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Abstract.  This work presents a simple hyperbolic shear deformation theory for analysis of functionally 
graded plates resting on elastic foundation. The proposed model contains fewer number of unknowns and 
equations of motion than the first-order shear deformation model, but the transverse shear stresses account 
for a hyperbolic variation and respect the tangential stress-free boundary conditions on the plate boundary 
surface without introducing shear correction factors. Equations of motion are obtained from Hamilton’s 
principle. The Navier-type analytical solutions for simply-supported plates are compared with the existing 
solutions to demonstrate the accuracy of the proposed theory. 
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1. Introduction 
 

Functionally graded material is a class of heterogeneous composite material that presents a 

continuous distribution of mechanical characteristics from one point to another. This material is 

obtained by mixing two or more materials in a certain volume ratio (for example, metal and 

ceramic). Classical composites structures such as fiber reinforced plastics (FRPs) suffer from 

discontinuity of material characteristics at the interface of the layers and constituents. Since the 

concept of FGMs has been proposed in 1980s, these novel types of materials have been utilized in 

many engineering application fields, such as aircrafts, space vehicles, defense industries, 

electronics and biomedical sectors, to eliminate stress concentrations, to relax residual stresses, 

and to enhance bonding strength. Due to the wide material variations and applications of FGMs, it 

is important to investigate the behaviors of FGM structures to mechanical and other loadings 

(Bounouara et al. 2016, Hamidi et al. 2015, Bakora and Tounsi 2015, Ait Yahia et al. 2015, Arefi 

2015, Ebrahimi and Dashti 2015, Hadji et al. 2015, Hadji and Adda Bedia 2015, Sallai et al. 2015, 
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Larbi Chaht et al. 2015, Darılmaz 2015, Akbaş 2015, Bouchafa et al. 2015, Meradjah et al. 2015, 

Yaghoobi et al. 2014, Bousahla et al. 2014, Zidi et al. 2014, Fekrar et al. 2014, Tounsi et al. 2013, 

Bouderba et al. 2013, Bourada et al. 2012). 

Several works have been carried out to investigate the vibration of FG graded plates. Vel and 

Batra (2004) proposed a 3D exact solution for free and forced vibrations of simply supported FG 

rectangular plates. By employing a global collocation technique, the first and the cubic shear 

deformation plate theories, Ferreira et al. (2006), studied the free vibrations of FG plates. Qian et 

al. (2004) examined bending deformations, and free and forced vibrations of a thick FG graded 

elastic plate by utilizing a higher order shear and normal deformation plate model. Matsunaga 

(2008) investigated free vibration and buckling behaviors of FG plates by considering the 

influences of transverse shear and normal deformations and rotatory inertia. Lu et al. (2009) 

analyzed the free vibration response of FG thick plates supported by elastic foundation using a 

three-dimensional elasticity. By utilizing the element-free kp-Ritz method, Zhao et al. (2009) 

discussed the free vibration of FG plates. Chen et al. (2009) studied the vibration and buckling of 

FG plates based on a higher-order deformation theory. Malekzadeh (2009) examined the free 

vibration behavior of thick FG plates on elastic foundation using the three dimensional elasticity 

theory. Ait Atmane et al. (2010) studied the free vibration behavior of simply supported FG plates 

resting on a Winkler–Pasternak elastic foundation by proposing a new higher shear deformation 

theory. Using a four variable refined plate theory, Benachour et al. (2011) discussed the free 

vibration response of FG plates with arbitrary gradient. Neves et al. (2012ab) proposed a 

trigonometric shear deformation model and a hybrid quasi-3D hyperbolic shear deformation 

theory for bending and free vibration analysis of FG plates. Akavci (2014) presented the free 

vibration analysis of thick FG plates supported on two-parameter elastic foundation based on a 

higher order hyperbolic shear deformation theory. Belabed et al. (2014) developed an efficient and 

simple higher order shear and normal deformation theory for FG plates. Hebali et al. (2014) 

considered the static and dynamic analysis of FG thick plates with a new quasi-3D hyperbolic 

shear deformation theory. Ait Amar Meziane et al. (2014) presented an efficient and simple refined 

theory for buckling and free vibration of exponentially graded sandwich plates under various 

boundary conditions. Mahi et al. (2015) proposed a new hyperbolic shear deformation theory for 

bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated 

composite plates. Ait Atmane et al. (2015) presented a variationally consistent shear deformation 

theory for free vibration analysis of thick FG beams having porosities. Bourada et al. (2015) 

investigated the bending and vibration behaviors of FG thick beams using a new simple shear and 

normal deformations theory. Nguyen et al. (2015) presented a refined higher-order shear 

deformation theory for bending, vibration and buckling analysis of FG sandwich plates. Pradhan 

and Chakraverty (2015) discussed the free vibration behavior of FG thin elliptic plates with 

various edge supports. Attia et al. (2015) investigated the free vibration response of FG plates with 

temperature-dependent properties using various four variable refined plate theories. Belkorissat et 

al. (2015) discussed the vibration properties of FG nanoplates using a new nonlocal refined four 

variable theory. Bennai et al. (2015) presented a new higher-order shear and normal deformation 

theory for FG sandwich beams. Kar and Panda (2015) studied the nonlinear flexural vibration of 

shear deformable FG spherical shell panel. Bennoun et al. (2016) proposed a novel five variable 

refined plate theory for vibration analysis of FG sandwich plates. Ait Atmane et al. (2016) studied 

the effect of thickness stretching and porosity on mechanical response of a FG beams resting on 

elastic foundations. 

The purpose of this work to examine the efficiency of an improved version of a hyperbolic 
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shear deformation theory developed by Mahi et al. (2015) for free vibration analysis of FG plates. 

By making a further supposition to the conventional hyperbolic shear deformation theory (Mahi et 

al. 2015), the present theory contains only four unknowns and its governing equations are 

therefore reduced. Thus, the novelty of this paper is the use of four variable refined plate theory for 

free vibration analysis of FG plates, resulting in considerably lower computational effort when 

compared with the other higher-order theories reported in the literature having more number of 

unknown functions. Equations of motion are obtained from Hamilton’s principle. Navier solution 

is utilized to determine the closed form solutions for simply supported FG plates. Comparison 

studies are established to check the accuracy of the present results. 

 

 

2. Mathematical formulations 
 

In the current work, a FG simply supported rectangular plate with length, width and uniform 

thickness equal to a , b  and h  respectively is considered. The geometry of the plate and 

coordinate system are illustrated in Fig. 1. The material characteristics of FG plate are considered 

to vary continuously within the thickness of the plate in according to the power law distribution as 

follows 

 
p

mcm
h

z
PPPzP 










2

1
)(                         (1) 

where P  presents the effective material characteristic such as Young’s modulus E  and mass 

density  , mP  and cP  presents the property of the top and the bottom faces of the plate, 

respectively, and p  is the power law exponent. The Poisson’s ratio   is supposed to be 

constant. 

 

 

 

Fig. 1 Schematic representation of a rectangular FG plate resting on elastic foundation 
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2.1 Kinematics and strains 
 

In this investigation, further simplifying supposition are made to the conventional higher shear 

deformation theory (HSDT) so that the number of unknowns is reduced. The displacement field of 

the conventional HSDT is expressed by (Mahi et al. 2015) 

),,()(Ψ+),,(=),,,(
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where 0u ; 0v ; 0w , x , y  are five unknown displacements of the mid-plane of the plate, 

)(z  denotes shape function representing the variation of the transverse shear strains and stresses 

within the thickness. By dividing the deflection 0w  into bending and shear parts (i.e., 

sb www 0 ) and making further assumptions given by xyxwbx  /),(  and 

yyxwsy  /),( , the displacement field of the novel refined theory can be expressed in a 

simpler form as 
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where the shape function )(zf  is given as 
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where 
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and 
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zdf
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For elastic and isotropic FGMs, the constitutive relations can be expressed as 
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where ( x , y , xy , yz , xz ) and ( x , y , xy , yz , xz ) are the stress and strain 

components, respectively. Using the material properties defined in Eq. (1), stiffness coefficients, 

ijC , can be written as 
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2.2 Equations of motion 
 
Hamilton’s principle is herein employed to determine the equations of motion (Ould Larbi et al. 

2013, Draiche et al. 2014, Tagrara et al. 2015) 
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where U   is the variation of strain energy; V   is the variation of work done; and K   is the 

variation of kinetic energy. 

