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Abstract. A preconditioning technique is presented for a simultaneous solution to wind-membrane
interaction. In the simultaneous equations, a linear elastic model was employed to deal with the
fluid-structure data transfer at the interface. A Lagrange multiplier was introduced to impose the specified
boundary conditions at the interface and strongly coupled simultaneous equations are derived after space and
time discretization. An initial linear elastic model preconditioner and modified one were derived by treating
the linearized elastic model equation as a saddle point problem, respectively. Accordingly, initial and
modified fluid-structure interaction (FSI) preconditioner for the simultaneous equations were derived based
on the initial and modified linear elastic model preconditioners, respectively. Wind-membrane interaction
analysis by the proposed preconditioners, for two and three dimensional membranous structures respectively,
was performed. Comparison was made between the performance of initial and modified preconditioners by
comparing parameters such as iteration numbers, relative residuals and convergence in FSI computation.
The results show that the proposed preconditioning technique greatly improves calculation accuracy and
efficiency. The priority of the modified FSI preconditioner is verified. The proposed preconditioning
technique provides an efficient solution procedure and paves the way for practical application of
simultaneous solution for wind-structure interaction computation.

Keywords: membrane structures; wind loading; fluid-structure interaction; simultaneous solution;
preconditioning technique

1. Introduction

Fluid-structure interaction between wind and membrane structures is recognized as one of the
most significant, yet not comprehensively studied, issues in the wind-resistant behaviour of
flexible building structures. Numerical simulation has become a vigorous tool for fluid-structure
interaction computation due to rapid progress in hardware and software of computers (Dagnew and
Bitsuamlak 2013, 2014). Currently, numerical simulation methods fall into three categories,
partitioned solutions with loosely-coupling method (Borna et al. 2013), partitioned solutions with
strongly-coupling method and simultaneous solutions (Hermann and Jan 2002, 2003). In
loosely-coupling partitioned solutions schemes, separate solvers for fluid and structure are
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employed once per time step, resulting in a time lag between both continua, whereas
strongly-coupling partitioned solutions require an additional iteration loop based on the partial
solvers, which demonstrate better convergence and stability characteristics, but additional
numerical efforts are needed. Simultaneous procedures solve the coupled system in a single
iteration loop with consistent time integration schemes for all physical fields, resulting in
time-accurate coupled solutions (Namkooong et al. 2005). In other words, an anthology of
numerical simultaneous solution is applied to FSI of membrane structures under wind actions,
including formulating the fluid-structure system in the form of simultaneous equations, and
solving it simultaneously (Degroote et al. 2009, Habchi et al. 2013).

Most of the current studies on FSI of membrane structures, with numerical simulation, adopt
partitioned solutions with loose-coupling or strong-coupling methods. Studies on simultaneous
solution method have been rather limited (Habchi et al. 2013, Hachem et al. 2013). However, the
limited study has shown its superiority in stability and accuracy in computation (Habchi et al.
2013, Michler et al. 2004) over partitioned solutions. Thus, for membrane structures undergoing
large-displacement, a simultaneous solutions is preferable for wind-membrane structure interaction
analysis since it ensures better stability and convergence.

One of the key aspects in fluid-structure interaction computation is data transfer at
fluid-structure interface. Sun and Gu (2014) proposed a linear elastic model to deal with the fluid
deformation to derive a single equation system for a simultaneous solution to compute
wind-membrane interaction. For the simultaneous solution procedure, Newton’s method is usually
needed to linearize the simultaneous equations of the coupled system. In spite of its superiority in
accuracy and stability of simultaneous solution method, large amounts of computational efforts are
consumed on repeated integration of Jacobian matrix and Newton modification of the linearized
simultaneous equations, which probably result in ill-conditioned of the linearized equations and
inefficiency of simultaneous solution procedure. Thus, it is among the top priorities to solve the
simultaneous equations effectively. Generalized minimum residual algorithm (GMRES for short),
an iteration method, is one of Krylov subspace projections methods that commonly used to solve
large asymmetric linear equations, exactly the case of linearized simultaneous equations
(Manguoglu et al. 2011). A preconditioning technique, aggregating eigenvalues of linear iteration
matrix to diminish computation time when solving linear equations, is usually required to
accelerate convergence for the method.

For fluid-structure interaction, some preconditioning techniques have been proposed to solve
the linearized nonlinear equations based on the current studies, which can fall into three categories.
The first category is the preconditioning technique that modifies the boundary conditions at the
fluid-structure interface, among which Dirichlet-Neumann boundary preconditioner is commonly
used. The advantage of the method lies in its usage of existing CFD and CSD module and as a
result, it is usually employed in partitioned solutions with loosely-coupling method (Heil et al.
2008). The second category is Schur preconditioner. Barker and Cai (2009, 2010) proposed
preconditioner based on Newton-Krylov-Schwarz algorithm. In Barker and Cai (2009), Schwarz
domain decomposition was adopted to solve strongly coupled equations. In Barker and Cai (2010),
additional Schwarz preconditioner with double-layer computation method was proposed based on
Krylov subspace solver. The third method is to employ blocked triangle preconditioner. Badia et al.
(20084, b) proposed incomplete LU decomposition (ILU for short) preconditioner and inaccurate
blocked LU decomposition preconditioner to solve strongly coupled equations. In spite of the
proposed preconditioners for strongly-coupled methods, they are only aimed at separate fluid
solver or structural solver, that is, the preconditioners could be only used for fluid domain or
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structural domain. Meanwhile, the preconditioners have not been validated for wind-membrane
interaction computation due to large added-mass effect resulted from light weight of the membrane
structures.

