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Abstract. This work presents a simple hyperbolic shear deformation theory for analysis of functionally
graded plates resting on elastic foundation. The proposed model contains fewer number of unknowns and
equations of motion than the first-order shear deformation model, but the transverse shear stresses account
for a hyperbolic variation and respect the tangential stress-free boundary conditions on the plate boundary
surface without introducing shear correction factors. Equations of motion are obtained from Hamilton’s
principle. The Navier-type analytical solutions for simply-supported plates are compared with the existing
solutions to demonstrate the accuracy of the proposed theory.
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1. Introduction

Functionally graded material is a class of heterogeneous composite material that presents a
continuous distribution of mechanical characteristics from one point to another. This material is
obtained by mixing two or more materials in a certain volume ratio (for example, metal and
ceramic). Classical composites structures such as fiber reinforced plastics (FRPs) suffer from
discontinuity of material characteristics at the interface of the layers and constituents. Since the
concept of FGMs has been proposed in 1980s, these novel types of materials have been utilized in
many engineering application fields, such as aircrafts, space vehicles, defense industries,
electronics and biomedical sectors, to eliminate stress concentrations, to relax residual stresses,
and to enhance bonding strength. Due to the wide material variations and applications of FGMs, it
is important to investigate the behaviors of FGM structures to mechanical and other loadings
(Bounouara et al. 2016, Hamidi et al. 2015, Bakora and Tounsi 2015, Ait Yahia et al. 2015, Arefi
2015, Ebrahimi and Dashti 2015, Hadji et al. 2015, Hadji and Adda Bedia 2015, Sallai et al. 2015,
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Larbi Chaht et al. 2015, Darilmaz 2015, Akbas 2015, Bouchafa et al. 2015, Meradjah et al. 2015,
Yaghoobi et al. 2014, Bousahla et al. 2014, Zidi et al. 2014, Fekrar et al. 2014, Tounsi et al. 2013,
Bouderba et al. 2013, Bourada et al. 2012).

Several works have been carried out to investigate the vibration of FG graded plates. Vel and
Batra (2004) proposed a 3D exact solution for free and forced vibrations of simply supported FG
rectangular plates. By employing a global collocation technique, the first and the cubic shear
deformation plate theories, Ferreira et al. (2006), studied the free vibrations of FG plates. Qian et
al. (2004) examined bending deformations, and free and forced vibrations of a thick FG graded
elastic plate by utilizing a higher order shear and normal deformation plate model. Matsunaga
(2008) investigated free vibration and buckling behaviors of FG plates by considering the
influences of transverse shear and normal deformations and rotatory inertia. Lu et al. (2009)
analyzed the free vibration response of FG thick plates supported by elastic foundation using a
three-dimensional elasticity. By utilizing the element-free kp-Ritz method, Zhao et al. (2009)
discussed the free vibration of FG plates. Chen et al. (2009) studied the vibration and buckling of
FG plates based on a higher-order deformation theory. Malekzadeh (2009) examined the free
vibration behavior of thick FG plates on elastic foundation using the three dimensional elasticity
theory. Ait Atmane et al. (2010) studied the free vibration behavior of simply supported FG plates
resting on a Winkler—Pasternak elastic foundation by proposing a new higher shear deformation
theory. Using a four variable refined plate theory, Benachour et al. (2011) discussed the free
vibration response of FG plates with arbitrary gradient. Neves et al. (2012ab) proposed a
trigonometric shear deformation model and a hybrid quasi-3D hyperbolic shear deformation
theory for bending and free vibration analysis of FG plates. Akavci (2014) presented the free
vibration analysis of thick FG plates supported on two-parameter elastic foundation based on a
higher order hyperbolic shear deformation theory. Belabed et al. (2014) developed an efficient and
simple higher order shear and normal deformation theory for FG plates. Hebali et al. (2014)
considered the static and dynamic analysis of FG thick plates with a new quasi-3D hyperbolic
shear deformation theory. Ait Amar Meziane et al. (2014) presented an efficient and simple refined
theory for buckling and free vibration of exponentially graded sandwich plates under various
boundary conditions. Mahi et al. (2015) proposed a new hyperbolic shear deformation theory for
bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated
composite plates. Ait Atmane et al. (2015) presented a variationally consistent shear deformation
theory for free vibration analysis of thick FG beams having porosities. Bourada et al. (2015)
investigated the bending and vibration behaviors of FG thick beams using a new simple shear and
normal deformations theory. Nguyen et al. (2015) presented a refined higher-order shear
deformation theory for bending, vibration and buckling analysis of FG sandwich plates. Pradhan
and Chakraverty (2015) discussed the free vibration behavior of FG thin elliptic plates with
various edge supports. Attia et al. (2015) investigated the free vibration response of FG plates with
temperature-dependent properties using various four variable refined plate theories. Belkorissat et
al. (2015) discussed the vibration properties of FG nanoplates using a new nonlocal refined four
variable theory. Bennai et al. (2015) presented a new higher-order shear and normal deformation
theory for FG sandwich beams. Kar and Panda (2015) studied the nonlinear flexural vibration of
shear deformable FG spherical shell panel. Bennoun et al. (2016) proposed a novel five variable
refined plate theory for vibration analysis of FG sandwich plates. Ait Atmane et al. (2016) studied
the effect of thickness stretching and porosity on mechanical response of a FG beams resting on
elastic foundations.