The variation of strain energy of the plate is expressed by 
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where A  is the top surface and the stress resultants N , M , and S  are defined by 
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The variation of the potential energy of elastic foundation can be calculated by 

dAwwfV sb

A

e )(                                (12) 

where ef  is the density of reaction force of foundation. For the Pasternak foundation model 

(Tebboune et al. 2015; Besseghier et al. 2015) 

2

2

22

2

1
y

w
K

x

w
KwKf SSWe









                      (13) 

where WK  is the modulus of subgrade reaction (elastic coefficient of the foundation) and 1SK  

and 2SK  are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is 

homogeneous and isotropic, we will get SSS KKK  21  . If the shear layer foundation 

stiffness is neglected, Pasternak foundation becomes a Winkler foundation. 

The variation of kinetic energy of the plate can be written as 

 

   

dA
y

w

y

w

y

w

y

w

x

w

x

w

x

w

x

w
J

y

w

y

w

x

w

x

w
K

y

w

y

w

x

w

x

w
I

v
y

w

y

w
vu

x

w

x

w
uJ

v
y

w

y

w
vu

x

w

x

w
uI

wwwwvvuuI

dVzwwvvuuK

bssbbssb

ssssbbbb

ssss

bbbb

A

sbsb

V
































































































































































































    

    

  

  

 )(     

2

22

00001

00001

00000





















       (14) 

where dot-superscript convention indicates the differentiation with respect to the time variable t ; 

)(z  is the mass density given by Eq. (1); and ( 0I , 
1I , 

1J , 
2I , 

2J , 
2K ) are mass inertias 

defined as 
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Substituting Eqs. (10), (12), and (14) into Eq. (9), integrating by parts, and collecting the 

coefficients of 0 u , 0 v , bw   and sw  ; the following equations of motion are obtained 
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where 
22222 // yx   is the Laplacian operator in two-dimensional Cartesian 

coordinate system. 

Substituting Eq. (5) into Eq. (7) and the subsequent results into Eqs. (11), the stress resultants are 

obtained in terms of strains as following compact form 
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and stiffness components are given as 
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Introducing Eq. (17) into Eq. (16), the equations of motion can be expressed in terms of 

displacements ( 0 u , 0 v , bw  , sw  ) and the appropriate equations take the form 
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where ijd , ijld  and ijlmd  are the following differential operators 
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2.3 Analytical solution for simply-supported FG plates 

 
Based on Navier technique, the following expansions of generalized displacements are 

considered to automatically respect the simply supported boundary conditions 
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where am /   and bn /  ,   is the frequency of free vibration of the plate, 1i  
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the imaginary unit. 

Substituting Eqs. (22) into Eq. (20) and collecting the displacements and acceleration for any 

values of m  and n , the following problem is obtained 
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3. Numerical examples and discussions  
 

In this section various numerical examples are examined to check the accuracy of the present 

formulation in predicting the free vibration behaviors of simply supported FG plates resting on 

elastic foundation. Two types of FG plates of Al/Al2O3 and Al/ZrO2 are employed in this 

investigation. The material characteristics of FG plates are presented in Table 1. For convenience, 

the following non-dimensional parameters are employed 
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In Table 2, non-dimensional fundamental frequencies of Al/ZrO2 FG square plates are 
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examined for three different power law exponent and compared with 3D exact solution of Vel and 

Batra (2004), quasi 3D sinusoidal and hyperbolic shear deformation theories of Neves et al. 

(2012a,b) and 2D higher order shear deformation models of Matsunaga (2008) and 

Hosseini-Hashemi et al. (2011) and Akavci (2014). It can be demonstrated from the table that the 

results of the present formulation agree with the results of other 2D and 3D deformation theories.   

The non-dimensional natural frequencies computed by the proposed are compared in Table 3 

with the 3D theory of Vel and Batra (2004) and 2D higher order shear deformation theories of 

Matsunaga (2008) and Akavci (2014). It can be observed from the table that a good agreement is 

achieved between the obtained results and those reported by other theories.  

To check the higher order modes, the first eight frequencies of the Al/Al2O3 FG square and 

rectangular plates are calculated and illustrated in Tables 4. Table 4 shows a comparison between 

the first eight non-dimensional natural frequencies of FG square plates computed using the present 

theory and those given by Matsunaga (2008) and by Akavci (2014). It can be seen from Table 4 

that for both thin and thick plates, a good agreement between the results is demonstrated. 

