultant and applied 

compressive force results in a couple as schematically shown in Fig. 1.  

Here, two different datum planes are considered for the measurement of z , namely, msz  and 

nsz  measured from the middle surface, and the neutral surface of the plate, respectively (Fig. 

1).The volume-fraction of ceramic CV  is expressed based on  msz  and nsz  coordinates (Fig. 1) 

as 

p

ns

p

ms
C

h

Cz

h

z
V 











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








2

1

2

1

                       (1)

 

Where p  is the power law index which takes the value greater or equal to zero and C  is the 

distance of neutral surface from the mid-surface. Material non-homogeneous properties of a 

functionally graded material plate may be obtained by means of the Voigt rule of mixture (Suresh 

and Mortensen 1998). Thus, using Eq. (1), all properties of the imperfect FGM can be written as 

(Wattanasakulponga and Ungbhakorn 2014). 
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Fig. 1 The position of middle surface and neutral surface for a functionally graded plate 
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where MP  and CP  are the corresponding properties of the metal and ceramic, respectively. In 

the present work, we assume that the modulus of elasticity E , and material density  , are 

described by Eq. (2), while Poisson’s ratio  , is considered to be constant across the thickness. 

The material properties of a perfect FG plate can be obtained when α is set to zero. 

The position of the neutral surface of the FG plate is determined to satisfy the first moment 

with respect to Young’s modulus being zero as follows (Zhang and Zhou 2008, Bachir Bouiadjra et 

al. 2013, Bourada et al. 2015). 
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Consequently, the position of neutral surface can be obtained as 
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2.1 Theoretical model 
 

Unlike the conventional shear deformation theory, the theory presented is variationally 

consistent. It has only four unknowns and four governing equations, but it satisfies the stress-free 

boundary conditions on the top and bottom surfaces of the plate without requiring any shear 

correction factors. 
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2.2.1 Basic assumptions 
Assumptions of the present theory are as follows 

(i) The origin of the Cartesian coordinate system is taken at the neutral surface of the 

FGM plate. 

(ii) The displacements are small in comparison with the plate thickness and, therefore, 

strains involved are infinitesimal. 

(iii) The transverse displacement w  includes two components of bending bw , and shear 

sw . These components are functions of coordinates x, y only 

),(),(),,( yxwyxwzyxw sbns                       (5)
 

(iv) The transverse normal stress z  is negligible in comparison with in-plane stresses 

x  and y . 

(v) The displacements u  in x-direction and v  in y-direction consist of extension, 

bending, and shear components. 

 

sb uuuu  0 ,   sb vvvv  0                      (6)
 

The bending components bu  and bv  are assumed to be similar to the displacements given by 

the classical plate theory. Therefore, the expression for bu  and bv  can be given as 

x

w
zu b

nsb



 ,   

y

w
zv b

nsb





                      (7)

 

The shear components su  and sv  give rise, in conjunction with sw , to the parabolic 

variations of shear strains xz , yz  and hence to shear stresses xz , yz  through the thickness 

of the plate in such a way that shear stresses xz , yz  are zero at the top and bottom faces of the 

plate. Consequently, the expression for su  and sv  can be given as 
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Where    
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2.1.2 Kinematics 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (5)-(9) as 
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The kinematic relations can be obtained as follows 
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2.1.3 Constitutive relations 
The linear constitutive relations are 
















































































yz

xz

xy

y

x

yz

xz

xy

y

x

)(

)(

)(
)z(E
































2

1
0000

0
2

1
000

00
2

1
00

0001

0001

1 2

                   (13)

 

where ( x , y , xy , yz , yx ) and ( x , y , xy , yz , yx ) are the stress and strain 

components, respectively. 

 

2.1.4 Equations of motion 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as 
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 

T

dt)KU(

0

0 

                             (14)

 

where U  is the variation of strain energy; and K  is the variation of kinetic energy. 