The purpose of this work to examine the efficiency of an improved version of a hyperbolic
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shear deformation theory developed by Mahi et al. (2015) for free vibration analysis of FG plates.
By making a further supposition to the conventional hyperbolic shear deformation theory (Mahi et
al. 2015), the present theory contains only four unknowns and its governing equations are
therefore reduced. Thus, the novelty of this paper is the use of four variable refined plate theory for
free vibration analysis of FG plates, resulting in considerably lower computational effort when
compared with the other higher-order theories reported in the literature having more number of
unknown functions. Equations of motion are obtained from Hamilton’s principle. Navier solution
is utilized to determine the closed form solutions for simply supported FG plates. Comparison
studies are established to check the accuracy of the present results.

2. Mathematical formulations

In the current work, a FG simply supported rectangular plate with length, width and uniform
thickness equal to a, b and h respectively is considered. The geometry of the plate and
coordinate system are illustrated in Fig. 1. The material characteristics of FG plate are considered
to vary continuously within the thickness of the plate in according to the power law distribution as
follows

P@2) =P, +(P, P, )(% ; Ejp )

where P presents the effective material characteristic such as Young’s modulus E and mass
density p, P, and P, presents the property of the top and the bottom faces of the plate,

respectively, and p is the power law exponent. The Poisson’s ratio v is supposed to be
constant.
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Fig. 1 Schematic representation of a rectangular FG plate resting on elastic foundation
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2.1 Kinematics and strains

In this investigation, further simplifying supposition are made to the conventional higher shear
deformation theory (HSDT) so that the number of unknowns is reduced. The displacement field of
the conventional HSDT is expressed by (Mahi et al. 2015)

u(x,y,z,t) =u,(x,vy,t) Z%+‘P(Z)9X(X, y,t) (2a)
oW,

V(X,Y,z,t) =V, (X, Y,t) za—y+‘P(z)0y(x, y,t) (2b)

W(X, Y, z,t) = w,(X,Y,t) (2c)

where Ug; Vo, W,, 6, 6, are five unknown displacements of the mid-plane of the plate,
Y(z) denotes shape function representing the variation of the transverse shear strains and stresses
within the thickness. By dividing the deflection w, into bending and shear parts (i.e.,
W, =W, +W, ) and making further assumptions given by 6, =-ow,(x,y)/ox and
0, =—ow,(x,y)/dy, the displacement field of the novel refined theory can be expressed in a
simpler form as

— aNb aNs
u(x,y,z,t) =u,(x,y,t)-z 3 f(2) X (3a)
ow, oW,
V(X, Y, 2,8) =V, (X, Y1) -2 ayb @7, (3b)
W(X, ¥, 2,8) = Wo (X, ¥, 1) + W (X, y, 1) (3b)
where the shape function f(z) is given as
h z 4 z3
f(z)=z-Y¥Y(z)=z——tanh| 2— [+ —| — 4
@ @ 2 ( hj 3cosh2(l)(h2j @
e | |e Ky k, 0
gy =18y (ragky e H@kg {“}w(z){y{f} (5)
7/xy 7/>(<)y k>t()y kjy * *
where
2
ou, _aZWb _aaV\zls
0 ox kf ox® k; X S
5)(() ov, ’ . 52Wb , ke L _azws ’ Y yz =g(Z) Vv (68.)
E, 1= — ky =93~ 2 y 2 s
g OX kb ay ks ay Xz xz
Tw) |0Uy Vg w) ol otw, vl otwy
a o OX0y oxoy
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and
df (z
9(2)=1- 212 (6b)
dz
For elastic and isotropic FGMs, the constitutive relations can be expressed as
o, _Cn C, O 0 0 | &y
o, c, C, O 0 0 || e,
Ty 0 0 Cx O 0 I~ @)
Tyz 0 0 0 C44 0 j/yz
sz L O 0 0 0 C55_ 7xz
where (o,, o,, 7,,, 7,, T,) and (&, &,, ¥y, Vy+ 7y ) are the stress and strain

components, respectively. Using the material properties defined in Eq. (1), stiffness coefficients,

Cij, can be written as
E(2) v E(2)
C11=C22=1_V2’ C12=1_V_2 ,

E(2)
2L+v)