Linear elastic model was proposed to deal with the fluid domain deformation and strongly
coupled simultaneous equations were derived by the authors of this paper (Sun and Gu 2014). The
objective of this paper is to study preconditioning technique for the proposed strongly coupled
simultaneous equations to solve the nonlinear equations efficiently and study wind-membrane
interaction in a more accurate manner. A Lagrange multiplier is introduced to impose the boundary
conditions on the fluid-structure interface. An initial linear elastic model preconditioner and
modified one is derived by treating the linearized elastic model equation as a saddle point problem,
respectively. The fluid-structure interaction (FSI) preconditioning matrix for the simultaneous
equations is then derived based on the initial and modified linear elastic model preconditioning
matrix. Wind-membrane interaction for two and three dimensional membrane structures using the
proposed preconditioner were computed. The performance and efficiency of the preconditioners
was evaluated.

2. Governing equations for fluid-structure interaction system
2.1 Governing equations

The incompressible viscous fluid is governed by the Navier—Stokes equations, consisting of
momentum conservation and continuity equation. The governing equations for the structure are
described by a total Lagrange (T.L.) formulation and a large deformation theory. A linear elastic
model is introduced to deal with the data transfer at the interface, which is governed by
semi-discretized finite element equations. These equations can be found in Sun and Gu (2014).

2.2 Coupling conditions

Each node i of the fluid, structure and linear elastic model is assumed to be connected with the
fixed material point on the fluid-structure interface. The material point is denoted by its Lagrange

coordinates &' , then the coupling conditions on the fluid-structure interface can be written as

Ues (% (A), 971 (), & (A) =u, (2), onT, 1)
v =vE onT, 2
6. (U, (2)-n,+67 (U, (2))-n; =0, 0nT, @)

where U denotes the displacement vector of the linear elastic model, u, denotes the structure
displacement on the interfacel’,, A denotes the peripheric coordinate form at the interfacel’ ,
then, (4,9%, 9%, =(4 (1), 3 (A), & (2). Eq. (1) indicates that the linear elastic model
displacement equals the real structure displacement at the interface. Eq. (1) can be regarded as the

Dirichlet condition imposed on the displacement field of the linear elastic model. st' and v
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are fluid velocity and structure velocity at the interfaceI', , respectively. G'FSI and G'S: *'represent

Cauchy stress of fluid and structure at the interface, respectively. Ny and N, are outer normal

unit vector of fluid and structure, respectively, N, =—N; .

To enforce the boundary conditions on the fluid-structure interface, a Lagrange multiplier is
introduced for Dirichlet boundary condition (Badia et al. 2008a, b). Thus, a Lagrange multiplier is
introduced into Eq. (1), which can be written as the following weighted residual form

8 = [ (Ues (9 (2), 95 (1), 85 (2)—u, () ,®%du es (9 (z),d,iﬁ, (1), 9] (g))ad/I "

where ® is Lagrange multiplier, which can be regarded as the surface traction imposed on the
interface I, for the sake of generating the required boundary deformation.

2.3 Discretization of the governing equations

To obtain strongly coupled simultaneous equations, discretization of the fluid, structural and
linear elastic governing equations both in time and space is required. The governing equations of
the fluid, structure and linear elastic model are discretized with Galerkin finite element methods in
space. Implicit finite difference methods are employed for time discretization. The discretization
can be regarded as the process for obtaining the weak forms of the equations through weighted
residual method.

The fluid is considered as an incompressible viscous flow and governed by the Navier—Stokes
equations. Thus, the governing equations, i.e., continuity and momentum equations in the fluid

domain QF can be written as:

V-ov,=0 in Qf (5)

ov
p##w Vv )=V.6' in Q 6)

where v, stands for fluid wvelocity, p; is fluid density, 6’ is the stress tensor,

¢' =4[VV, +(VV,) ]- pE, uis the fluid viscosity, E stands for unit matrix, p is the fluid

pressure.
The weighted residual form of the fluid continuity and momentum equations are referred in Sun
and Gu (2014).
The governing equations for the structure are described by a total Lagrange (T.L.) formulation
and a large deformation theory. The weighted residual form of the structure governing equations
in the material point can be written as

—J'Qg (7-b,-5u ($)-n:(Su ($)dQ+ J.riour.o ((7-n): (-:6u ($)dT =0 @)

where # is test function, chosen as piecewise polynomial function, QS denotes initial
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configuration of the structure domain, I'y, and I,,represent initial Neumann boundary and
initial configuration at the interface, respectively, b denotes the volume force of the structure,

U, denotes displacement of the structure, n?is the initial outer normal unit vector of structure.

