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Abstract.  In this paper, a free vibration analysis of functionally graded beam made of porous material is 
presented. The material properties are supposed to vary along the thickness direction of the beam according 
to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For 
this purpose, a new displacement field based on refined shear deformation theory is implemented. The 
theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction 
boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present 
refined shear deformation beam theory, the equations of motion are derived from Hamilton’s principle. The 
rule of mixture is modified to describe and approximate material properties of the FG beams with porosity 
phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing 
solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume 
fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams. 
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1. Introduction 
 

Functionally graded materials (FGMs) have many advantages for use in engineering structural 

components. Unlike fiber-matrix laminated composites, FGMs do not have problems of 

de-bonding and delaminating that result from large inter-laminar stresses. The concept of FGMs 

was initially introduced in the mid-1980s by Japanese scientists. FGMs are microscopically 

inhomogeneous and spatial composite materials which are usually composed of two different 

materials such as a pair of ceramic-metal or ceramic-polymer. The composition of the material 

changes gradually throughout the thickness direction. As a result, mechanical properties are 

assumed to vary continuously and smoothly from the top surface to the bottom. Due to good 

characteristics of ceramics in heat and corrosive resistances combined with the toughness of metals 

or high elastic of polymers, the combination of ceramics and metals or polymers can lead to 

excellent materials. The FGMs are widely used in mechanical, aerospace, nuclear, and civil 

engineering. Consequently, studies devoted to understand the static and dynamic behaviors of 

FGM beams and plates have being paid more and more attentions in recent years (El Meiche et al. 

2011, Benachour et al. 2011, Bourada et al. 2012, Tounsi et al. 2013, Saidi et al. 2013, Bessaim et 

al. 2013, Bouderba et al. 2013, Houari et al. 2013, Kettaf et al. 2013, Khalfi et al. 2014, Zidi et al. 
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2014, Ait Amar Meziane et al. 2014, Fekrar et al. 2014, Belabed et al. 2014, Bousahla et al. 2014, 

Mahi et al. 2015, Bouchafa et al. 2015, Al-Basyouni et al. 2015, Hamidi et al. 2015). 

Zhong and Yu provided an analytical solution for cantilever beams subjected to various types of 

mechanical loadings using the Airy stress function. Bending analysis of FG beams based on higher 

order shear deformation under ambient temperature was investigated by Kadoli et al. (2008). Li 

(2008) investigated the static bending and transverse vibration of FGM Timoshenko beams by 

including the rotary inertia and shear deformation.  

Sallai et al. (2009) investigated the static responses of a sigmoid FG thick beam by using 

different beam theories. Benatta et al. (2009) presented a mathematical solution for bending of 

short hybrid composite beams with variable fibers spacing. Şimşek (2010a) studied the free 

vibration analysis of an FG beam using different higher order beam theories. In a recent study, 

Şimşek (2010b) has studied the dynamic deflections and the stresses of an FG simply-supported 

beam subjected to a moving mass by using Euler–Bernoulli, Timoshenko and the parabolic shear 

deformation beam theory. Giunta et al. (2011) used the Hierarchical theories for the free vibration 

analysis of functionally graded beams. Thai (2012) investigated the Bending and free vibration of 

functionally graded beams using various higher-order shear deformation beam theories. Hadji et al. 

(2014) studied the bending and vibration responses of FG beams via a higher shear deformation 

beam theory. Ould Larbi et al. (2013) presented an efficient shear deformation beam theory based 

on neutral surface position for bending and free vibration of functionally graded beams. Bourada et 

al. (2015) examined the flexure and free vibration responses of FGM beams using a new shear and 

normal deformation theory. The beauty of this theory (Bourada et al. 2015) is that, in addition to 

modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the 

thickness stretching effect ( 0≠zε ) is also included in   the present theory. Larbi Chaht et al. 

(2015) studied the bending and buckling behaviour of FGM nanobeams by including the thickness 

stretching effect.  

However, in FGM fabrication, micro voids or porosities can occur within the materials during 

the process of sintering. This is because of the large difference in solidification temperatures 

between material constituents (Zhu et al. 2001). Wattanasakulpong et al. (2012) also gave the 

discussion on porosities happening inside FGM samples fabricated by a multi-step sequential 

infiltration technique. Recently, Ait Yahia et al. (2015) shown that the porosity have a considerable 

effect on the wave propagation in FGM plate. Therefore, it is important to take in to account the 

porosity effect when designing FGM structures subjected to dynamic loadings. 