The variation of strain energy of the plate stated as 
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Substituting Eqs. (11) and (13) into Eq. (15) and integrating through the thickness of the plate, 

Eq. (15) can be rewritten as 
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The stress resultants N, M and S are defined by 
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Using Eq. (13) in Eq. (17), the stress resultants of the FG plate can be related to the total strains 

by 
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where ijA , ijD , etc., are the plate stiffness, defined by 
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The variation of kinetic energy is expressed as 
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Where dot-superscript convention indicates the differentiation with respect to the time variable 

t ; ρ(z) is the mass density; and (I0, I1, J1, I2, J2, K2) are mass inertias defined as 
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Substituting the expressions for δU and δK from Eqs. (16) and (21) into Eq. (14) and 

integrating by parts and collecting the coefficients of bw,v,u  00  and sw  , the following 

equations of motion of the plate are obtained 

x

w
J

x

w
IuI

y

N

x

N
u sbxyx


















 


11000 :  

y

w
J

y

w
IvI

y

N

x

N
v sbyxy


















 


11000 :
                (24)

 

sbsb

b

y

b

xy
b

x
b wJwI

y

v

x

u
IwwI

y

M

yx

M

x

M
w 


 2

2

2

2
00

102

22

2

2

)()(2: 























  

sbsb

s

yz
s

xz

s

y

s

xy
s

x
s wKwJ

y

v

x

u
JwwI

y

S

x

S

y

M

yx

M

x

M
w 


 2

2

2

2
00

102

22

2

2

)()(2: 

































  

By substituting Eq. (18) into Eq. (24), the equations of motion can be expressed in terms of 

displacements  sb w,w,v,u 00  as 
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3. Navier solution for simply supported rectangular plates 
 

Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (25) for a simply supported FG plate. The following 

displacement functions are chosen to satisfy the boundary conditions of plate and are selected as 

Fourier series 
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Where 1i , 
a

m
   and 

b

n
  . w  is the natural frequency. mnU , mnV , bmnW , 

and smnW  are arbitrary parameters to be determined. Substituting Eq. (26) into Eq. (25), the 

following eigen value equation is obtained 
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4. Results and discussion 
 

In this section, the free vibration analysis of simply supported FG plates by the present 

hyperbolic shear deformation theory is suggested for investigation. Navier solutions for the free 

vibration analysis of FG plates are presented by solving the eigenvalue equations. 

The FG plate is taken to be made of aluminum and alumina with the following material properties: 

Ceramic (Alumina, Al2O3) EC = 380 GPa, ν = 0.3, and C  = 3800 kg/m
3
. 

Ceramic (Zirconia, ZrO2) EC = 200 GPa, ν = 0.3, and C = 5700 kg/m
3
. 

Metal (Aluminium, Al) Em = 70 GPa, ν = 0.3, and ρm = 2702 kg/ m
3
. 

For simplicity, the following non dimensional natural frequency parameter is used in the numerical 

examples. 
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4.1 Comparison studies 
 

In this section, various numerical examples are described and discussed for verifying the 

accuracy of the present hyperbolic shear deformation plate theory in predicting the free vibration 

behaviors of simply supported FG plates. For the verification purpose, the results obtained by the 

present theory are compared with other theories existing in the literature, such as the classical plate 

theory (CPT), the first-order shear deformation plate theory (FSDPT) (Hosseini-Hashemi et al.  

2011c), the 3-D exact solution (Vel and Batra 2004) and the high order shear deformation theory 

(HSDT) (Hosseini-Hashemi et al. 2011b, Matsunaga 2008). We also take the shear correction 

factor K = 5/6 in FSDPT. 

Table 1 shows a good agreement by the comparisons of the fundamental frequency parameter β  

obtained by the present theory (with only four unknown functions) with other theories in the case 

of the FG perfect plates (  = 0). In general, the vibration frequencies obtained by CPT are much 

higher than those computed from the shear deformation theories. This implies the well known fact 

that the results estimated by CPT are grossly in error for a thick plate. 

In addition, it should be noted that in the case of the imperfect FG plate ( 1,0=α )2,0=α , in 

the present solution, the frequencies decrease as the porosity increase.  

As a second example, a comparison of the natural frequency parameter β̂ of Al/Al2O3 square 

plate with different thickness ratio (a/h) and power law index “p” using different plate theories are 

presented in Table 2. The results from the present hyperbolic shear deformation theory in the case 

of perfect plate (  = 0) are in good agreement with those from Refs (Hosseini-Hashemi et al. 