For data transfer on the fluid-structure interface, linear elastic model is introduced to deal with
the deformation of the fluid. Considering the boundary conditions at the interface with Lagrange
multiplier introduced earlier, Lagrange multiplier is introduced into linear elastic model
accordingly. The weighted residual form of the linear elastic model in the material point form can
be written as

(@ T qu (NI [ (00 (0 ) Su (AT =0 (®

where © is Lagrange multiplier, ® =(L/T)/(psE/c,) , ®? could be regarded as

dimensional value of structure density, L and T are dimensional value of space and time
coordinates, G, is 2nd Piola-Kirchhoff stress tensor, yx,. denotes displacement of the linear

elastic model.
The weighted residual form of coupling condition (3) can be written as

[ ne,u ) n)dr+[ ¢-o,(u,(2)-ndr=0 ©)

where the first term represents the structure contribution on the initial configuration, the second
term stands for the fluid contribution on the deformed mesh.

One-step-6 temporal discretization is employed to get the discretization form of the coupling
condition (2), which can be written as

pa_ 1 0dE™—dd?" 1-6
f6 dt 6

where 1/2<6<1 (Forster et al. 2005)
The relationship of displacement of linear elastic model and fluid velocity can be written as

Ut =ul; + AtV + (1- G)Atv] (12)

% (10)

Then the simultaneous equations based on linear elastic model and Lagrange multiplier can be
written as

fo = V avf \V/ + f.v dQ=0
F_IQf(w 'vf_é/'pf(E_"vf' vi)te 1V{)dQ= (12)
f =, (7-b,-8u,(8)~7: (8u,(9)dQ=0 13)
fie = (77:((®262uLE>-5u (9)NdQ=0 (14)
LE [0 ot2 LE
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& = ¢0.(u(4)-ndr=0 (15)

£ =] ((7n8)-0,(u,(2))dT =0 (16)

wheref. ,fsand f . denote weighted residual form of the fluid, solid and linear elastic model
equations, respectively, fFFS' and fSFSI represent weighted residual form of the coupling conditions
at the interface, @ and ¢ denote test functions, which are chosen as pressure shape functions
and velocity shape functions in local coordinates, respectively, Q stands for spatial domain
composed of Dirchlet boundary I, , Neumann boundary T", and fluid-structure interface I, , T
represents the fluid Neumann boundary. The unknowns of the simultaneous equations are the fluid
velocity v, fluid pressureP, linear elastic model displacementU,  and structural displacement

u

S -

3. Solution approach

The nonlinear strongly coupled simultaneous equations derived above need to be solved in one
time step, after Newton linearization which can be written as
df,

g X = L, (17)

Where f_, stands for the above simultaneous equations, X represents all the unknowns in

dfFSI

the equations, J™ = is Jacobian matrix, i stands for iterative time step.

In the work here, block preconditioners are proposed considering the convenience and
computation efficiency. Their application requires efficient sub-block solvers. Thus, considering
Lagrange multiplier, Eq. (17) after Newton linearization can be written in the following block form
as

o s
ou, ou’™
Fsi sl FSI AcFsl sl
3IZ 5(?£SFSI +2::FFS|)+§:FFS| 8\7 AUiS
s s \E f f AVE (18)
o A o o o e
aufél aVI:SI 8Vf auLE A ’i*f Fsl
u
Fsl LE
61; (ﬁi G)i afFFSI) ®AUILE
ou; ou, oug Ouj;
Fsi
(f}fLE 4+ af,fSI +®£)
| oug ou; ou ¢
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where V. represents all the unknowns of the fluid domain, including fluid velocity and pressure,

vE}' stands for the fluid unknowns on the interface, &= 6At, OAu ;. denotes unknown linear

elastic model displacement with discretized Lagrange multiplier imposed on the fluid-structure
interface.
For convenience, the Jacobian matrix of linear algebraic system of Eq. (18) can be written as

S S
Ds stFSI
SFSI SFSI FFsI FFSI FFSI
Ds 5(DsFS| + DLEFSI ) +U fFSI u f
FSI_ F F F F
J - 6DLEFS| +U fFSI U f DLE

D (rs, (Djg +OD[ + D)
(Diz +D{erg +ODE™)
(19)

of
where D = Ecorresponding to each term in Eqg. (18), the superscripts and subscripts keep

uniformity with each term in Eg. (18) for distinguishing,

LE F FFSI
Die +Diees +OD e can be regarded as discretized gradient and operator, respectively,
which indicate Lagrange multiplier has been imposed to enforce the boundary condition (1) and
the effects of the structure displacement on the linear elastic model displacement, i.e.,

LE F FFSI LE F FESINT
DLE +®DLE +6DLEFSI :(DLE + dDLEFSI + ®DLE ) .