In this paper, a variationally consistent shear deformation theory is developed using a new 

displacement field for thick FG beams having porosities. The rule of mixture is modified to 

describe and approximate material properties of the FG beams with porosity phases. Based on the 

present refined shear deformation beam theory, the equations of motion are derived from 

Hamilton’s principle. The accuracy of the present solutions is verified by comparing the obtained 

results with the existing solutions. Illustrative examples are given also to show the effects of 

varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free 

vibration of the FG beams. 

 

 

2. Problem formulation 
 

Consider a functionally graded beam with length L  and rectangular cross section hb× , with 
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b  being the width and h  being the height as shown in Fig. 1. The beam is made of isotropic 

material with material properties varying smoothly in the thickness direction. 

 

2.1 Effective material properties of metal ceramic functionally graded beams 
 

The properties of FGM vary continuously due to the gradually changing volume fraction of the 

constituent materials (ceramic and metal), usually in the thickness direction only. The power-law 

function is commonly used to describe these variations of materials properties. The expression 

given below represents the profile for the volume fraction. 

A FG beam made from a mixture of two material phases, for example, a metal and a ceramic. 

The material properties of FG beams are assumed to vary continuously through the thickness of 

the beam. In this investigation, the imperfect beam is assumed to have porosities spreading within 

the thickness due to defect during production. Consider an imperfect FGM with a porosity volume 

fraction,  1 , distributed evenly among the metal and ceramic, the modified rule of 

mixture proposed by Wattanasakulpong and Ungbhakorn (2014) is used as 




















22


ccmm VPVPP                       (1) 

Now, the total volume fraction of the metal and ceramic is : 1 cm VV , and the power law 

of volume fraction of the ceramic is described as 

k

c
h

z
V 










2

1
                            (2) 

Hence, all properties of the imperfect FGM can be written as 

   
22

1 
mcm

k

mc PPP
h

z
PPP 








              (3) 

 

 

 

Fig. 1 Geometry and coordinate of a FG beam 
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It is noted that the positive real number k   k0  is the power law or volume fraction 

index, and z  is the distance from the mid-plane of the FG plate. The FG beam becomes a fully 

ceramic plate when k  is set to zero and fully metal for large value of k . 

Thus, the Young’s modulus  E  and material density    equations of the imperfect FGM 

beam can be expressed as 

     
22

1 
mcm

k

mc EEE
h

z
EEzE 








               (4) 

     
22

1 
 mcm

k

mc
h

z
z 








              (5) 

However, Poisson’s ratio    is assumed to be constant. The material properties of a perfect 

FG beam can be obtained when   is set to zero. 

In addition, for another scenario of porosity distribution, it is possible to obtain imperfect FGM 

samples which have almost porosities spreading around the middle zone of the cross-section and 

the amount of porosity seems to be on the decrease to zero at the top and bottom of the 

cross-section. Based on the principle of the multi-step sequential infiltration technique that can be 

employed to fabricate FGM samples (Wattanasakulpong et al. 2012), the porosities mostly occur 

at the middle zone. At this zone, it is difficult to infiltrate the materials completely, while at the top 

and bottom zones, the process of material infiltration can be performed easier and leaves less 

porosity. Consider this scenario, the equations of Young’s modulus  E  and material density 

   in Eqs. (5) and (6) are replaced by the following forms 

     
























h

z
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h

z
EEzE mcm

k

mc

2
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1 
          (6) 

     


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


















h

z

h

z
z mcm

k

mc

2
1

22

1 
           (7) 

 
2.2 Basic assumptions 

 
The assumptions of the present theory are as follows: 

(i) The origin of the Cartesian coordinate system is taken at the median surface of the FG 

beam. 

(ii) The displacements are small in comparison with the height of the beam and, therefore, 

strains involved are infinitesimal.  

(iii) The transverse displacement w  includes two components of bending bw , and shear 

sw . These components are functions of coordinates x, y only. 

)t,x(w)t,x(w)t,z,x(w sb                       (8) 
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(iv) The transverse normal stress z  is negligible in comparison with in-plane stresses 

x . 

(v) The axial displacement u  in x-direction, consists of extension, bending, and shear 

components. 