2011a, b).  

Also, the results show that the CPT overpredicts the natural frequency of FG plates, especially 

for the thick plate at higher modes of vibration. Moreover, it can be shown that the natural 

frequencies are increasing with the increase of the porosity parameter ( ). As the volume fraction 

exponent increases for FG plates, the natural frequency will increase. These frequencies’ are also 

sensitive to the variation of a/h ratio. 

Lowest four frequency parameters   of rectangular Al/Al2O3 perfect and imperfect plate for 

different values of the gradient indices “p” and thickness ratio (a/h) are presented in Table 3. 

It can be observed that there is a little difference between the results; this is due the different 

approaches used to predict the natural frequencies. The first shear deformation theory (FSDT) 

presented by Hosseini-Hashemi et al. (2011c) have five kinematic unknowns contrary to the 

present theory which use a four unknown functions. In addition, the FSDT requires the use of 

shear correction factors to ensure the nullity of the stress at the top and bottom of the plate surfaces 

but the most interesting feature of the present theory is that it allows for parabolic distributions of 

transverse shear stresses across the plate thickness and satisfies zero shear stress conditions at the 

top and bottom surfaces of the plate without using shear correction factors.  

Moreover, all frequencies parameters are decreasing with the existence of imperfection in the 

plate ( 0 ). 
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4.2 Parametric studies 
 

After verifying the merit and accuracy of the present hyperbolic shear deformation theory, the 

following new results for the vibration analysis of rectangular FG plates, can be used as a 

benchmark for future research studies. 

In Figs. 2 (a) and 2(b), variation of the frequency parameter with power law index p is given for 

a/h=5 and a/h=100 respectively. According to these figures the frequency parameter decreases with 

increasing index p and porosity parameter . 

Figs. 3 (a) and 3(b) depict the fundamental frequency parameters versus the thickness-side 

ratios of simply supported power-law FGM plate for p=1 and p=100 respectively. It is seen that the 

results increase as the thickness ratio of the plate increases. Moreover, the frequency parameter is 

approximately insensitive to a/h ratio after a/h > 30 for all cases (perfect and imperfect plate). 

The variation of the frequency parameter with a/b ratio is given in Figs. 4 (a) and 4(b) for p = 1 

and 100, respectively. It is observed that the frequency parameter increases for plates with higher 

aspect ratio, a/b. In addition, it is seen from the results that frequency parameter is very sensitive to 

the power- law index p. 

Indeed, according to Fig. 4(a) frequencies are very close, and this regardless of the State of the 

plate (perfect or imperfect). However, for the case where p = 100, the difference between 

frequencies for the various cases of porosity is quite straightforward. 

In Figs. 5, the variations of natural frequency parameter with the power law index p are given 

for different cases of porosity. It is seen from the figures that the increase of the power law index p 

produces a reduction of the natural frequency parameter and this regardless of the porosity. 

The first nine frequency parameters of a square FG moderately thick plate (a/h=5) with various 

values of power law index and vibration modes are listed in table 4. 

It is seen from the results that, regardless of mode number, frequency parameter increases by 

decreasing power law. 

 

 

Table 1 comparison of fundamental frequency parameter β  of Al/ZrO2 square plate   

  p = 1 a/h = 5 

Theory porosity a/h =5 a/h =10 a/h =20 p = 2 p = 3 p = 5 

Vel and Batra (2004) 

3-D 

  = 0 

0.2192 0.0596 0.0153 0.2197 0.2211 0.2225 

Matsunaga (2008) 

HSDT 
0.2285 0.0619 0.0158 0.2264 0.2270 0.2281 

Hosseini- Hashemi et al. 

(2011b) HSDT 
0.2276 0.0619 0.0158 0.2256 0.2263 0.2272 

Hosseini- Hashemi et al. 