LE F FFSI
DLE +®DLE +6DLEFSI and

4. Preconditioning technique

Generalized minimal residual method (Saad 2003) with preconditioning can be employed to
solve Eq. (17). GMRES is a Krylov subspace projection method for solving large non-symmetric
linear equations. Preconditioning technique is usually needed for the GMRES to accelerate the
convergence. Preconditioning technique is to diminish computation time for solving the linearized

equations through accumulating eigenvalues of linear iteration matrix. The preconditioner M{f

for linear elastic model equation is firstly presented, and the preconditioner ME?, for
simultaneous equations is proposed.

4.1 Reformulation of the linear elastic model as a saddle point problem

To obtain preconditioning matrix of the linear elastic model and fluid-structure system, the
fluid nodes are considered as material points to ensure the discretized fluid equations not directly
correlated to real structure deformation, and the linear elastic model not directly correlated to the
fluid. Thus, special blocked structure could be utilized in the Jacobian matrix to modularize the
preconditioning matrix and to use it repeatedly in the computation.

Firstly, preconditioner of the linear elastic model is derived by reformulating its linearized
equations as a saddle point problem. Any non-linear equations after linearization, if properly
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blocked, could be reformulated as saddle point problems (Farhat and Vinod 2014, Lazarov and
Sigmund 2011). Thus, the linear elastic model of Eq. (14), after linearization by the
Newton-Rapshon method, can be written as the following saddle point problem

Au=b (20)

T
J LE AX — ALE B Au LE — _fLE (21)
B 0 \@Au,

where A . =D 5., corresponds to the equilibrium state of the system and thus symmetric

definite positive, B is a full-rank nxm(m>n) diagonal matrix, whose discretization was
shown to be steady in Farhat and Vinod (2014),

BT = (DtE +®DEE +dDEEF|§1<;|)’ B= (DtE +6DEEFSI +®DEESI)'
Iterative method is employed to solve Eq. (21). A preconditioner Pis usually introduced to
solve Eq. (21), and left preconditioner is adopted here, i.e.

P*Au=P'b (22)

Based on preconditioning matrix proposed by Rees and Greif (2007), considering
characteristics of the strongly coupled simultaneous equations here, preconditioner of Eq. (21) can
be written as the following blocked triangle matrix form

or (ALE+BTWIB kBTJ
M =

W (23)

where W e R" x R" is symmetric definite positive, which can be chosen arbitrarily in order to
construct the effective preconditioner, k is a scalar factor, which designed to adjust the
computation convergence through effects of different values on GMRES iteration and relative
residuals. In order to guarantee all the eigenvalues of the preconditioner to be bounded, k should
be real among proper value. (Rees and Greif 2007). In the work here, k is an important factor,
whose proper values and implicancies it may have will be discussed in detail through the
following computation cases.
Based on the above requirements, \Win this work is chosen as

E,
W=sE=| G, (22)
.

where y = ||ALE ”w , E stands for unit matrix.

Combing Egs. (23) and (24), along the coordinate, the unknown linear elastic model
displacement is divided into unknown nodal vector on the interface and not on the interface. Then
an initial preconditioner of the linear elastic model can be obtained as



Preconditioning technique for a simultaneous solution to wind-membrane interaction 357

Axx Axi Axy Axy sz Axi
AYX Aﬁ +7E Aiy AW Aiz Aii ka
or Ayx Ayi Ayy AW Aiz Aiz
M =|A, Az A, A +E A, A, kzZ, (25)
Azx Azi Azy Azy Azz AZZ kZz
AZX AZX AZy AW Aiz AZZ +7E
i 7E ]

where A=A +B"W™B, subscripts X,¥,Z and X,¥,Z are unknown displacement nodal
vectors and unknown displacement nodal vectors constrained by Lagrange multiplier of the linear

elastic model, respectively. |Z,| z‘Zy - =z,| :.[n a,a,dQ |« and a, are basis

functions on the fluid-structure interface, which are chosen as polynomial function relevant to
geometric positions of the fluid mesh nodes.

The spectral properties of the preconditioner can be referred in Rees and Greif (2007). It was
pointed out by Rees and Greif (2007) that, when k = -1, there were (M—N) eigenvalues for

preconditioner MES and there were p eigenvalues ¢, = # , while the rest eigenvalues fell
between <1'f,o>u<1,1+f>.

To further improve the computation efficiency, Eq. (25) is further simplified. Blocked
preconditioner (Geuzaine and Remacle 2009) is adopted by substituting A . + B"W™B with

the upper triangle block of A ; + BTW B, then we obtain the modified preconditioner of the
linear elastic model,

_Axx Axi Axy Axy sz A z ]
Aix Aii +7E Aiy AW Aiz Aﬁ ka
A, Ay A, Ay
7 PR (26)
ME = A, Ay+E A, A, kz,
Azz AZZ kZz
Aiz Aﬁ +7E
i E |

For the above preconditioner, the following diagonal blocked subsystems are utilized for
calculation.

