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Abstract.  Using large monopod bucket foundations as an alternative to monopiles for offshore wind 
turbines offers the potential for large cost savings compared to typical piled foundations. In this paper, 
numerical simulations are carried out to assess the risk of structural buckling during installation of 
large-diameter bucket foundations. Since shell structures are generally sensitive to initially imperfect 
geometries, eigenmode-affine imperfections are introduced in a nonlinear finite-element analysis. The 
influence of modelling the real lid structure compared to classic boundary conditions is investigated. The 
effects of including soil restraint and soil–structure interaction on the buckling analysis are also addressed. 
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1. Introduction 
 

The installation concept of the monopod bucket foundation is similar to that of the well-proven 

suction anchor or suction caisson, but the forces carried during operation are different from those 

on a suction caisson. The suction caisson is loaded mainly by uniaxial forces, whereas the loads 

from the wind on the wind turbine and the wave loads result in a large overturning moment—in 

shifting directions—on the bucket foundation (Houlsby et al. 2005, Ibsen 2008). The loads on the 

monopod bucket are accommodated by a combination of earth pressures on the bucket skirt and 

the vertical bearing capacity of the bucket.  

Installation of a bucket foundation requires minimal installation equipment since it is installed 

by a combination of water evacuation from the cavity between the bucket lid and the soil seabed 

and water injection at the skirt tip. Pumping out water is causing the bucket foundation to be 

loaded by hydrostatic pressure (internal suction). The suction introduces a pressure differential 

across the bucket lid, which increases the downward force on the bucket lid. At the same time, the 

water flow reduces the effective stresses around the skirt tip and the penetration resistance is 

reduced. Furthermore, at the end of the life of the supported structure, the bucket foundation can 

be removed by applying pressure instead of suction. This has been tested in the laboratory and at a 
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large-scale test facility in Frederikshavn, Denmark, where several buckets were installed by 

suction, loaded and finally removed by overpressure (Ibsen 2008).  

In the initial installation phase, the free height of the skirt above the seabed is large, and a low 

suction pressure is needed to overcome the soil resistance. For subsequent installation phases, a 

larger pressure is required. The penetration resistance of skirted foundations has been investigated 

by for example Tjelta (1995), Andersen et al. (2008), Tran and Randolph (2008), and Ibsen and 

Thilsted (2010). Simultaneously, during installation the degree of skirt fixation increases due to the 

lateral restraint offered by the surrounding soil. The lateral restraint provided by the soil to the 

embedded skirt may increase the buckling loads significantly. No current design codes provide 

guidance on the use of the surrounding soil to provide restraint against buckling. 

The geometry of the bucket foundation is basically a thin shell structure with a relatively large 

aspect ratio between the skirt diameter and the wall thickness (typically r/t > 200). The 

combination of a thin shell structure and suction forces makes the structure prone to buckling 

during the installation process. Several analytical expressions for the structural buckling pressure 

of circular cylindrical shells exist; cf. e.g., (Brush and Almroth 1975, Farshad 1992). These 

analytical eigenvalue solutions do not account for imperfections of the initial geometry but assume 

a perfect circular cylindrical shape for the structure. 

However, the collapse load of cylindrical shells is known to be sensitive to the presence of 

initial imperfections and the effects of imperfections must be considered to arrive at accurate 

predictions of cylinder buckling loads. Detailed reviews of the imperfection sensitivity of 

cylinders are provided in Bushnell (1981), Simitses (1986), Noor (1990), and Teng (1996). It is 

well established that cylinders under axial compression show large imperfection sensitivity while 

those under lateral or hydrostatic loading show a smaller degree of sensitivity. The influence of 

imperfections is commonly accounted for by the use of a ―knockdown factor‖ which is a multiplier 

applied to the eigenvalue buckling solution. 

For cylinders under lateral or hydrostatic load, typical knockdown factors are in the range of 

0.6 (Odland and Faulkner 1981, DNV-RP-C202) to 0.78 (NASA 1968). The current Eurocode (EN 

1993-1-6) includes a range of knockdown factors dependent on the fabrication quality, ranging 

from 0.5 to 0.75 for elastic buckling. Further corrections are available to account for plasticity 

effects. 