 

 
Table 1 Material properties employed in the FG plates 

Material Properties 

Young’s modulus (GPa) Poisson’s ratio Mass density kg/m
3
 

Aluminium (Al) 70 0.3 2702 

Alumina (Al2O3) 380 0.3 3800 

Zirconia (ZrO2) 200 0.3 5700 

 

 

Table 2 Comparison of non dimensional frequencies mm Eh /    of Al/ZrO2 of FG square plates 

( 5/ ha , 0 sw kk ) 

Source 2p  3p  5p  

Vel and Batra (2004) 0.2197 0.2211 0.2225 

Neves et al. (2012a) ( 0z ) 0.2189 0.2202 0.2215 

Neves et al. (2012a) ( 0z ) 0.2198 0.2212 0.2225 

Neves et al. (2012b) ( 0z ) 0.2191 0.2205 0.2220 

Neves et al. (2012b) ( 0z ) 0.2201 0.2216 0.2230 

Matsunaga (2008) 0.2264 0.2270 0.2280 

Hosseini-Hashemi et al. (2011) 0.2264 0.2276 0.2291 

Akavci (2014) 0.2263 0.2268 0.2277 

Present study 0.2258 0.2266 0.2276 
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Table 3 Comparison of non dimensional frequencies mm E
h

a
/~

2

   of Al/ZrO2 of FG square plates 

( 1 nm , 0 sw kk ) 

Mode 

no. 

Source p=0
 (a) 

p=1 a/h =5 

10/ ha
 

10/ ha
 

5/ ha
 

10/ ha
 

20/ ha
 

2p  3p  5p  

 
1 

Vel and Batra 
(2004) 

4.6582 5.7769 5.4806 5.9609 6.1076 5.4923 5.5285 5.5632 

Matsunaga 

(2008) 

4.6582 5.7769 5.7123 6.1932 6.3390 5.6599 5.6757 5.7020 

Akavci (2014) 4.6569 5.7754 5.7110 6.1924 6.3388 5.6593 5.6718 5.6941 

Present study 4.6274 5.7705 5.6955 6.1876 6.3373 5.6475 5.6640 5.6885 

 

2 

Vel and Batra 

(2004) 

8.7132 27.554 14.558 29.123 58.250 14.278 14.150 14.026 

Matsunaga 
(2008) 

8.7132 27.554 15.339 30.685 61.374 14.970 14.742 14.476 

Akavci (2014) 8.7132 27.554 15.341 30.686 61.374 14.972 14.743 14.477 

Present study 8.7130 27.554 15.344 30.686 61.375 14.978 14.750 14.483 

 

3 

Vel and Batra 

(2004) 

14.463 46.503 24.381 49.013 98.145 23.909 23.696 23.494 

Matsunaga 

(2008) 

14.463 46.503 25.776 51.795 103.71 25.140 24.741 24.278 

Akavci (2014) 14.728 46.574 25.926 51.866 103.74 25.296 24.909 24.461 

Present study 14.728 46.574 25.924 51.866 103.74 25.296 24.908 24.460 

 
4 

Vel and Batra 
(2004) 

24.830 201.34 57.620 212.22 828.78 54.685 53.179 52.068 

Matsunaga 

(2008) 

24.830 201.34 61.509 227.29 888.60 57.576 55.237 53.288 

Akavci (2014) 25.427 203.98 62.886 231.52 904.25 58.993 56.373 54.067 

Present study 25.347 202.92 62.635 230.40 899.60 59.135 56.805 54.615 

(a) 
cc E

h

a
/~

2

   

 

 

Table 5 presents non-dimensional fundamental frequencies of Al/ZrO2 FG rectangular plates 

resting on elastic foundation. The results of the present formulation are compared with the results 

of the first order shear deformation theory (FSDT) of Hosseini-Hashemi et al. (2010) and higher 

order shear deformation theories (HSDTs) of Hasani Baferani et al. (2011) and Akavci (2014). It 

can be observed from the Table 5 that, the results of present formulation with only four unknowns 

are in good agreement with the results of other theories with five unknowns. 