Cu=Cos =Cqe = ’ (8)

2.2 Equations of motion

Hamilton’s principle is herein employed to determine the equations of motion (Ould Larbi et al.
2013, Draiche et al. 2014, Tagrara et al. 2015)

O:I(5U+§V—5K)dt 9)
0

where oU is the variation of strain energy; oV is the variation of work done; and 6 K is the
variation of kinetic energy.
The variation of strain energy of the plate is expressed by

ouU =J.[0'X5 e to, e, +1,0y, +1,0y, +7,0 7xz]dV
\
=[N, 6 2+ NG &2+ N6 72, + MESKE + MESKS + M2 S K, (10)
A

FMESKS+MSSKS +MS,SkS, +S55 75 +S58 7%, [dA=0

S
yz
where A is the top surface and the stress resultants N, M ,and S are defined by

h/2 h/2

(N, MP,M?)= Il,z,f)aidz, (i=x,y,xy) and (SjZ,SjZ): '[g(rxz,ryz)dz (11)

h/2 -h/2
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The variation of the potential energy of elastic foundation can be calculated by
SV = [ 1,8 (w, +w,)dA (12)
A
where f, is the density of reaction force of foundation. For the Pasternak foundation model
(Tebboune et al. 2015; Besseghier et al. 2015)
o’w o°w

f,=K,Ww-K ~K,, v

e S1 axz
where K,, is the modulus of subgrade reaction (elastic coefficient of the foundation) and Ky,

(13)

and K, are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is

homogeneous and isotropic, we will get Ky, =Ky, =Ky . If the shear layer foundation

stiffness is neglected, Pasternak foundation becomes a Winkler foundation.
The variation of kinetic energy of the plate can be written as

5K —j US U+ VSV +Ws W] p(z) dV

j{l0 Uy Sy + VooV, + (W, + Vi, NSV, + SW, )]

ll[uo dSW, awb5 . agyb +aav>v/b 5\70]
OX

S

—J4| U

faaws 500 v, 05w, 0w, 5\,/0}

[8w 05 W, OVl aawbj (aws 05 W, 0w, aan
+1, +K

OX 8y oy OX  OX 8y oy
L3 awb85WS+6WS85Wb+awb85w5+aw565wb dA
OX  OX OX  OX oy oy oy oy

where dot-superscript convention indicates the differentiation with respect to the time variable t;
p(z) is the mass density given by Eq. (1); and (I,, I,, J;, I,, J,, K,) are mass inertias
defined as

h/2
(o1, 31, 15,35.K,)= [[Lz,£.22,2 1, £2)p(2)dz (15)
-h/2
Substituting Egs. (10), (12), and (14) into Eq. (9), integrating by parts, and collecting the
coefficients of o u,, ov,, Sw, andd w,; the following equations of motion are obtained
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oy

oN oN ow, oW
Sup: —2+ —L =1l -1, —> -3, —
OX oy OX OX
oN oN oW oW
SV, 8—W+WV:IOVO—Ila—b—Jl ays
X y
2Mb aZMb aZMb .. ..
Sw,: aaxzx ) axayxy n ayzy Cf, = 1 (W )+ I %Jr% 1w, - 3,v2, L0
82|\/|S aZMS aZMS aSS ass i o
Sw,: X y2— 24 Loy yz_fe:|o(wb+ws)+Jl%+_°
X

ox2 oxoy 8y2 OX oy
- J,V2W, — K, V2w,
where V% =0%/0x? +0%/oy® is the Laplacian operator in two-dimensional Cartesian

coordinate system.
Substituting Eg. (5) into Eq. (7) and the subsequent results into Egs. (11), the stress resultants are
obtained in terms of strains as following compact form

N A B B'|le
MPl=| B D D°{k°!, S=Ay (17)
MS BS DS HS kS

in which

N={N N, N ', MP={mP, Mo M F, Mo ={mi M ME | (18a)

e={e2,e%0 . K=Kk S ke =k ke T (18b)
All A12 0 Bll BlZ O ] Dll DlZ 0
A=|A, A, 0| B=/B, B, 0| D=D, D, O (18¢)
0 0 A, 0 0 By 0 0 D
B, B, O Di D O H) H, 0
B°=|BS, B, 0| D°=|D; D;, 0|, H°=|H, H; 0 (18d)
0 0 B 0 0 D] 0 0 H
t t A, O
S=155.851. r=boahf, A =[TH (18¢)
0 A
and stiffness components are given as
Ail Bll Dll Blsl Dfl H ZI:Sl h/2 1
B, D, B, D, Hii= [C,lLz2 f().21(@) 1’ d (192)
A, 12 12 D 12 12 J- ullz,2%,f(2),2 £(2), £°(2) 1l/v Z