Knockdown factors are applied to linear bifurcation solutions. As an alternative to this 

procedure, a fully nonlinear analysis can be undertaken. Recent work has shown that when 

imperfection patterns are known, this method is able to produce accurate prediction of buckling 

and collapse loads (de Paor et al. (2012), for example). For newly fabricated cylinders however, it 

is impossible to know the shape and size of any initial imperfections. This is particularly the case 

where a small number of such cylinders are being fabricated as is typical in the offshore 

construction industry. Hence, it is necessary to use a method of specifying an equivalent 

imperfection to account for their effect. 

While the need to include the effects of imperfections is well known, there is no well-defined 

procedure in the literature to account for these effects. Typical proposals are to use a realistic 

imperfection based on the known manufacturing procedure, see e.g., (Arbocz 1982) as cited by 

(Schmidt 2000), or to use an imperfection of the same shape as the eigenmode (EN 1993-1-6, 

Prabu et al. 2009). Other methods include the use of an equivalent load to provoke buckling 

(Haynie et al. 2010) or an imperfection in the shape of a dent or some other pattern (Guggenberger 

1995, Hrinda 2012). None of these methods has been shown to provide a guaranteed lower bound. 

Generally, this work has shown that for laterally loaded cylinders, a buckling mode in the shape of 
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an eigenmode provokes the lowest buckling mode; this is also the default in the Eurocode (EN 

1993-1-6). Often the imperfection applied is in the shape of the lowest eigenmode. However, 

recent work (Madsen et al. 2013) has shown that lower collapse loads can be obtained by applying 

a higher buckling mode, depending on the magnitude of the imperfection. 

When cylindrical shell structures are designed according to standards such as, for example, 

DNV (DNV-RP-C202) or Eurocode (EN 1993-1-6), assumptions of idealized boundary conditions 

(pinned, fixed or free) must be made. None of the design regulations accounts for the lateral 

restraints offered by the surrounding soil. Recently, this lateral restraint offered by the soil has 

been modelled by radial elastic Winkler springs (Pinna and Ronalds 2000, Lee and Tran 2013, 

Hanssen et al. 2013) or Pasternak type foundations (Sofiyev 2010). Pinna and Ronalds (2000) 

considered eigenvalue buckling only and found a simple multiplier that can be applied to the 

buckling load for a pinned-pinned shell when the amount of lateral restraint is known, and thus 

obtain intermediate solutions between the pinned and free case. Sofiyev (2010) has investigated 

the buckling analysis of functionally-graded-material (FGM) circular truncated conical and 

cylindrical shells subjected to combined axial loads and hydrostatic pressure and resting on a 

Pasternak type elastic foundation. 

Neither of the above-mentioned analyses takes the lateral restraints offered by the soil into 

account by means of advanced nonlinear finite element solutions. It may be beneficial to perform 

refined analyses with boundary conditions that are more realistic and with the soil modelled as a 

continuum. An attempt to do so was reported by Pinna et al. (2001) for suction caissons in clay 

where the conclusion was:  

 

“In general, it seems prudent to neglect any lateral soil restraint, and to design the caisson 

shell alone to withstand the applied suction loads.” 

 

The soil was modelled by both an elastic model and an elastoplastic Tresca model. However, 

idealized assumptions of the boundary conditions were still made at the skirt and at the connection 

to the lid. Further, the soil parameters studied corresponded to weak soils not suited for monopod 

foundations for wind turbines. In part, this conclusion was motivated by the difficulty in 

identifying suitable soil stiffness parameters. However, it is believed that the conclusions from 

these studies of buckling of suction caissons cannot be transferred directly to monopod bucket 

foundations for offshore wind turbines, where relatively strong soils are usually present and it is 

believed that the buckling behaviour will resemble the buckling of a pinned-pinned cylinder of 

length equal to the free height of the partially submerged bucket. 