(2011c)  FSDT 
0.2276 0.0619 0.0158 0.2264 0.2276 0.2291 

CPT 0.2479 0.0634 0.0159 0.2473 0.2497 0.2526 

Present  

  = 0 0.2276 0.0618 0.0158 0.2257 0.2263 0.2272 

  = 0.1 0.2258 0.0612 0.0156 0.2228 0.2233 0.2244 

  = 0.2 0.2231 0.0604 0.0154 0.2184 0.2186 0.2199 
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Table 2 Comparison of natural frequency parameter 
^

β  of Al/ Al2O3 square plate 

a/h 
Mode 

Theory porosity P 

(m,n) 0.5 1 4 10 

5 

(1,1) 

Hosseini- Hashemi et al. (2011b) HSDT 

  = 0 

0.1807 0.1631 0.1378 0.1301 

Hosseini- Hashemi et al. (2011c)  FSDT 0.1805 0.1631 0.1397 0.1324 

CPT 0.1959 0.1762 0.1524 0.1467 

Present  

  = 0 0.1807 0.1631 0.1379 0.1301 

  = 0.1 0.1806 0.1599 0.1280 0.1195 

  = 0.2 0.1803 0.1552 0.1111 0.1009 

(1,2) 

Hosseini- Hashemi et al. (2011b) HSDT 

  = 0 

0.3989 0.3607 0.2980 0.2771 

Hosseini- Hashemi et al. (2011c)  FSDT 0.3978 0.3604 0.3049 0.2856 

CPT 0.4681 0.4198 0.3603 0.3481 

Present  

  = 0 0.3988 0.3606 0.2982 0.2772 

  = 0.1 0.3991 0.3544 0.2776 0.2534 

  = 0.2 0.3991 0.3453 0.2428 0.2128 

(2,2) 

Hosseini- Hashemi et al. (2011b) HSDT 

  = 0 

0.5803 0.5254 0.4284 0.3948 

Hosseini- Hashemi et al. (2011c)  FSDT 0.5779 0.5245 0.4405 0.4097 

CPT 0.7184 0.6425 0.5478 0.5306 

Present  

  = 0 0.5801 0.5253 0.4288 0.3950 

  = 0.1 0.5810 0.5171 0.4000 0.3601 

  = 0.2 0.5816 0.5050 0.3517 0.3018 

10 

(1,1) 

Hosseini- Hashemi et al. (2011b) HSDT 

  = 0 

0.0490 0.0442 0.0381 0.0364 

Hosseini- Hashemi et al. (2011c)  FSDT 0.0490 0.0442 0.0382 0.0366 

CPT 0.0502 0.0452 0.0392 0.0377 

Present  

  = 0 0.0490 0.0441 0.0380 0.0363 

  = 0.1 0.0489 0.0432 0.0353 0.0336 

  = 0.2 0.0489 0.0418 0.0304 0.0285 

(1,2) 

Hosseini- Hashemi et al. (2011b) HSDT 

  = 0 

0.1174 0.1059 0.0903 0.0856 

Hosseini- Hashemi et al. (2011c)  FSDT 0.1173 0.1059 0.0911 0.0867 

CPT 0.1239 0.1115 0.0966 0.0930 

Present  

  = 0 0.1173 0.1059 0.0902 0.0856 

  = 0.1 0.1172 0.1037 0.0837 0.0788 

  = 0.2 0.1170 0.1006 0.0724 0.0668 

(2,2) 

Hosseini- Hashemi et al. (2011b) HSDT 

  = 0 

0.1807 0.1631 0.1378 0.1301 

Hosseini- Hashemi et al. (2011c)  FSDT 0.1805 0.1631 0.1397 0.1324 

CPT 0.1959 0.1762 0.1524 0.1467 

Present  

  = 0 0.1807 0.1631 0.1379 0.1301 

 = 0.1 0.1631 0.1599 0.1280 0.1195 

  = 0.2 0.1599 0.1552 0.1111 0.1009 

20 (1,1) 

Hosseini- Hashemi et al. (2011b) HSDT 

  = 0 

0.0125 0.0113 0.0098 0.0094 

Hosseini- Hashemi et al. (2011c)  FSDT 0.0125 0.0113 0.0098 0.0094 

CPT 0.0126 0.0114 0.0099 0.0095 

Present  

  = 0 0.0125 0.0113 0.0098 0.0094 

  = 0.1 0.0125 0.0110 0.0090 0.0087 

  = 0.2 0.0124 0.0106 0.0078 0.0074 
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Table 3 Comparison of frequency parameter 


  of Al/ Al2O3 rectangular plate (b=2a)   

a/h 
Mode 

(m,n) 
Theory porosity 

1 2 5 8 10 

5 

(1,1) 