Table 6 illustrated non-dimensional fundamental frequencies of Al/Al2O3 FG plates resting on 

elastic foundation. The results are obtained for different aspect ratios and compared with those 

obtained by Hasani Baferani et al. (2011) and Akavci (2014) by employing HSDTs and 

Hosseini-Hashemi et al. (2010) by utilizing FSDT. It can be observed that, the proposed theory 

agrees well with the other shear deformation theories. 

Table 7 presents the comparison of non-dimensional fundamental frequencies of Al/Al2O3 FG 

plates resting on elastic foundation with those reported by Akavci (2014) using HSDT. It can be 

confirmed from the Table 7 that, the results of the proposed theory are in good agreement with the 

results of Akavci (2014). 
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Table 4 The first eight non-dimensional natural frequencies cc Eh /    of Al/Al2O3 of FG square 

plates ( 0 sw kk ) 

bh /  p  Source Mode no 

1 2 3 4 5 6 7 8 

 

 

 
 

 

 
 

 

 
 

0.1 

 

 

0 

Mode 1, 0, 1 1, 1, 1 2,0 , 1 1, 2, 1 1, 0, 2 2, 2, 1 3, 0, 1 1, 3, 1 

Matsunaga 

(2008) 

0.02936 0.0577 0.1120 0.1381 0.1948 0.2121 0.2357 0.2587 

Akavci (2014) 0.02936 0.0577 0.1119 0.1379 0.1948 0.2120 0.2355 0.2585 

Present study 0.02934 0.0577 0.1118 0.1377 0.1948 0.2114 0.2347 0.2576 

 

0.5 

Matsunaga 

(2008) 

0.0249 0.0491 0.0956 0.1180 0.1749 0.1819 0.2022 0.2222 

Akavci (2014) 0.0249 0.0490 0.0954 0.1176 0.1749 0.1813 0.2016 0.2214 

Present study 0.02489 0.04901 0.09524 0.1174 0.1749 0.1808 0.2010 0.2207 

 

1 

Matsunaga 

(2008) 

0.0224 0.0442 0.0861 0.1063 0.1620 0.1640 0.1824 0.2004 

Akavci (2014) 0.0224 0.0442 0.0860 0.1061 0.1620 0.1636 0.1819 0.1999 

Present study 0.02244 0.04420 0.08591 0.1059 0.1621 0.1632 0.1814 0.1993 

 

4 

Matsunaga 

(2008) 

0.0194 0.0381 0.0735 0.0904 0.1308 0.1383 0.1534 0.1681 

Akavci (2014) 0.0194 0.0380 0.0734 0.0902 0.1308 0.1379 0.1529 0.1677 

Present study 0.01941 0.03810 0.07352 0.09037 0.1309 0.1381 0.1532 0.1679 

 

10 

Matsunaga 

(2008) 

0.0186 0.0364 0.0699 0.0858 0.1153 0.1306 0.1446 0.1583 

Akavci (2014) 0.0186 0.0364 0.0699 0.0858 0.1153 0.1305 0.1445 0.1582 

Present study 0.01860 0.03639 0.06994 0.08582 0.1153 0.1304 0.1445 0.1581 

 Mode 1,0,1 1,1,1 2,0,1 1,0,2 1,2,1 1,1,2 1,0,3 2,2,1 

 

 
 

 

 
 

 

 
 

0.2 

 

0 

Matsunaga 

(2008) 

0.1120 0.2121 0.3874 0.3897 0.4658 0.5511 0.6566 0.6753 

Akavci (2014) 0.1119 0.2120 0.3872 0.3897 0.4657 0.5510 0.6587 0.6759 

Present study 0.1118 0.2114 0.3851 0.3896 0.4626 0.5511 0.6586 0.6697 

 

0.5 

Matsunaga 

(2008) 

0.0956 0.1819 0.3343 0.3497 0.4040 0.4941 0.5878 0.5891 

Akavci (2014) 0.0954 0.1813 0.3330 0.3495 0.4015 0.4940 0.5905 0.5856 

Present study 0.09524 0.1808 0.3314 0.3497 0.3990 0.4945 0.5903 0.5809 

 

1 

Matsunaga 

(2008) 