A = Axx Axi A. = Ayy AW A. = Azz Azi 27
b Aix AXX+7E ’ 2 AW AWJ'_}/E ’ P AZZ Aﬁ+7E ( )
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4.2 Preconditioner of the fluid-structure interaction system

Substituting the lower right block in Eq. (19) with the proposed preconditioning matrix of the
linear elastic model, i.e., Eq. (23), yields fluid-structure interaction system preconditioner for the
simultaneous equations (referred as FSI preconditioner hereafter) as follows

DS 6D§FSI
D™ S(DES +Digrg ) + U UF™
M lngl = éDEEFSI + U'f:FSI U'f: DEE
A+ B"W'B kBT
W

(28)

Initial and modified FSI preconditioner can be obtained by employing the linear elastic model
preconditioner, Egs. (25) and (26) to calculate Eq. (28), respectively.

To validate preconditioning matrix (28), spectral characteristics of (M ™')™J ' should be

analyzed. To this end, Jacobian matrix in Eq. (19) is rewritten in the following diagonal block form
as

D: D,
D™ 5(Dgsi +Dies) + Ul VT
JFSI:(‘]II Jz D {erg + Ul Ui Dig DEEq (29)
J, Ar Ay
Ag  Ag kZ
kZ
DFI DF
D: D%, i Pl
where 3,,=| DI SO +DEA)+ U UT |, = N e L
Diers + Ul Uy i i
kZ
Axi Axy Axi Aix Aiy Aiz Aﬁ AW Aii
Ag=|Ax Ay Ag |l Aa=|An Ay Ayl Ag=|Ag Ay Ayl
Azi Azy Azi AZX Aiy AZZ Aﬂ Aﬂ Aﬁ

subscripts g and | denote unknown nodal vector constrained by displacement and not constrained
by displacement, respectively. There are n, unknown nodal vector in the first row of J® . n

u
unknown nodal vector in the second row, (n,—n,) unknown nodal vector in the third row, n,
discretized unknown Lagrange multiplier in fifth and sixth row, respectively.
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Then preconditioner Eq. (28) can be written as

M FS! = ‘]11 0 30
Lo J,+E (30)
az(ﬂf k} (31)

-Z E

Matrix (MP')™J™" can be written as

(M FSI)—lJ FSI =(E (32)

(J 22 +E)l‘]22]

where (J,, +E)™J,, can be regarded as Schur complement correlated to block J,,, unit

FSI )71‘] FSI

matrix E in the upper left block indicates that preconditioning matrix (M at least

contains (N, +N, +N, —Ny) unit eigenvalues, the rest 2n, eigenvalues would be determined
from spectrum of (J,, + &)™ J,,.

5. Procedures for simultaneous solutions with the preconditioning technique

The computer configuration is: Intel i7, memory capacity of DDR3 8GB. Based on circular
GMRES algorithm (Barker and Cai 2010), procedures for simultaneous solutions with
preconditioner proposed above are summarized as follows.

(1) Start iteration from a zero initial field for all variables in the equations for 2 to 3 step
consecutive iterations to ensure convergence of Newton’s Method. Implicitly treat the boundary
conditions and loads at the interface of the entire fluid-structure interaction system. All the fluid
variables were saved on the mesh nodes.

(2) Newton-Raphson method is employed to linearize the simultaneous equations to obtain
linearized equations A-X=Db. Left preconditioner and GMRES method is employed to solve the
equations. The details are as follows.

(3) Randomly select initial estimate value X, and determine Krylov subspace dimensionm.
Define matrix H_eR™>™ where H_eR™"™ is upper Hessenberg matrix, R(™=m

denotes space composed of all (M +1) x mmatrices. Initialize the entries h; of H, to be zero.
(4) Select M as a proper value, and start executing Arnoldi procedures, i.e.,
a Compute w,=b-Ax, TI=|y,|, , w,=w,/8 where ||°||zstands for 2 norm of a vector or
matrix.
b Compute ¢;=Ay;  q=(M™)"c;(j=12...,m),C stands for cost functions.
Py = (0 w;)

qeqopy G782 D) P, =|lcl, Wi =a/P.; , and define a group of
ijri

¢ Compute {
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orthogonal basis in Krylov subspace C,, =[c,,C,,...,C,]

(5) Compute X, =%,+C.y,, and Yy, =argmin |y, —H,y,||, which represents the minimized
residual normed vectors of cost functions.

(6) When|b—Ax, || <&, stop iteration (& is prescribed error limit). Otherwise, setX, = X, and

go back to step (5) to re-compute.
(7) Save the obtained solutions as multi-dimensional dynamic arrays, save and output the final
displacement, pressure, velocity, etc. after all the time step cycles.

6 Numerical examples
6.1 Fluid-structure interaction of a two-dimensional membranous structure

Since the proposed numerical procedures has been validated in the previous work of Sun and
Gu (2014), in this work the authors are more interesed in the evaluation of the proposed
preconditioners for the fluid-structure interaction and no more new validation examples are
presented.

To evaluate the performance of the proposed preconditioners (initial and modified ones) for the
fluid-structure interaction system, fluid-structure interaction of a two-dimensional membranous
structure is computed first. The membranous structure is constructed of elastic membranous roof
bearing gravity and two vertical rigid supporting walls, as shown in Fig. 1. It should be noted that
the simulation in this work does not represent the scales of any characteristic wind engineering
problem, but it rather focuses on the improvements of computations through the implemented
preconditioning technique. Thus, Reynolds number is set to be 1700, and turbulence is not
considered here.