Hosseini- Hashemi et al. (2011c)  FSDT   = 0 2.6473 2.4017 2.2528 2.1985 2.1677 

Present  

  = 0 2.6476 2.3952 2.2285 2.1707 2.1414 

  = 0.1 2.5934 2.2740 2.0610 2.0009 1.9723 

  = 0.2 2.5150 2.0819 1.7655 1.6971 1.6703 

(1,2) 

Hosseini- Hashemi et al. (2011c)  FSDT   = 0 4.0773 3.6953 3.4492 3.3587 3.3094 

Present  

  = 0 4.0782 3.6812 3.3966 3.2987 3.2529 

  = 0.1 3.9982 3.4997 3.1417 3.0358 2.9893 

  = 0.2 3.8821 3.2118 2.6966 2.5724 2.5249 

(1,3) 

Hosseini- Hashemi et al. (2011c)  FSDT   = 0 6.2636 5.6695 5.2579 5.1045 5.0253 

Present  

  = 0 6.2664 5.6403 5.1481 4.9804 4.9085 

  = 0.1 6.1508 5.3723 4.7631 4.5748 4.4985 

  = 0.2 5.9821 4.9466 4.1001 3.8729 4.9804 

(2,1) 

Hosseini- Hashemi et al. (2011c)  FSDT   = 0 7.7811 7.1189 6.5749 5.9062 5.7518 

Présente 

  = 0 7.8762 7.0768 6.4153 6.1909 6.0995 

  = 0.1 7.7369 6.7490 5.9372 5.6808 5.5811 

  = 0.2 7.5330 6.2278 5.1208 4.8076 4.6922 

10 

(1,1) 

Hosseini- Hashemi et al. (2011c)  FSDT   = 0 2.7937 2.5386 2.3998 2.3504 2.3197 

Present  

  = 0 2.7937 2.5365 2.3920 2.3414 2.3112 

  = 0.1 2.7328 2.4031 2.2122 2.1643 2.1370 

  = 0.2 2.6452 2.1921 1.8894 1.8396 1.8189 

(1,2) 

Hosseini- Hashemi et al. (2011c)  FSDT   = 0 4.4192 4.0142 3.7881 3.7072 3.6580 

Present  

  = 0 4.4193 4.0092 3.7693 3.6855 3.2529 

  = 0.1 4.3243 3.8001 3.4859 3.4043 2.9893 

  = 0.2 4.1875 3.4693 2.9792 2.8922 2.5249 

(1,3) 

Hosseini- Hashemi et al. (2011c)  FSDT   = 0 7.0512 6.4015 6.0247 5.8887 5.8086 

Present  

  = 0 7.0516 6.3893 5.9790 5.8362 5.7590 

  = 0.1 6.9033 6.0604 5.5295 5.3858 5.3128 

  = 0.2 6.6891 5.5398 4.7305 4.5720 4.5085 

(2,1) 

Hosseini- Hashemi et al. (2011c)  FSDT   = 0 9.0928 8.2515 7.7505 7.5688 7.4639 

Present  

  = 0 9.0935 8.2319 7.6772 7.4847 7.3845 

  = 0.1 8.9053 7.8123 7.1001 6.9022 6.8058 

  = 0.2 8.6331 7.1479 6.0788 5.8564 5.7685 
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Table 4 First nine frequency parameter  of Al/Al2O3 square plate (a/h=5) 

a /h 

Mode no 

(m,n) porosity 

p 

0.5 1 2 5 10 100 

1 (1,1) 

  = 0 4.5181 4.0782 3.6812 3.3966 3.2529 2.8175 

  = 0.1 4.5158 3.9982 3.4997 3.1417 2.9893 2.5267 

  = 0.2 4.5096 3.8821 3.2118 2.6966 2.5249 2.0688 

2 (2,1) 

  = 0 9.9714 9.0164 8.0925 7.3040 6.9318 6.1291 

  = 0.1 9.9783 8.8616 7.7240 6.7612 6.3365 5.4824 

  = 0.2 9.9797 8.6343 7.1378 5.8394 5.3223 4.4593 

3 (1,2) 