0.0861 0.1640 0.3020 0.3236 0.3644 0.4567 0.5325 0.5444 

Akavci (2014) 0.0860 0.1636 0.3009 0.3236 0.3629 0.4569 0.5461 0.5302 

Present study 0.08591 0.1632 0.2996 0.3241 0.3611 0.4585 0.5461 0.5258 

 

4 

Matsunaga 

(2008) 

0.0735 0.1383 0.2502 0.2607 0.3000 0.3668 0.4325 0.4362 

Akavci (2014) 0.0734 0.1379 0.2493 0.2606 0.2987 0.3668 0.4381 0.4304 

Present study 0.07352 0.1381 0.2496 0.2619 0.2990 0.3703 0.4383 0.4303 

 

10 

Matsunaga 

(2008) 

0.0699 0.1306 0.2300 0.2337 0.2790 0.3243 0.3855 0.3981 

Akavci (2014) 0.0699 0.1305 0.2337 0.2300 0.2792 0.3245 0.3878 0.3991 

Present study 0.06994 0.1304 0.2333 0.2306 0.2785 0.3263 0.3877 0.3971 
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Table 5 Comparison of non dimensional frequencies cc Eh /    of Al/ZrO2 of rectangular FG plates 

( 5.1/ ba ) 

(
wk ,

sk ) ha /  p  Source 

Hasani Baferani et al. 

(2011) 

Hosseini-Hashemi et al. 

(2010) 

Akavci (2014) Present study 

 

 

 

 

 

 

(0, 0) 

 

0.05 

0 –   0.02392 0.02393 0.02392 

0.25 – 0.02269 0.02309 0.02308 

1 – 0.02156 0.02202 0.02201 

5 – 0.02180 0.02244 0.02244 

 

0.1 

0 – 0.09188 0.09203 0.09191 

0.25 – 0.08603 0.08895 0.08884 

1 – 0.08155 0.08489 0.08479 

5 – 0.08171 0.08576 0.08573 

 

0.2 

0 – 0.32284 0.32471 0.32328 

0.25 – 0.31003 0.31531 0.31396 

1 – 0.29399 0.30152 0.30026 

5 – 0.29099 0.31860 0.29710 

 

 

 

 

 

 

(250,25) 

 

0.05 

0 0.03421 0.03421 0.03422 0.03421 

0.25 0.03321 0.03285 0.03312 0.03311 

1 0.03249 0.03184 0.03213 0.03213 

5 0.03314 0.03235 0.03277 0.03277 

 

0.1 

0 0.13365 0.13365 0.13375 0.13366 

0.25 0.13004 0.12771 0.12959 0.12952 

1 0.12749 0.12381 0.12585 0.12578 

5 0.12950 0.12533 0.12778 0.12776 

 

0.2 

0 0.43246 0.49945 0.50044 0.49967 

0.25 0.42868 0.48327 0.48594 0.48522 

1 0.46406 0.46997 0.47298 0.47233 

5 0.44824 0.47400 0.47637 0.47610 

 

 

The variation of non-dimensional fundamental frequencies in terms of the power law exponent 

and side-to-thickness ratio is presented in Fig. 2. It can be observed from the figure that the 

increase of the power law exponent leads to a decrease in the fundamental frequency. It is due to 

the fact that a higher value of p  corresponds to lower value of volume fraction of the ceramic 

phase, and thus makes the plates become the softer ones. Fig. 2 demonstrates also that with a 

decrease of the side-to-thickness ratio, the shear deformation influence becomes very effective. 

Fig. 3 presents the effect of the elastic foundation parameters on the variations of 

non-dimensional natural frequencies of simply supported Al/Al2O3 FG square plates versus the 

power law exponent. It can be seen that the presence of elastic foundation makes the plate 

becomes stiffer. It can be confirmed from the results that, increasing value of Winkler and 

Pasternak parameters amplifies the natural frequency. The results show also, Pasternak parameter 

of foundation has more important impact than Winkler parameter on the fundamental frequency of 

plate. 

The variations of non-dimensional fundamental frequency of simply supported Al/Al2O3 FG 

square plate are shown in Figs. 4(a) and 4(b) with respect to Winkler parameter of foundation. It is 

observed from the results that, increasing the power law exponent reduces the fundamental 

frequency. It is also concluded from results that, increasing value of power law exponent increases 

the impact of elastic foundation on natural frequency. 
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Table 6 Comparison of non dimensional frequencies cc Eh /    of Al/Al2O3 of rectangular FG 

plates ( 15.0/ ah ) 

(
wk ,

sk ) ba /  p  Source 

Hasani Baferani et al. 