Computation domain size is set as 400mx100m. The fluid domain is discretized with elastic
model elements, while the membrane is discretized with triangular finite elements. Slip boundary
is adopted for upper wall of the fluid domain, and non-slip boundary for lower wall and
fluid-structure interface. A fully developed outlet boundary condition is chosen as outflow
boundary condition. To obtain steady fluid field at the initial stage of the simulation, the solution
after simulation time of 60s is set as the initial condition. A grid-independence has been performed
to ensure the accuracy of the numerical simulation. The largest mesh size in the following
comparison is ensured to be grid-independence. And the results obtained with the smallest mesh in
the following comparison and those with a mesh nearly one time finer are very close and the
maximum relative deviation is less than 2%.

=

Fig. 1 Sketch of a two-dimensional membranous structure
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Table 1 Average GMRES iteration numbers varying with mesh sizes for initial preconditioner

Mesh size h Parameter K

0.5 1 -1 8
1/23 19 19 19 19
1/46 21 21 21 21
1/69 22 22 22 22
1/92 24 24 24 24

Table 2 GMRES relative residuals varying with mesh sizes for the initial preconditioner

Mesh size h Parameter k

0.5 1 -1 8
1/23 7.627x10° 8.215x 10°® 8.234x10°® 5.848x 107
1/46 5.652x 10° 5.364x 10°® 6.735x 10°® 5.227x 107
1/69 5.323% 10°® 4.862x 10°® 5.347x10°® 4.947x 107
1/92 4.967x10°® 4.658x 10°® 5.269x 10°® 4.652x 107

A time step convergence study was conducted to find the largest time step compatible with the
numerical scheme stability. This stability requires that the Courant number remains within some
reasonably low limits. The time step is chosen in a way that the time discretization error and
solution error are minimized. After comparison of results from several different Courant numbers
and time steps, the greatest value of the time step was set to be 0.04. More than 8000 time steps
correspond to about a 20 vortex shedding cycle. Iteration stops when relative residuals

Hb—Ax”

-6 . . . . C .. . .
, <10 ||b||2 . This convergence criterion is chosen to minimize the iteration errors.

Computation results are presented using preconditioner (M™')™J™" with GMRES method.

Average GMRES iteration numbers and relative residual varying with mesh sizes for different
parameter k, by employing the initial FSI preconditioner, i.e., employing Eq. (25) to compute Eq.
(28), are presented in Tables 1 and 2, respectively. The involved blocked matrices V,U,
S+DYW'D%and W are decomposed by LU method.

As shown in Tables 1 and 2,

(1) Average GMRES iteration times are not affected by the different k values for various mesh
sizes, whereas GMRES relative residuals are affected. It was found during the computation that,
the choice of k value, either positive or negative, will just affect the computation accuracy and
has no specific implications for the computation. When k =8 the relative residuals are less than
the prescribed tolerance, which suggests that the larger k value would accelerate the convergence.
It is found that it was appropriate when Kk falls between [-1, 10] as real, and it is more accurate
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whenk >8.

(2) For the initial FSI preconditioner, variation of average GMRES iteration numbers (here
average GMRES iteration numbers refers to computing the mean values of all the linear solutions
whose GMRES convergence tolerance are 10 during Newton iteration) and relative residuals,
with varying mesh sizes, are not obvious, which suggests that the initial preconditioner

dependency on mesh is low. It also indicates that though the analysis of (M ™')™*J"
eigenvalues is not complete previously, as the mesh refines, the maximum and minimum
eigenvalue of (M ™")™J "' is bounded.

To compare computation efficiency, the modified FSI preconditioner, i.e., employing Eqg. (26)
to compute Eq. (28), is utilized for the computation, and the tolerance is set to be the same with
that of the unmodified preconditioner. Average GMRES iteration numbers and relative residuals
varying with mesh sizes are shown in Tables 3 and 4, respectively.

It can be seen from Table 3 and 4 that,

(1) For the modified FSI preconditioner, for different values of parameter k , average GMRES
iteration numbers for various mesh sizes are not affected, whereas GMRES relative residuals are
affected, and the relative residuals become smaller when k becomes larger. The conclusion is
consistent with that of the previous initial FSI preconditioner.

(2) It can be seen from Tables 3 and 4 that, for the modified FSI preconditioner, as the mesh
refines, the average GMRES iteration numbers increase whereas GMRES relative residuals
diminish.