  = 0 9.9714 9.0164 8.0925 7.3040 6.9318 6.1291 

  = 0.1 9.9783 8.8616 7.7240 6.7612 6.3365 5.4824 

  = 0.2 9.9797 8.6343 7.1378 5.8394 5.3223 4.4593 

4 (2,2) 

  = 0 14.5049 13.1339 11.7508 10.4660 9.8768 8.8372 

  = 0.1 14.5261 12.9296 11.2462 9.6970 9.0043 7.8932 

  = 0.2 14.5423 12.6272 10.4411 8.4136 7.5460 6.3957 

5 (3,1) 

  = 0 17.1907 15.5781 13.9180 12.3165 11.5907 10.4286 

  = 0.1 17.2224 15.3488 13.3393 11.4184 10.5546 9.3081 

  = 0.2 17.2502 15.0078 12.4146 9.9325 8.8382 7.5288 

6 (1,3) 

  = 0 17.1907 15.5781 13.9180 12.3165 11.5907 10.4286 

  = 0.1 17.2224 15.3488 13.3393 11.4184 10.5546 9.3081 

  = 0.2 17.2502 15.0078 12.4146 9.9325 8.8382 7.5288 

7 (3,2) 

  = 0 20.8537 18.9173 16.8757 14.8221 13.9024 12.5875 

  = 0.1 20.9019 18.6582 16.2029 13.7530 12.6443 11.2264 

  = 0.2 20.9481 18.2705 15.1256 12.0027 10.5816 9.0621 

8 (2,3) 

  = 0 20.8537 18.9173 16.8757 14.8221 13.9024 12.5875 

  = 0.1 20.9019 18.6582 16.2029 13.7530 12.6443 11.2264 

  = 0.2 20.9481 18.2705 15.1256 12.0027 10.5816 9.0621 

9 (4,1) 

  = 0 25.2274 22.9124 20.4125 17.7953 16.6351 15.1525 

  = 0.1 25.2978 22.6233 19.6365 16.5287 15.1139 13.5042 

  = 0.2 25.3690 22.1875 18.3910 14.4786 12.6451 10.8801 
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Fig. 2 The effect of power law index of FG square plate on fundamental frequency parameter (a) a/h=5 

and (b) a/h=100 
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Fig. 3 The effect of thickness ratio on fundamental frequency parameter of square plate, (a) p=1 and (b) 

p=100 
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Fig. 4 The effect of aspect ratio on fundamental frequency parameter of rectangular plate. (a) p=1 and (b) 

p=100 
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Fig. 5 The effect of the power law index on fundamental frequency parameter for different cases of 

porosity. (a)   = 0, (b)   = 0.1 and (c)   = 0.2 
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5. Conclusions 
 

A four variable theory is developed for vibration analysis of rectangular functionally graded 

plates with porosities. The modified rule of mixture covering porosity phases is used to describe 

and approximate material properties of the imperfect FGM plate. The neutral surface position for 

such plates has been determined. An efficient hyperbolic plate theory based on exact neutral 

surface position has been used to find the basic equations of FG plates. The theory takes account 

of transverse shear effects and parabolic distribution of the transverse shear strains through the 

thickness of the FG plate, hence it is unnecessary to use shear correction factors. Unlike any other 

theory, the theory presented gives rise to only four governing equations resulting in considerably 

lower computational effort when compared with the other higher-order theories reported in the 

literature having more number of governing equations. 

The accuracy of the present theory is ascertained by comparing it with other shear deformation 

theories where an excellent agreement was observed in all cases. Furthermore, the influences of 

plate parameters such as power law index, aspect ratio, porosities on the natural frequencies of FG 

rectangular plate have been comprehensively investigated. 

The formulation lends itself particularly well to wave propagation in orthotropic 

non-homogeneous medium (Mahmoud et al. 2014), nanostructures (Besseghier et al. 2015, Chemi 

et al. 2015, Ould Youcef et al. 2015) and vibration of laminated composite plates (Draiche et al. 

2014, Nedri et al. 2014, Chattibi et al. 2015, Ozturk 2015), which will be considered in the near 

future. 
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