In this paper, the hydrostatic bucking load is assessed by numerical analysis in ABAQUS. Both 

linear eigenvalue buckling analysis and nonlinear buckling analysis considering material plasticity 

and eigenmode-affine imperfections are executed. In Section 3, the effect of modelling the real 

bucket lid structure is compared to idealized boundary conditions. In Section 4, the soil restraint is 

investigated using more representative soil parameters for a wind turbine location and the 

influence of the soil–structure interaction properties on the buckling load is investigated through 

the use of a contact based analysis. In the knowledge of the authors, no previous attempts have 

been made to investigate the influence of the soil–structure interaction properties on the buckling 

load. In Section 3, the bottom of the cylinder is considered pinned and various cylinder lengths are 

considered. Conversely, the bottom of the cylinder is unconstrained (except for the soil–structure 

interaction) in Section 4 where the cylinder length is kept constant but the penetration ratio is 

varied. 
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2. Material and methods 
 

In the comparative study of buckling loads for the monopod bucket, four kinds of boundary 

conditions are considered regarding the top of the skirt: 

 Pinned, also known as the ―classical‖, boundary condition S3: The end displacements are 

axially free but circumferentially restrained in-plane (zero radial and tangential deflection). 

This makes the end free to warp. S3S3 boundary conditions are illustrated in Fig. 1. Also 

shown in Fig. 1 are the two load cases: Lateral pressure (P = 0) and hydrostatic pressure  

(P = qr
2
π).  

 Clamped (C3): The end displacements are axially free but circumferentially restrained 

in-plane as for the pinned boundary condition. In addition, the rotation is restrained. This 

hinders the end from warping. 

 Fully clamped (C4): All rotations and displacements are set to zero. 

 Physical model of the lid (Lid): The lid structure is modelled by a steel plate twice as thick 

as the skirt and with 12 stiffening ribs, as shown in Fig. 2(a). The diameter of the shaft is 

half the bucket diameter. This is a typical arrangement for a wind-turbine monopod 

foundation. 

 

 

 

Fig. 1 Left: Shell dimensions and illustration of S3S3 boundary conditions. Right: Illustration of lateral 

pressure (P = 0) and hydrostatic pressure (P = qr
2
π) 

 

(a) 

Bucket lid with 12 stiffening ribs 

 
 

(b) Bucket dimensions 

Fig. 2 Bucket lid and dimensions 
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For the bottom of the cylinder i.e. the tip of the skirt, two types of constraints are analysed: 

 Pinned (S3) where it is expected that the soil restraint will provide a response similar to the 

pinned case. 

 Soil coupling (soil) when the soil restraint is modelled by elastic continuum elements at the 

submerged part of the skirt. No further constraints are applied to the bottom of the cylinder 

in this case. 

 

2.1 Material properties 
 

The bucket foundation is made of steel with a Young’s modulus of E = 210 GPa, a Poisson’s 

ratio of ν = 0.3, and an initial yield stress of σy0 = 235 MPa. The elastic properties of the 

surrounding soil are defined by Poisson’s ratio νsoil = 0.25 and Young’s modulus Esoil = 25 MPa. 

The Young’s modulus for the soil is chosen as a lower value for sand at a typical wind turbine 

location where a monopod bucket foundation could be considered (see e.g., (Andersen 2010) or 

(Lesny 2010)). Soil plasticity is not relevant for soil parameters typical for monopod foundations 

according to Fig. 3 from Pinna (2004) where no plastic zones are observed for su = 50 kPa and Esoil 

= 5 MPa. 

 

 

 
Esoil/su = 100; su = 50 kPa 

 
Esoil/su = 2000; su = 2.5 kPa 

Fig. 3 Extent of plastified zone in the soil for a fully embedded S3S3 cylinder at maximum load. The grey 

zones indicate plasticity. The view is cut horizontally at the plane of symmetry and shows z/L = 0.5 to 

1.0, i.e., line ofq symmetry at top, pinned support at bottom. Esoil = 5 MPa. The shell is located at the 

point where the mesh changes from tetrahedral to hexahedral elements. Figure from (Pinna 2004) 
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(a) Hydrostatic loading of partially submerged 

cylinder 

(b) Mesh of cylinder and surrounding soil. Only 

half the model is shown 

Fig. 4 Loading and mesh of partially submerged cylinder as used in Section 4 

 

 

In this work, it was found that for soils with high su/Esoil ratios the surrounding material 

remained elastic at the point of collapse of the cylinder. Conversely, for soils with low su/Esoil ratios, 

failure of the shell and soil system occurred when a fully plastic zone was able to form within the 

soil. 