A66 BGG D66 BéG D(SG H (§6 e

N ‘
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(AZZ’ BZZ’ D22’ BZSZ’ DZSZ’ HZSZ): (A.l' Bll’ Dll’ Blsl' Dlsl’ Hlsl) (19b)
h/2

AL = AL = ICM[g(z)]Zdz, (19¢)
-h/2

Introducing Eq. (17) into Eq. (16), the equations of motion can be expressed in terms of
displacements (o U,, OV,, & w,,d w,) and the appropriate equations take the form

Alldlluo + Aeedzzuo + (Alz + Aee )dlzvo - Blldlllwb - (BIZ + 2866 )dIZZWb

s ; s . N B (20a)
_(812 + 2866 122Ws - Blldlllws = Iouo - Illeb - ‘]ldlws'
Ayl ,Vg + Agdy Vg + (A12 + Ags )dlZUO = Byyd,pW, — (BlZ + 2By )dnsz (20b)
_(Blsz + 28656 112Ws — BZSZdZZZWs = I0\70 - Ildzwb - J1dzws’
B;1dy15Ug + (Blz + 2Bgg )d122u0 + (BlZ +2Bgg )dlIZVO + Byd,poV
= DyyyyaWy — 2([)12 +2Dgs )dllZZWb — Dyl 0oW, — Dyydy,Wg (20¢)
- Z(Dlsz +2Dgg Jd115,Ws — Dyl oW — f, = IO(Wb + Ws)
+ |1(dluo + dzvo)_ |2(d11Wb + dzzwb)_ ‘]Z(dllws + dzzws)
By;dipUg + (Blsz +2Bgg iU + (Blsz +2Bgg 115V + B3y Vo — Dridyyg W,
- Z(sz + 2D§6)d1122Wb — D3, 00oW, — Hyydyg,Wg (20d)

- Z(Hfz + 2H g [dy19pWg — H 35050000, + Agydy W + Aggdppw, — f, = IO(Wb +Ws)
+ ‘]l(dlUO + dzvo)_ Jz(anb + dzzwb)_ Kz(ans + dzzws)

where d;;, dy, and d,, are the following differential operators
2 3 4
dij = 4 ' dijlza—’ dijlmza—’ di:i, (i, J,1,m=12).(21)
OX;OX OX;OX ;OX, OX; OX ;OX Oy OX;

2.3 Analytical solution for simply-supported FG plates

Based on Navier technique, the following expansions of generalized displacements are
considered to automatically respect the simply supported boundary conditions

Uy U, e cos(a x)sin(Sy)
Vo | ¢ i V. e“"sin(a x) cos(B y) 22)
W m=1 n=1 Wbmneiwt Sin(a X)Sin(ﬂ y)
W, Wy sin(a X)sin( B y)

where ao=mz/a and S=nxz/b, w isthe frequency of free vibration of the plate, Ji=-1
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the imaginary unit.
Substituting Egs. (22) into Eq. (20) and collecting the displacements and acceleration for any
values of m and n, the following problem is obtained

Sll S12 SlS S14 mll 0 mlS m14 Umn 0
S 12 S 22 S 23 S 24 | a)z 0 m 22 m 23 m 24 an — 0 (23)
S 13 S 23 S 33 S 34 m 13 m 23 m 33 m 34 Wbmn 0
S 14 S 24 S 34 S 44 m 14 m 24 m 34 m 44 Wsmn 0

where
Sy =—(a’ Ay + B Ag) S, =—a (A, + Ass) . Sis = ala’B,, + B2 (B, + 2B4,)].
S, =—a[a’BS + B2(BS +2BS)] S, = —(a?A, + B2A,,),
S,. = B5°B,, +a’(B,, + 2B )]
S, =—PLB°B;, +a” (B, +2Bg)],
Ss =Dy, (e + B*) + 2a* B (Dy, + 2Dgg)]+ K, — K, (a® + %)
Sw =[Diy(a” + %) +2a° (D}, + 2Dge)1+ K, — K (@® + 57) ,
Su =—Hi(a" + B%) +2a° B2 (Hy, + 2Hge )+ 1+ Ay (@ + ) + K, — K (a® + %)

my, =—lg,my =Bl m, ==, My, =m,;, M, =—al,,m, =-al,
Mgy :_(|o+|2(a2+ﬂ2))
My, = —lg+J, (o’ +f%), m, ==, m,, =—ad;,m,, = (I, + K, (a”+%)) (24)

3. Numerical examples and discussions

In this section various numerical examples are examined to check the accuracy of the present
formulation in predicting the free vibration behaviors of simply supported FG plates resting on
elastic foundation. Two types of FG plates of Al/AI,O; and Al/ZrO, are employed in this
investigation. The material characteristics of FG plates are presented in Table 1. For convenience,
the following non-dimensional parameters are employed