(2011) 

Hosseini-Hashemi et al. 

(2010) 

Akavci 

(2014) 

Present study 

 

 

 

 

 

(0, 0) 

 

0.5 

0 – 0.08006 0.08018 0.08009 

0.25 – 0.07320 0.07335 0.07327 

1 – 0.06335 0.06148 0.06142 

5 – 0.05379 0.05215 0.05221 

 

1 

0 – 0.12480 0.12508 0.12486 

0.25 – 0.11354 0.11457 0.11439 

1 – 0.09644 0.09613 0.09599 

5 – 0.08027 0.08089 0.08102 

 

2 

0 – 0.28513 0.28659 0.28547 

0.25 – 0.25555 0.26356 0.26260 

1 – 0.20592 0.22189 0.22115 

5 – 0.16315 0.18232 0.18277 

 

 

 

 

 

 

(100,10) 

 

0.5 

0 0.12869 0.12870 0.12876 0.12871 

0.25 0.11885 0.11842 0.11847 0.11842 

1 0.10498 0.10519 0.10388 0.10384 

5 0.09227 0.09223 0.09098 0.09101 

 

1 

0 0.17020 0.17020 0.17039 0.17024 

0.25 0.15734 0.15599 0.15665 0.15652 

1 0.13854 0.13652 0.13592 0.13583 

5 0.12077 0.11786 0.11774 0.11782 

 

2 

0 0.31449 0.32768 0.32889 0.32796 

0.25 0.30484 0.29612 0.30297 0.30190 

1 0.26966 0.24674 0.25901 0.25841 

5 0.22932 0.20359 0.21785 0.21819 
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Fig. 2 Variation of non-dimensional fundamental frequency cc E
h

a
/

~ 2

   of Al/Al2O3 FG square 

plates with power law exponent 
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Table 7 Comparison of non dimensional frequencies ~  of Al/Al2O3 of rectangular FG plates 

(
wk ,

sk )(a) ba /
 

ha /
 

p  

0 1 5 10 

Akavci 
(2014) 

Present 
 

Akavci 
(2014) 

Present 
 

Akavci 
(2014) 

Present 
 

Akavci 
(2014) 

Present 

 

 

 
 

 

 
(0,0) 

 

 

0.5 

5 6.7771 6.7640 5.2122 5.2035 4.3763 4.3839 4.2153 4.2149 

10 7.1794 7.1758 5.4918 5.4892 4.6986 4.7014 4.5432 4.5434 

20 7.2948 7.2938 5.5712 5.5704 4.7943 4.7950 4.6411 4.6412 

 

 
1 

5 10.4133 10.382 8.0368 8.0165 6.6705 6.6855 6.4099 6.4075 

10 11.3468 11.337 8.6899 8.6836 7.4033 7.4100 7.1521 7.1522 

20 11.6338 11.631 8.8879 8.8864 7.6393 7.6413 7.3934 7.3935 

 
 

2 

5 22.8734 22.728 17.8289 17.732 14.3625 14.394 13.7120 13.678 

10 27.1085 27.056 20.8487 20.814 17.5051 17.536 16.8613 16.860 

20 28.7174 28.703 21.9670 21.957 18.7946 18.806 18.1727 18.174 

 

 
 

 

 
 

(0, 100) 

 

 
0.5 

5 11.1237 11.116 11.8489 10.846 10.9925 10.994 11.0818 11.081 

10 11.4503 11.448 11.0940 11.093 11.2538 11.254 11.3313 11.331 

20 11.5474 11.546 11.1660 11.166 11.3343 11.334 11.4093 11.409 

 
 

1 

5 15.2095 15.190 14.3923 14.384 14.3071 14.310 14.3829 14.381 

10 15.9813 15.974 14.9443 14.941 14.8693 14.872 14.9193 14.919 

20 16.2285 16.226 15.1189 15.118 15.0607 15.062 15.1056 15.106 

 