 

2.2 Numerical buckling analysis 
 

The finite element package ABAQUS is used for the numerical analysis. The steel is modelled 

as a linear elastic–perfect plastic material with yielding defined by the von Mises yield criterion. 

The bucket foundation is modelled using 8-noded quadrilateral shell elements with quadratic 

interpolation and reduced integration (S8R). The surrounding soil is modelled using 8-noded solid 

elements with linear spatial interpolation and reduced integration (C3D8R). For the soil, 

―near-field elements‖ are added. These near-field elements have the same properties as the rest of 

the surrounding soil, but the mesh size matches that of the shell elements applied for the bucket 

skirt. The near-field soil elements are employed within a zone that reaches 1 m away from the skirt 

(inside as well as outside) and 2 m below the skirt tip. The mesh of the bucket and the surrounding 

soil is shown in Fig. 4. 

When the surrounding soil is included (Section 4), the shell elements of the bucket are coupled 

to the solid elements of the soil in two different ways: 

 Tie constraints that fuse the surfaces of two regions together, even though they have 

dissimilar meshes and different degrees of freedom. Tie constraints are also used to couple 

the near-field soil elements to the surrounding soil. The tie constraint ties each node on the 

slave surface to the closest master surface so there is no relative motion between them. In 

the initial phase of the analysis, the initial position of the slave surfaces is adjusted so all 

nodes of the slave surfaces are moved onto the master surface. The tie constraints represent 
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some simplification to the true soil–structure interaction where the bucket skirt interacts 

with the surrounding soil by frictional contact. 

 In an attempt to model the soil–structure interface more realistically, the tangential 

behaviour of the interface is modelled by Coulomb friction τ = μp, where τ is the interface 

shear stress, μ = tan δ is the friction coefficient, and p is the normal stress in the interface. 

Friction coefficients of 0.42 and 20 are used. A friction coefficient of 0.42 corresponds to an 

interface friction angle of δ = 23° which is considered as a realistic conservative estimate of 

true soil–structure behaviour between sand and steel. The friction coefficient of 20 is an 

unrealistically high value chosen to represent no sliding. The normal behaviour is modelled 

with a high-penalty overlap stiffness, corresponding to ―hard‖ contact, and separation is 

allowed. 

The numerical buckling analysis is made in two steps. Step 1 is a linear eigenvalue buckling 

analysis used to find an estimate of the initial imperfect geometry based on buckling mode shapes 

(eigenvectors). A linear prediction of the buckling load (eigenvalue) is also found in Step 1. The 

Lanczos Eigensolver is used to extract the eigenvalues in this analysis. Step 2 is a nonlinear 

analysis where an imperfection in the geometry is introduced by adding the buckling mode shapes 

determined in step one to the ―perfect‖ geometry. The imperfection has the form 

 
1

Δ



M

i i i

i

wψ   (1) 

where ψi is the ith mode shape (maximum nodal displacement normalised to 1) and wi is the 

imperfection scale factor. In the rest of this paper, the magnitude of the imperfections is measured 

relative to the skirt thickness (w0
*
 = wi/ts). 

For each penetration depth, the linear buckling mode shape corresponding to a certain 

penetration depth is introduced as an imperfection. Thus, the imperfect geometry is different for 

each penetration depth. A uniformly distributed hydrostatic pressure is applied incrementally, and 

the buckling load is determined as the load level where no further strain energy can be 

accumulated. Yielding of steel is allowed, i.e. failure is not defined by initial yielding. 

 

 

3. Buckling of a cylinder with one end pinned and various boundary conditions at the 
other end 
 

The geometry of the bucket cylinder can be described by the non-dimensional Batdorf 

parameter 

 

2
21 ,

l
Z ν

rt
    (2) 

where l is the height of the (non-embedded) cylinder, identical to l in Fig. 2(b) and L in Fig. 4(a). 

The shell thickness, t, is that of the cylinder (ts in Fig. 2(b)). Similarly, a non-dimensional measure 

of the buckling load is introduced in the form 
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where the shell bending stiffness is given by 
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In this paper the buckling load is illustrated by the multiplier α which describes the buckling 

load relative to the lower-bound approximation, β, for the hydrostatic buckling load of an S3S3 

cylinder (Odland 1981) 

 
2

8
2 1 .