— 2 4 2
o=wh|p,lE,, E)zwar,/pm/Em, p=whp. IE, szKWa , kS:KSDa

. [p(8+3p+ pZ)Em+3(2+ P+ pz)Ec]
pRETT [+ pX2+ p)3+ p)] )

In Table 2, non-dimensional fundamental frequencies of Al/ZrO, FG square plates are
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examined for three different power law exponent and compared with 3D exact solution of Vel and
Batra (2004), quasi 3D sinusoidal and hyperbolic shear deformation theories of Neves et al.
(2012a,b) and 2D higher order shear deformation models of Matsunaga (2008) and
Hosseini-Hashemi et al. (2011) and Akavci (2014). It can be demonstrated from the table that the
results of the present formulation agree with the results of other 2D and 3D deformation theories.

The non-dimensional natural frequencies computed by the proposed are compared in Table 3
with the 3D theory of Vel and Batra (2004) and 2D higher order shear deformation theories of
Matsunaga (2008) and Akavci (2014). It can be observed from the table that a good agreement is
achieved between the obtained results and those reported by other theories.

To check the higher order modes, the first eight frequencies of the Al/Al,O; FG square and
rectangular plates are calculated and illustrated in Tables 4. Table 4 shows a comparison between
the first eight non-dimensional natural frequencies of FG square plates computed using the present
theory and those given by Matsunaga (2008) and by Akavci (2014). It can be seen from Table 4
that for both thin and thick plates, a good agreement between the results is demonstrated.

Table 1 Material properties employed in the FG plates

Material Properties
Young’s modulus (GPa) Poisson’s ratio Mass density kg/m®
Aluminium (Al) 70 0.3 2702
Alumina (Al,Os) 380 0.3 3800
Zirconia (ZrO,) 200 0.3 5700

Table 2 Comparison of non dimensional frequencies w=w hyp, ! E,, of Al/ZrO, of FG square plates
(a/h=5k, =k, =0)

Source p=2 p=3 p=>5

Vel and Batra (2004) 0.2197 0.2211 0.2225
Neves et al. (2012a) (&, =0) 0.2189 0.2202 0.2215
Neves et al. (2012a) (&, #0) 0.2198 0.2212 0.2225
Neves et al. (2012b) (&, =0) 0.2191 0.2205 0.2220
Neves et al. (2012b) (&, = 0) 0.2201 0.2216 0.2230
Matsunaga (2008) 0.2264 0.2270 0.2280
Hosseini-Hashemi et al. (2011) 0.2264 0.2276 0.2291
Akavci (2014) 0.2263 0.2268 0.2277

Present study 0.2258 0.2266 0.2276
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2
. . . . ~ a
Table 3 Comparison of non dimensional frequencies @ = a)r,/pm I E,, of Al/ZrO, of FG square plates

(m=n=1k, =k, =0)

Mode Source p=0® p=1 a/h =5
no. a/h=+10 a/h=10 a/h=5 a/h=10 a/h=20 p=2 p=3 p=5
VelandBatra 46582 57769 54806 59609  6.1076 54923 55285 55632
1 (2004)
Matsunaga 46582 57769 57123 61932 63390 56599 56757  5.7020
(2008)

Akavci (2014) 46569 57754 57110  6.1924 63388 56593 56718  5.6941
Presentstudy  4.6274 57705 56955  6.1876 63373 56475 56640  5.6885
Veland Batra  8.7132 27554 14558 29123  58.250 14.278 14.150 14.026

2 (2004)
Matsunaga 87132 27554 15339  30.685  61.374  14.970 14.742 14.476

(2008)
Akavci (2014) 87132 27554 15341  30.686  61.374  14.972 14.743 14.477
Presentstudy 87130 27554 15344  30.686  61.375 14.978 14.750 14.483
Veland Batra 14463 46503 24381  49.013  98.145 23909  23.696  23.494

3 (2004)
Matsunaga 14463 46503 25776 51.795 10371 25140 24741 24278

(2008)
Akavci (2014) 14728 46574 25926  51.866 103.74 25296 24909  24.461
Present study 14728 46574 25924  51.866 10374 25296  24.908  24.460
Veland Batra  24.830 20134  57.620 21222  828.78 54685 53179  52.068

4 (2004)
Matsunaga 24830 20134 61509 22729 88860 57576 55237  53.288

(2008)
Akavci (2014) 25427  203.98  62.886 23152 90425 58993  56.373  54.067
Presentstudy 25347  202.92 62635 23040  899.60  59.135  56.805  54.615

2
@ E)zw% .1 E,

Table 5 presents non-dimensional fundamental frequencies of Al/ZrO, FG rectangular plates
resting on elastic foundation. The results of the present formulation are compared with the results
of the first order shear deformation theory (FSDT) of Hosseini-Hashemi et al. (2010) and higher
order shear deformation theories (HSDTs) of Hasani Baferani et al. (2011) and Akavci (2014). It
can be observed from the Table 5 that, the results of present formulation with only four unknowns
are in good agreement with the results of other theories with five unknowns.