 

sb0 uuuu                             (9)   

The bending component bu  is assumed to be similar to the displacements given by the 

classical beam theory. Therefore, the expression for bu  can be given as 

                           
x

w
zu b

b



                           (10)   

The shear component su  gives rise, in conjunction with sw , to the parabolic variation of 

shear strain xz  and hence to shear stress xz  through the thickness of the beam in such a way 

that shear stress xz  is zero at the top and bottom faces of the beam. Consequently, the 

expression for su  can be given as 

x

w
)z(fu s

s



                         (11)  

where 









 22 z

3

1
h

4

1
z

2

1
z)z(f                     (12) 

 
2.3 Kinematics and constitutive equations 
 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (2)-(6) as 

x

w
)z(f

x

w
z)t,x(u)t,z,x(u sb

0








               (13a) 

)t,x(w)t,x(w)t,z,x(w sb                    (13b) 

The strains associated with the displacements in Eq. (13) are 

s
x

b
x

0
xx k )z(fk z                       (14a) 

s
xzxz  )z(g                           (14b) 

where 

x

u00
x




 ,  

2

b
2

b
x

x

w
k




 ,  

2

s
2

s
x

x

w
k




 ,

x

w ss
xz




           (14c) 
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)z('f1)z(g   and 
dz

)z(df
)z('f                     (14d) 

The state of stress in the beam is given by the generalized Hooke’s law as follows 

x11x  )z(Q   and xz55xz  )z(Q                  (15a) 

where 

)z(E)z(Q11   and 
 


12

)z(E
)z(Q55                 (15b) 

 
2.4 Governing equations and boundary conditions 
 
Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Thai and Vo 2012, Draiche et al. 2014, Nedri et al. 2014, Chattibi et 

al. 2015, Zemri et al. 2015) 

           0
2

1


t

t

dtTU                          (16) 

where t  is the time; 1t  and 2t  are the initial and end time, respectively; U   is the virtual 

variation of the strain energy and T   is the virtual variation of the kinetic energy. The variation 

of the strain energy of the beam can be stated as 

 



 













 

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

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

L

0

s

2

s
2

s2

b
2

b
0

L

0

2

h

2

h
xzxzxx

dx
dx

w d
Q

dx

w d
M

dx

w d
M

dx

u d
N        

dzdx  U 

        (17) 

where N , bM , sM  and Q  are the stress resultants defined as 






2

h

2

h
nsxsb dz )f,z,1()M,M,N(  and  




2

h

2

h
xz dzgQ           (18) 

The variation of the kinetic energy can be expressed as 
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



      (19) 

where dot-superscript convention indicates the differentiation with respect to the time variable t ; 

)z(  is the mass density; and ( 1I , 2I , 3I , 4I , 5I , 6I ) are the mass inertias defined as 

   




2

h

2

h

22
654321 dz)z(f,zf,z,f,z,1I,I,I,I,I,I              (20) 

Substituting the expressions for U   and T   from Eqs. (17) and (19) into Eq. (16) and 

integrating by parts versus both space and time variables, and collecting the coefficients of 0u  , 

bw  , and sw  , the following equations of motion of the functionally graded beam are obtained 

dx
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dx
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Eq. (21) can be expressed in terms of displacements ( sb0 w,w,u ) by using Eqs. (13), (14), (18) 

and (20) as follows 
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where 11A , 11D , etc., are the beam stiffness, defined by 
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3. Analytical solution 
 

The equations of motion admit the Navier solutions for simply supported beams. The variables 

0u , bw , sw  can be written by assuming the following variations 


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where mU , bmW , and smW  are arbitrary parameters to be determined,  is the eigenfrequency 

associated with m th eigenmode, and L/m .  

Substituting the expansions of 0u , bw , sw  from Eqs. (24) into the equations of motion Eq. 

(22), the analytical solutions can be obtained from the following equations 




















































































0

0

0

332313

232212

131211

2

332313

232212

131211

sm

bm

m

W

W

U

mmm

mmm

mmm

aaa

aaa

aaa

           (25) 

where  

2
1111 Aa  ,

3
1112 Ba  , 

3s
1113 Ba  ,

4
1122 Da  ,  4s

1123 Da        (26a)  

2s
55

4s
1133 AHa   

111 Im  ,   212 Im ,   313 Im ,  2
4122 IIm    
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 2
5123 IIm                         (26b) 

      
2

6133 IIm   

 

 

4. Results and discussion 
 

In numerical analysis, fundamental frequencies of simply supported perfect and imperfect FG 

beams are evaluated. The FG beam is taken to be made of aluminum and alumina with the 

following material properties: 

 

Ceramic ( CP : Alumina, Al2O3): 380cE GPa; 3.0 ; 3800c kg/m3. 

Metal ( MP : Aluminium, Al): 70mE  GPa; 3.0 ; 2700m kg/m3. 

 
And their properties change through the thickness of the beam according to power-law. The 

bottom surfaces of the FG beams are aluminum rich, whereas the top surfaces of the FG beams are 

alumina rich.  

For convenience, the following dimensionless form is used 

m

m

Eh

L 


2 
  

To validate accuracy of the proposed theory, the comparisons between the present results and 

the available results obtained by Simsek (2010a) and Sina et al. (2009) is shown in Table 1. 