3

Z
β

π
    (5) 

Hence, the buckling load is given by 

 
* .crq αβ   (6) 

 

3.1 Eigenvalue buckling (LBA) 

 

In Fig. 5 the buckling load is shown as function of the Batdorf parameter for various boundary 

conditions. For the fully clamped–pinned (C4S3) as well as the pinned–pinned (S3S3) case, the 

results match the findings from Pinna et al. (2000) shown in dotted lines. As expected, the Lid–S3 

case (taking tl/ts = 2) yields results between C4S3 and S3S3. For Z approaching to zero (a short skirt 

length) the Lid–S3 case goes towards the C4S3 case.  

 

 

Fig. 5 Linear buckling load for various boundary conditions. Numbers indicate the number of 

circumferential lobes n in the first buckling mode. For Lid–S3: tl/ts = 2 
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Fig. 6 Linear buckling load as function of lid thickness. The lid has 12 stiffeners. Numbers indicate the 

number of circumferential lobes n in the first buckling mode 

 

 

 

Fig. 7 Linear buckling load for various number of stiffening ribs: tl/ts = 2 

 

 

 

From Fig. 6, where the lid thickness is varied, it can be seen that an equivalent clamped–pinned 

(C3S3) buckling load is reached for tl/ts ≈ 40, corresponding to a staggering lid thickness of one 

meter for a wall thickness of 25 mm. This is of course a very unrealistic lid thickness. Further, it 

should be noted that using shell elements for such thick plates might lead to rather unrealistic 

results for the connection between the skirt and lid. However, this does not change the overall 
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conclusion—that for a more realistic plate thickness, the lid structure cannot be expected to 

provide a clamped support at the skirt top. 

Finally, the number of stiffeners attached to the lid has been varied between 9 and 21. From Fig. 

7 it can be concluded that increasing or decreasing the number of stiffening ribs has almost no 

influence on the eigenbuckling load. 

 

3.2 Nonlinear buckling with imperfect geometry (GMNIA) 
 

In Fig. 8, the nonlinear hydrostatic buckling load is shown as a function of the varying 

imperfection amplitude for five different geometries and four different boundary conditions.  

 

  
(a) S3S3 (b) C4S3 

  
(c) C3S3 (d) Lid–S3 (tl/ts = 2) 

Fig. 8 Critical buckling load normalised by eigenvalue buckling load as a function of imperfection size for 

various boundary conditions 
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The amplitude of the critical imperfection varies with the cylinder length. Thus for higher Z 

values (long cylinders) the critical imperfection amplitude leading to the lowest buckling load 

becomes even larger than the wall thickness. For example for the S3S3 case shown in Fig. 8(a) the 

critical imperfection amplitude is approximately w0
*
 = 1.3 for Z = 700. For imperfections smaller 

than the critical imperfection amplitude, the collapse is elastic, while for imperfections larger than 

the critical imperfection amplitude, the distribution of stresses change, since yielding is allowed, 

and a higher collapse load can be obtained. The knockdown factors shown in Fig. 8 are 0.48–0.63, 

so at the lower end of the typical knockdown factors of 0.6 for hydrostatic loading. However, the 

imperfection reduction factor provided in Eurocode 1993-1-6 for the worst fabrication tolerance is 

0.5, which is in good agreement with the obtained results. Generally, higher Z values lead to lower 

knockdown factors. This trend is also observed in Fig. 9, where the buckling load is illustrated in 

terms of the multiplier α as function of the Batdorf parameter Z. For higher Z the Lid–S3 goes 

towards S3S3, so the longer the cylinder the less effect from the lid. 

 
 

 

Fig. 9 Buckling load for various boundary conditions. Top group: LBA, bottom group: GMNIA 
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4. Partially embedded cylinder—Influence of soil–structure interaction 
 
The lid is considered pinned in order to isolate the influence from embedding the cylinder in an 

elastic soil. Fig. 10(a) shows the effect of penetration ratio on the buckling load normalised with 

respect to the elastic buckling load of a pinned cylinder with length equal to the total length of the 

embedded cylinder (l = L) and also defining Z (≈ 1100) in terms of the total length, L. As expected, 

the penetration ratio has a significant influence on the buckling load. As the penetration ratio is 

increased, the buckling load increases more than linearly. In Fig. 10(b) is shown the ratio between 

the GMNIA and the LBA buckling load, also known as the knockdown factor. For a tie constraint 

between the cylinder and the surrounding soil, the knockdown factor is approximately 0.6. 