Table 6 illustrated non-dimensional fundamental frequencies of Al/Al,O; FG plates resting on
elastic foundation. The results are obtained for different aspect ratios and compared with those
obtained by Hasani Baferani et al. (2011) and Akavci (2014) by employing HSDTs and
Hosseini-Hashemi et al. (2010) by utilizing FSDT. It can be observed that, the proposed theory
agrees well with the other shear deformation theories.

Table 7 presents the comparison of non-dimensional fundamental frequencies of Al/Al,O; FG
plates resting on elastic foundation with those reported by Akavci (2014) using HSDT. It can be
confirmed from the Table 7 that, the results of the proposed theory are in good agreement with the
results of Akavci (2014).
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Table 4 The first eight non-dimensional natural frequencies £ = h,/p,/E, of Al/Al,O; of FG square
plates (k, =k, =0)

h/b P Source Mode no
1 2 3 4 5 6 7 8
Mode 1,0,1 1,11 20,1 1,2,1 1,0,2 2,2,1 301 1,31
0 Mg%lé)rg;ga 0.02936 0.0577 0.1120 0.1381 0.1948 0.2121 0.2357 0.2587

Akavci (2014) 0.02936 0.0577 0.1119 0.1379 0.1948 0.2120 0.2355 0.2585
Present study 0.02934 0.0577 0.1118 0.1377 0.1948 0.2114 0.2347 0.2576

Matsunaga 00249 00491 00956  0.1180 01749 01819 02022  0.2222
05 (2008)
Akavci (2014) 00249  0.0490 00954 01176 01749  0.813 02016 02214

0.1 Presentstudy ~ 0.02489  0.04901 009524  0.1174 01749  0.808 02010  0.2207
Matsunaga 00224 00442 00861 01063 01620 01640  0.1824  0.2004
' Akaﬁ:?(g%n@ 00224 00442 00860 01061 01620 01636 01819  0.1999
Presentstudy ~ 0.02244  0.04420 008591  0.059 01621 01632  0.1814  0.1993
Matsunaga 00194 00381 00735 00904 01308 01383 01534  0.1681
) Akasxzc?(g)om) 00194 00380 00734 00902 01308 01379 01529  0.1677
Presentstudy ~ 0.01941 003810 007352 009037 01309 01381 01532  0.1679
Matsunaga 00186 00364 00699 00858 01153  0.1306  0.1446  0.1583

10 (2008)
Akavci (2014) 00186 00364 00699 00858 01153  0.305  0.1445  0.1582
Presentstudy ~ 0.01860  0.03639 006994 008582 01153  0.1304 01445  0.1581
Mode 10,1 111 20,1 1,0,2 12,1 112 1,03 22,1
Matsunaga 01120 02121 03874 03897 04658 05511 06566  0.6753
’ Akaslzc(?o(g%)m 01119 02120 03872 03897 04657 05510  0.6587  0.6759
Presentstudy 01118 02114 03851 03896 04626 05511  0.6586  0.6697
Matsunaga 00956 01819 03343 03497 04040 04941 05878  0.5891

05 (2008)
Akavci (2014) 00954  0.1813 03330 03495 04015  0.4940 05905  0.5856
02 Presentstudy ~ 0.09524 01808 03314 03497 03990  0.4945 05903  0.5809
. Mgsgi)%a;ga 00861 01640 03020 03236 03644 04567 05325 05444

Akavci (2014) 0.0860 0.1636 0.3009 0.3236 0.3629 0.4569 0.5461 0.5302
Present study 0.08591 0.1632 0.2996 0.3241 0.3611 0.4585 0.5461 0.5258

Matsunaga 00735 01383 02502  0.2607 03000  0.3668 04325  0.4362
4 (2008)
Akavci (2014) 00734 01379 02493 02606 02987 03668 04381  0.4304

Present study 0.07352 0.1381 0.2496 0.2619 0.2990 0.3703 0.4383 0.4303

Matsunaga 00699 01306 02300 02337 02790 03243 03855  0.3981
10 (2008)
Akavci (2014) 00699 01305 02337 02300 02792  0.3245 03878  0.3991

Present study 0.06994 0.1304 0.2333 0.2306 0.2785 0.3263 0.3877 0.3971
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Table 5 Comparison of non dimensional frequencies S =wh,/p./E, of Al/ZrO, of rectangular FG plates