Table 3 Average GMRES iteration numbers varying with mesh sizes for the modified preconditioner

Mesh size h Parameter K

0.5 1 -1 8
1/23 28 28 28 28
1/46 39 39 39 39
1/69 57 57 57 57
1/92 76 76 76 76

Table 4 GMRES relative residuals varying with mesh sizes for the modified preconditioner

Mesh size h Parameter K

0.5 1 -1 8
1/23 3.512x10® 3..241x10° 3.645x10°® 2.534x 107
1/46 1..44x10° 1.027x 107 1.126x 10 1.956 % 107
1/69 0.887x 10 0.812x 107 0.795x 10”7 4.365x 107

1/92 1.035%x 108 1.123x10°% 1.256x 10 6.234x 10°
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Table 5 Comparison of convergence with different FSI preconditioners

Method Iteration numbers Residuals Computation time
(Hours)

Without preconditioners 30 5.338x 1072 59

Unmodified preconditioner 30 1.234x10° 39

Modified preconditioner 30 0.362x 10" 31

(3) Results from the modified preconditioner is more sensitive to the mesh refinement, which
indicates that the modified FSI preconditioner is more accurate than the initial one.
To further illustrate the efficiency, the convergence comparison is made between the initial and

modified FSI preconditioner for the same iteration numbers (mesh size is 1/46 , k =8), as shown

in Table 5.

It can be concluded from table 5 that, for the same iteration numbers, computation residuals
without preconditioners are much larger than those with preconditioners. Besides, about 34% and
47% computation time are saved for the initial and modified FSI preconditioners, respectively. It is
indicated that preconditioners greatly improve efficiency and accuracy in fluid-structure
computation. It is found that, compared with the initial FSI preconditioner, residuals from the
modified FSI preconditioner are much less, and about 20% computation time is saved, since the
modified FSI preconditioner reduces the computation time for the linear sub-matrix blocks,
resulting in the improving of accuracy and convergence.

Instantaneous pressure distribution contours at various time at specified parameters (K =1, @
=0) is given in Figs. 2(a)-2(d). It can be seen that the vortex sheds along the membrane leading
edge, and forms a typical vortex street.

6.2 Fluid-structure interaction of a three-dimensional membranous structure

To verify the applicability of the proposed preconditioners, fluid-structure interaction of a
three-dimensional membranous structure is also computed. Turbulence is not considered here for
the priority is to evaluate the preconditioner performance. Fluid-structure interaction of a typical
saddle membrane structure is computed using the proposed simultaneous method and
preconditioners. The model and related parameters in computation are referred to in Sun and Gu
(2014). Here the membranous structure rise f is taken as the dimensionless length, and (time)
average inlet wind velocity is taken as the dimensionless velocity. When relative residuals

o — Ax®

Table 6 shows the average GMRES iteration numbers and relative residual varying with mesh
sizes for different parameter k (® =0 , time t=200s), for the computation of the three-dimensional
case when employing the modified FSI preconditioner.

| < 107°|bj|,, the iteration stops and the result is assumed to converge.



364 Fang-jin Sun and Ming Gu

=185, 52 17124 -13537 -14255 -127.45 -102.12 -9524 -75.6% -3561 -3242 -1858 527 2038 -175.47 -15824 -13567 -12125-10874 -9235 -B014 -59.55 -5435 -3461 -20.32 315 18682

(a) t=53.6s (b) t=53.9s

=185, 52 -17122 -13537 -14256 -127.45 -102.12 -3524 -75.5% -5661 -3247 -1858 527 2038

-197.156 -18547 -159.53 -15241 -137.52 -104.8] -92.38 -7849 -57.33 -3562 -19.39 635 2263

(c) t=54.2s (d) t=54.6s

Fig. 2 Instantaneous pressure distribution at various time (| =0, ® =0)

Table 6 Average GMRES iteration numbers varying with mesh sizes for the modified FSI preconditioner

Total mesh Parameter K

( 10 thousand ) 0.5 1 -1 8
27 115 115 115 115
30 128 128 128 128
32 141 141 141 141
35 163 163 163 163

Through the analysis of data from Table 6, it can be concluded that, for different values of
parameter k, average GMRES iteration numbers for various mesh sizes are not affected. In
three-dimensional case, with the modified FSI preconditioner, the average iteration numbers
increase as the mesh refinement increases, which indicates that the modified preconditioner is
highly sensitive to the mesh refinement. The conclusion is consistent with that of the
two-dimensional case. The preconditioners proposed is also validated in three-dimensional cases.

To illustrate the accuracy and efficiency of the preconditioner in three-dimensional FSI
computation, comparison is made for GMRES relative residuals Rgyres and computation time
Tswres (hours) for various mesh numbers among the case without preconditioner, the initial FSI
preconditioner, and modified FSI preconditioner, where k=1 , ®=0. The results are shown in
Table 7.
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Table 7 Comparison of GMRES relative residuals and computation time (hour) for various mesh numbers
using different preconditioners (Hours)

Total without preconditioner Initial preconditioner Modified preconditioner
Mesh

(10000) GMRES TGMRES I:\)GMRES TGMRES RGMRES TGMRES
27 6.235x 10° 102 3.356x 10° 85 3.876x10° 68

30 5.234x10° 131 2.947x10° 94 1.324x10° 76

32 4315x 107 154 2.245% 10° 108 7.264x10° 89

35 4198x10° 182 1.966x 10° 127 3.214x10° 102

It can be concluded from Table 7 that,

(1) Without preconditioners, though relative residuals diminish gradually with the increase of
mesh refinement (i.e., computation accuracy improving as mesh refines), computation time
increase greatly. It is found that when mesh accuracy increases about 20%, the computation
accuracy only improves about 3%, with the stability not affected, while the computation time
increases about 30%. This shows that, without preconditioners, computation accuracy and stability
is little affected as mesh refines.