Allowing lateral separation and introducing Coulomb friction reduces the knockdown factor to 

approximately 0.5 for higher penetration ratios. The values for μ = 20 and 0.42 are almost identical, 

meaning that the reduction compared to the tie constraint is mainly due to allowing separation. Fig. 

11 shows an image at collapse illustrating separation for μ = 20 and 0.42. 

In Fig. 12(a) the buckling load of the partially submerged cylinder is normalised with respect to 

the elastic buckling load of a pinned–pinned (S3S3) cylinder of height equal to the free height, for 

the case of Z (based on l = L) ≈ 1100. The LBA values indicate that the elastic buckling load of the 

partially submerged cylinder is approximately 10% larger than for a simply supported cylinder of 

height equal to the free height of the partially submerged cylinder. This indicates that the cylinder 

is partially clamped at the seabed. The nonlinear buckling load of a partially submerged cylinder 

with tie constraints is approximately 0.65 of the elastic buckling load of a simply supported 

cylinder of height equal to the free height of the partially submerged cylinder. As observed in Fig. 

10(b), modelling the soil–structure interface more accurately yields lower nonlinear buckling loads 

than using tie constraints. This difference is more pronounced for larger penetration ratios. 

 

 

  
(a) (b) 

Fig. 10 Buckling load for various penetration ratios. Z ≈ 1100. Left (a): Normalised with respect to elastic 

buckling load of a S3S3 cylinder of length equal to the total height. Right (b): Knockdown factor 

(GMNIA / LBA). Hydrostatic load. S3 - soil. Esoil = 25 MPa 
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Fig. 11 Section through mesh at collapse load where separation can be seen for μ = 20 and 0.42. Left to 

right: Tie, μ = 20 and 0.42. Deformations scaled 25 times 

 

 

  
(a) (b) 

Fig. 12 Buckling load normalised with respect to elastic buckling load of a S3S3 cylinder of length equal to 

the free height (a) and DNV solution (b). Hydrostatic load. S3–soil. Esoil = 25 MPa. 

 

 

From Fig. 12(b), where the nonlinear buckling load is normalised with respect to the DNV 

solution for a cylinder of length equal to the free height, it is seen that when adding 10–15% to the 

DNV solution it matches the buckling load obtained by nonlinear numerical analysis when 

considering tie constraints quite well for all penetration ratios. This is also the case for low 
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penetration ratios when considering tangential sliding and allowing lateral separation. For a 

penetration ratio of 0.8, the numerical result matches the DNV solution. This indicate that for 

initial penetration the soil represents a higher fixity than the pinned case used in the DNV. 

 

 

5. Design recommendations 
 
Several factors must be considered when designing monopod bucket foundations against 

buckling: Boundary conditions, geometrical imperfections, soil restraint. 

 For initial design, the buckling load may be calculated for varying cylinder 

lengths—corresponding to the free cylinder height—using S3S3 boundary conditions and 

applying a knockdown factor to account for imperfections. These results should be 

compared to the required installation pressure. 

 For detailed design, a similar analysis could be carried out or a full finite element analysis 

may be conducted. If the latter, the effect of soil restraint is worth considering—especially if 

weaker soils than considered in this paper are present.  

 
 
6. Conclusions 

 
In this paper, the effect on the buckling load of modelling the real bucket lid was compared to 

idealized boundary conditions. The bucket lid shows an increase in the buckling load compared to 

a pinned end, especially for shorter cylinders. The number of stiffeners on the lid does not 

substantially affect the elastic buckling load. An unrealistically thick lid would be required to 

obtain a clamped solution. Conservatively, the lid end could be considered pinned. 

Further, the influence of soil–structure interaction on the buckling load was investigated. The 

soil restraint increases the buckling load significantly when penetrating the cylinder. Including 

tangential sliding and allowing lateral separation decreases the buckling load of the partially 

submerged cylinder compared to using tie constraints. The main contribution to this decrease is 

allowing lateral separation. For practical applications, the DNV solution could be used when the 

cylinder length is set equal to the free height of the partially submerged cylinder.  
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