(a/b=1.5)
(k,.k;) alh p Source
Hasani Baferani etal.  Hosseini-Hashemi et al. Akavci (2014) Present study
(2011) (2010)
0 - 0.02392 0.02393 0.02392
0.05 0.25 - 0.02269 0.02309 0.02308
1 - 0.02156 0.02202 0.02201
5 — 0.02180 0.02244 0.02244
0 - 0.09188 0.09203 0.09191
0.1 0.25 - 0.08603 0.08895 0.08884
0.0) 1 - 0.08155 0.08489 0.08479
5 — 0.08171 0.08576 0.08573
0 - 0.32284 0.32471 0.32328
0.2 0.25 - 0.31003 0.31531 0.31396
1 - 0.29399 0.30152 0.30026
5 — 0.29099 0.31860 0.29710
0 0.03421 0.03421 0.03422 0.03421
0.05 0.25 0.03321 0.03285 0.03312 0.03311
1 0.03249 0.03184 0.03213 0.03213
5 0.03314 0.03235 0.03277 0.03277
0 0.13365 0.13365 0.13375 0.13366
0.1 0.25 0.13004 0.12771 0.12959 0.12952
(250,25) 1 0.12749 0.12381 0.12585 0.12578
5 0.12950 0.12533 0.12778 0.12776
0 0.43246 0.49945 0.50044 0.49967
0.2 0.25 0.42868 0.48327 0.48594 0.48522
1 0.46406 0.46997 0.47298 0.47233
5 0.44824 0.47400 0.47637 0.47610

The variation of non-dimensional fundamental frequencies in terms of the power law exponent
and side-to-thickness ratio is presented in Fig. 2. It can be observed from the figure that the
increase of the power law exponent leads to a decrease in the fundamental frequency. It is due to
the fact that a higher value of p corresponds to lower value of volume fraction of the ceramic

phase, and thus makes the plates become the softer ones. Fig. 2 demonstrates also that with a
decrease of the side-to-thickness ratio, the shear deformation influence becomes very effective.

Fig. 3 presents the effect of the elastic foundation parameters on the variations of
non-dimensional natural frequencies of simply supported Al/AI,O; FG square plates versus the
power law exponent. It can be seen that the presence of elastic foundation makes the plate
becomes stiffer. It can be confirmed from the results that, increasing value of Winkler and
Pasternak parameters amplifies the natural frequency. The results show also, Pasternak parameter
of foundation has more important impact than Winkler parameter on the fundamental frequency of
plate.

The variations of non-dimensional fundamental frequency of simply supported Al/Al,O; FG
square plate are shown in Figs. 4(a) and 4(b) with respect to Winkler parameter of foundation. It is
observed from the results that, increasing the power law exponent reduces the fundamental
frequency. It is also concluded from results that, increasing value of power law exponent increases
the impact of elastic foundation on natural frequency.
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Table 6 Comparison of non dimensional frequencies S =wh,/p./E, of Al/Al,0; of rectangular FG
plates (h/a=0.15)

(k,.k;) alb p Source
Hasani Baferani et al. Hosseini-Hashemi et al. Akavci Present study
(2011) (2010) (2014)
0 - 0.08006 0.08018 0.08009
0.5 0.25 - 0.07320 0.07335 0.07327
1 - 0.06335 0.06148 0.06142
5 — 0.05379 0.05215 0.05221
0 - 0.12480 0.12508 0.12486
(0,0) 1 0.25 - 0.11354 0.11457 0.11439
1 - 0.09644 0.09613 0.09599
5 - 0.08027 0.08089 0.08102
0 - 0.28513 0.28659 0.28547
2 0.25 - 0.25555 0.26356 0.26260
1 - 0.20592 0.22189 0.22115
5 — 0.16315 0.18232 0.18277
0 0.12869 0.12870 0.12876 0.12871
0.5 0.25 0.11885 0.11842 0.11847 0.11842
1 0.10498 0.10519 0.10388 0.10384
5 0.09227 0.09223 0.09098 0.09101
0 0.17020 0.17020 0.17039 0.17024
1 0.25 0.15734 0.15599 0.15665 0.15652
(100,10 1 0.13854 0.13652 0.13592 0.13583
5 0.12077 0.11786 0.11774 0.11782
0 0.31449 0.32768 0.32889 0.32796
2 0.25 0.30484 0.29612 0.30297 0.30190
1 0.26966 0.24674 0.25901 0.25841
5 0.22932 0.20359 0.21785 0.21819

6,5

6,0 -

a/h=5

Nondimensional natural frequencies

o] 10 20 30 40 50 60 70 80 90 100
Power law exponent (p)