 
2 

5 28.6623 28.558 25.6912 25.638 24.3625 24.368 24.3109 24.294 

10 32.3444 32.300 28.2316 28.208 26.7223 26.738 26.5586 26.556 

20 33.8076 33.795 29.2272 29.220 27.7770 27.784 27.5919 27.592 

 

 

 

 
 

 

(100, 0) 

 

0.5 

5 7.2276 7.2150 5.8746 5.8670 5.2360 5.2420 5.1288 5.1285 

10 7.6153 7.6120 6.1393 6.1370 5.5276 5.5298 5.4199 5.4200 

20 7.7272 7.7262 6.2152 6.2146 5.6156 5.6162 5.5087 5.5088 

 

 
1 

5 10.7082 10.678 8.4748 8.4560 7.2560 7.2690 7.0373 7.0350 

10 11.6262 11.617 9.1107 9.1048 7.9520 7.9580 7.7356 7.7356 

20 11.9909 11.906 9.3044 9.3024 8.1789 8.1808 7.9658 7.9658 

 
 

2 

5 23.0053 22.862 18.0231 17.927 14.6363 14.668 14.0098 13.977 

10 27.2246 27.172 21.0241 20.990 17.7396 17.769 17.1126 17.111 

20 28.8295 28.815 22.1378 22.128 19.0187 19.030 18.4115 18.412 

 

 
 

 

 
 

(100, 100) 

 

 
0.5 

5 11.4036 11.396 11.1817 11.178 11.3598 11.360 11.4581 11.458 

10 11.7285 11.726 11.4284 11.427 11.6243 11.625 11.7103 11.710 

20 11.8253 11.825 11.5008 11.500 11.7054 11.706 11.7888 11.789 

 
 

1 

5 15.4127 15.394 14.6407 14.632 14.5862 14.588 14.6702 14.668 

10 16.1808 16.174 15.1927 15.189 15.1498 15.152 15.2075 15.207 

20 16.4271 16.425 15.3674 15.366 15.3414 15.342 15.3938 15.394 

 

 
2 

5 28.7674 28.664 25.8251 25.772 24.5206 24.526 24.4759 24.458 

10 32.4417 32.398 28.3613 28.338 26.8763 26.892 26.7186 26.716 

20 33.9029 33.890 29.3557 29.350 27.9292 27.935 27.7497 27.749 

(a)

mssmww DaKkDaKk /  ,/ 24   where )1(12/ 23  hED mm
 

343



 

 

 

 

 

 

Abdelouahed Tounsi et al. 

 

 

0 10 20 30 40 50 60 70 80 90 100

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

k
w
 =1000, k

s
=0

 k
w
=100, k

s
=0

 k
w
=10, k

s
=0

N
on

di
m

en
si

on
al

 n
at

ur
al

 fr
eq

ue
nc

ie
s

Power law exponent (p)

 k
w
=0, k

s
=0

  k
w
=10, k

s
=10

 k
w
=100, k

s
=10

 k
w
=1000, k

s
=10

 

Fig. 3 Variation of non dimensional natural frequencies cc Eh /    of Al2O3 FG square plates 

resting on elastic foundation with power law exponent ( 5/ ha ) 
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Fig. 4 Variation of non dimensional natural frequencies cc E
h

a
/

~ 2

   of Al2O3 FG square plates 

resting on elastic foundation with Winkler coefficient ( 10/ ha ): (a) 0sk  and (b) 10sk  

 

 

4. Conclusions 
 

In the present work, a higher-order hyperbolic shear deformation theory is proposed for free 

vibration analysis of FG plates resting on elastic foundation. The model use only four unknowns, 

but accounts for shear deformation effect without employing any shear correction factor. Equations 

of motion are obtained from Hamilton’s principle. Analytical solutions for free vibration problems 

are illustrated for a simply supported plate resting on elastic foundation. The following main points 

can be outlined from the current investigation: 

 The proposed theory contains four unknowns, but gives results comparable with those 

predicted by existing shear deformation theories having more number of unknowns. 

 The increase of power law exponent leads to reducing of the natural frequencies of plate. 

 The increase of the values of Winkler and Pasternak parameters causes to increase in the 

natural frequency of FG plate. 

 The Pasternak parameter of foundation has more important influence on increasing natural 

frequency of FG plate than the Winkler parameter. 
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