Indeed, in Table 1, the non-dimensional natural frequencies for the perfect FG beam with 

3.0k  for different length-to-height ratios. As can be seen the results of the present theory are in 

good agreement with the other shear deformation theories. 

The first five dimensionless frequencies of perfect and imperfect FG beams are provided in 

Table 2. It should be noted that the materials properties are predicted using Eqs. (3) and (4). The 

results reveal that the frequency results decrease as the volume fraction of porosity    
increases. 

In Figs. 2 and 3, the effect of the porosity the fundamental frequencies of FG beams with two 

different types of porosity distribution is illustrated. It is noted that Solution I refers to the result of 

imperfect FG beams with evenly distributed porosities using Eqs. (3) and (4), while, Solution II is 

for the beams with another type of porosity distribution using Eqs. (6) and (7). It can be seen from 

Fig. 2 that the porosity leads to a decrease of frequency and hence this type of porosity distribution 

(Solution I) makes the beam flexible. However, the effect of porosity on fundamental frequencies 

(Fig. 3) using Solution II is reversed and this type of porosity distribution makes the beam stiffer. 

In Fig. 4, the fundamental frequencies of imperfect FG beams with two different types of 

porosity distribution are plotted versus the power-law exponent  .k As observed, Solution II 

provides higher frequencies than those of Solution I; moreover, the frequencies increase with the 

increase of the power-law exponent  k when this latter takes values more than 2. 
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Table 1 Comparison of non-dimensional fundamental frequencies of FG beams with 3.0k  

     .//

2/

2/

0

2














 



h

h

dzzEIhL  

Source 10/ hL  30/ hL  100/ hL  

FSDBT
R
 (Simsek 2010a) 2.701 2.738 2.742 

FSDBT
S 

(Simsek 2010a) 2.701 2.738 2.742 

PSDBT
R 

(Simsek 2010a) 2.702  2.738 2.742 

PSDBT
S 

(Simsek 2010a) 2.702  2.738 2.742 

ASDBT
R 

(Simsek 2010a) 2.702  2.738 2.742 

ASDBT
S 

(Simsek 2010a) 2.702  2.738 2.742 

Sina et al. (2009) 2.695 2.737 2.742 

Present 2.702 2.738 2.743 

 

 

 
Table 2 Five five Non-dimensional frequencies of FGM beam (L/h=5) 

k    
1  2  3  4  5  

 

0.5 

0 4.4107 15.4588 29.8383 45.6900 62.2054 

0.1 4.4042 15.4572 29.8721 45.7847 62.3858 

0.2 4.3928 15.4438 29.8933 45.8745 62.5647 

 

1 

0 3.9904 14.0099 27.0975 41.5839 56.7346 

0.1 3.9070 13.7552 26.6754 41.0218 56.0673 

0.2 3.7865 13.3831 26.0497 40.1813 55.0562 

 

5 

0 3.4012 11.5430 21.7157 32.6789 43.9940 

0.1 3.1479 10.6851 20.1236 30.3323 40.9081 

0.2 2.6962 9.2066 17.4579 26.4951 35.9587 

 

10 

0 3.2816 11.0240 20.5566 30.7218 41.1431 

0.1 3.0292 10.1034 18.7478 27.9411 37.3584 

0.2 2.5718 8.5021 15.7008 23.3593 31.2283 
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Fig. 2 Variation of the fundamental frequency    
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with hL / ratio for various values of the porosity volume fraction by considering the first solution 

 

 

0 20 40 60 80 100

2,46

2,48

2,50

2,52

2,54

2,56

2,58

2,60

2,62

2,64

2,66

=0,2

=0,1

=0

N
o
n
d

im
e
n
s
io

n
a

l f
u
n
d

a
m

e
n
ta

l f
re

q
u

e
n
c
y

L/h
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5. Conclusions 

 

A new shear deformation beam theory is proposed for free vibration of perfect and imperfect 

FG beams. The theory accounts for parabolic distribution of the transverse shear strains and 

satisfies the zero traction boundary conditions on the surfaces of the beam without using shear 

correction factors. The modified rule of mixture covering porosity phases is used to describe and 

approximate material properties of the imperfect FG beams. It is based on the assumption that the 

transverse displacements consist of bending and shear components. Based on the present beam 

theory, the equations of motion are derived from Hamilton’s principle. The influence of the 

porosities on natural frequencies is then discussed. Numerical examples show that the proposed 

theory gives solutions which are almost identical with those obtained using other shear 

deformation theories. 
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