. . . . P a
Fig. 2 Variation of non-dimensional fundamental frequency S = a)r,/pc I E, of Al/AI,O; FG square

plates with power law exponent
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Table 7 Comparison of non dimensional frequencies @ of Al/Al,O; of rectangular FG plates
(k,.k)® al/b alh
Akavci Present Akavci Present Akavci Present Akavci Present
(2014) (2014) (2014) (2014)
5 6.7771  6.7640 5.2122 5.2035 4.3763 4.3839 4.2153 4.2149
05 10 71794 71758 5.4918 5.4892 4.6986 47014 45432 4.5434
20 7.2948  7.2938 5.5712 5.5704 4.7943 4.7950 4.6411 4.6412
5 10.4133  10.382 8.0368 8.0165 6.6705 6.6855 6.4099 6.4075
(0,0) 1 10 113468  11.337 8.6899 8.6836 7.4033 7.4100 7.1521 7.1522
20 116338 11631 8.8879 8.8864 7.6393 7.6413 7.3934 7.3935
5 22.8734 22728  17.8289  17.732  14.3625  14.394 137120  13.678
) 10 271085  27.056 ~ 20.8487 20814 175051 17536  16.8613  16.860
20 287174 28703  21.9670  21.957 187946 18806  18.1727  18.174
5 111237 11116  11.8489  10.846 109925  10.994 110818  11.081
oF 10 114503 11448  11.0940  11.093  11.2538 11254 113313 11331
20 115474 11546  11.1660  11.166  11.3343 11334 114093  11.409
5 152095 15190  14.3923 14384 143071 14310  14.3829  14.381
(0, 100) 1 10 159813 15974  14.9443 14941 148693 14872 149193  14.919
20 162285 16226 151189 15118 150607 15062 151056  15.106
5 28.6623 28558  25.6912 25638  24.3625  24.368  24.3109  24.294
) 10 32.3444 32300 282316 28208  26.7223  26.738 265586  26.556
20 338076  33.795 202272 29220  27.7770  27.784 275919  27.592
5 72276 72150 5.8746 5.8670 5.2360 5.2420 5.1288 5.1285
05 10 76153 76120 6.1393 6.1370 5.5276 5.5298 5.4199 5.4200
20 77272 1.7262 6.2152 6.2146 5.6156 5.6162 5.5087 5.5088
5 10.7082  10.678 8.4748 8.4560 7.2560 7.2690 7.0373 7.0350
(100, 0) 1 10 116262  11.617 9.1107 9.1048 7.9520 7.9580 7.7356 7.7356
20 11.9909  11.906 9.3044 9.3024 8.1789 8.1808 7.9658 7.9658
5 230053 22862  18.0231  17.927 146363 14668 140098  13.977
) 10 27.2246 27172 21.0241 20990 177396  17.769  17.1126  17.111
20 288295 28815 221378 22128  19.0187  19.030 184115 18412
5 114036 11396  11.1817 11178 113598 11360 114581  11.458
05 10 117285 11726 114284 11427 116243 11625 117103 11710
20 118253  11.825 115008 11500  11.7054 11706  11.7888  11.789
5 154127 15394  14.6407 14632 145862  14.588  14.6702  14.668
(100, 100) 1 10 161808 16174 151927 15189 151498 15152 152075  15.207
20 164271 16425 153674 15366 153414 15342 153938 15394
5 287674  28.664 258251 25772 245206 24526 244759  24.458
) 10 324417 32398  28.3613  28.338  26.8763  26.892 267186  26.716
20 33.9029 33890  20.3557  29.350  27.9292  27.935  27.7497  27.749

@y, =K,a*/D,, k,=K.a?/D, where D_=E_h*/12(1—v?)
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Fig. 3 Variation of non dimensional natural frequencies S =wh,/p,/E, of Al,03 FG square plates
resting on elastic foundation with power law exponent (a/h =5)
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(b) k5=10

Nondimensional natural frequencies

o 500 1000 1500 2000

Winkler parameter (kw)

2
. - . . . = a
Fig. 4 Variation of non dimensional natural frequencies S = a)F,/pC | E, of Al,O; FG square plates

resting on elastic foundation with Winkler coefficient (a/h =10): (a) k; =0 and (b) k, =10

4. Conclusions

In the present work, a higher-order hyperbolic shear deformation theory is proposed for free
vibration analysis of FG plates resting on elastic foundation. The model use only four unknowns,
but accounts for shear deformation effect without employing any shear correction factor. Equations
of motion are obtained from Hamilton’s principle. Analytical solutions for free vibration problems
are illustrated for a simply supported plate resting on elastic foundation. The following main points
can be outlined from the current investigation:

e The proposed theory contains four unknowns, but gives results comparable with those
predicted by existing shear deformation theories having more humber of unknowns.

e The increase of power law exponent leads to reducing of the natural frequencies of plate.

e The increase of the values of Winkler and Pasternak parameters causes to increase in the
natural frequency of FG plate.

e The Pasternak parameter of foundation has more important influence on increasing natural
frequency of FG plate than the Winkler parameter.
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