(2) In the case of the initial FSI preconditioner, compared with the case without preconditioners,
it saves about 30% computation time for the same computation accuracy. When the mesh accuracy
improves about 20%, computation accuracy improves about 15% on average, and computation
time increases about 20%. It is indicated that in the case of the initial FSI preconditioner,
computation accuracy and efficiency are both greatly improved. On the other hand, as the mesh is
refined, the relative residuals diminish not so obviously, which suggests that for the initial FSI
preconditioner, the computation accuracy does not show a high dependency on mesh refinement,
consistent with that of the two-dimensional case.

(3) In the case of the modified FSI preconditioner, it can be found that when mesh accuracy
improves, GMRES relative residuals diminish greatly. When mesh accuracy improves about 20%,
computation accuracy improves about 55% on average, and computation time only increases about
15%. It is indicated that for the modified FSI preconditioner, computation accuracy shows a fairly
high dependency on mesh refinement, which is also verified in the two-dimensional case. It is
verified once again the priority of the modified FSI preconditioner.

Since the time step is also among the key factors affecting the accuracy and efficiency in a
fluid-structure interaction computation, the time-step effects of the modified FSI preconditioning
matrix were analyzed. The effects of the Lagrange multiplier on the computation results were
also analyzed. Table 8 gives the variation of GMRES iteration numbers Ngyzes and relative
residuals Rgyres With varying time steps and Lagrange multiplier.

It can be concluded from Table 8 that, the GMRES iterative numbers increase as time step
increases, and decrease as the Lagrange multiplier increases. The GMRES residuals increase as the
time step increases, but vary little as the Lagrange multiplier increases. This shows that the
computation accuracy and efficiency become higher as the time step becomes smaller. Lagrange
multiplier affects GMRES iterative numbers whereas affects residuals little. It can be concluded
that time step is a decisive factor, whereas Lagrange multiplier is a much less influential factor.
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Table 8 Variation of GMRES iteration numbers and relative residuals with varying time steps and Lagrange

multiplier
timestep Dt 0.025 0.050 0.075 0.100
NGMRES RGMRES NGMRES NGMRES R N R
GMRES GMRES GMRES GMRES
2 28.3 6.231x 10° 30.4 7.452%x10°  36.9 3.657 X 10° 41.2 6.543 % 10°
0.0

®%=06 26.1 4342 10° 28.6 6.265X 10°  33.8 2.053% 10° 36.5 5.453 X 10°
®2%:=15 24.6 3.453% 10° 26.4 4341x10° 289 1.034x 10° 326 4.237%x10°
®?=150 19.3 1.984 % 10° 215 3.678x10° 234 8.765% 10° 26.7 3.235%x 10°

Thus, the dimensionless parameters involved in Lagrange multiplier can be chosen just for the
sake of convenience of computation.

7. Conclusions

A preconditioning technique, for a simultaneous solution to wind-membrane interaction, is
presented. In the simultaneous equations, a linear elastic model was employed to deal with the
fluid-structure data transfer at the interface. A Lagrange multiplier was introduced to impose the
specified boundary conditions at the interface. An initial linear elastic model preconditioner and
modified one were derived by treating the linearized elastic model equation as a saddle point
problem. The FSI preconditioner for the simultaneous equations was then derived based on the
initial and modified linear elastic model preconditioner. The wind-membrane interaction, for two-
and three- dimensional membrane structures, were computed using the proposed preconditioners.
The main conclusions are as follows:

e The value of k in the preconditioner has no effect on the average GMRES iteration numbers
for various mesh sizes, whereas the value of k in the preconditioner affects the GMRES relative
residuals. It is found that it was appropriate when k falls between [-1, 10] as real, and it is more
accurate if k >8.
e The computational efficiency with preconditioners is greatly improved compared with the
case without a preconditioning matrix. The initial FSI preconditioning matrix dependency on
mesh accuracy is lower than that of the modified FSI preconditioning matrix, which indicates
that the priority of the modified FSI preconditioning matrix is computational accuracy. For the
modified FSI preconditioning matrix, the computation residuals are much less than that of the
initial one, and computation time also decreases. This is due to that, for the modified FSI
preconditioning matrix, linear sub-matrix computations are diminished, resulting in the
improvement of accuracy and efficiency.

e The computational accuracy and efficiency become higher as the time step becomes smaller.

The Lagrange multiplier affects the GMRES iterative times, buts little affects the residuals. It
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can be concluded that time step is a decisive factor whereas Lagrange multiplier is a much less
influential factor. Thus, the dimensionless parameters involved in Lagrange multiplier can be
chosen just for the sake of convenience of computation.

o Inflow turbulence is necessary considering the precise definition of wind loads. However, the
proposed preconditioners and results in the work here provide an effective tool for the
application of a simultaneous solution to wind-membrane interaction, laying a solid foundation
for the introduction of a turbulence model in future work.
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