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Abstract.    In this paper the unsteady fluid-structure interaction (FSI) problems with large structural 
displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite 
element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split 
(CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. 
The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is 
advanced by Newmark-β method in time. The dynamic mesh is updated by using moving submesh approach 
that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is 
introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies 
are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The 
semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection 
splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken’s Δ2 
method is carried out to couple different solvers within the implicit and semi-implicit schemes. 
Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the 
performance of the proposed methods. The overall numerical results agree well with the existing data, 
demonstrating the validity and applicability of the present approaches. 
 

Keywords:    fluid-structure interaction; arbitrary Lagrangian-Eulerian; finite element method; coupling 
scheme; vortex-induced vibrations; large displacement 

 
 
1. Introduction 
 

Fluid-structure interaction (FSI) characterizes the interplay between a fluid and a structure via 
an interface which separates the fluid and structural domains. Possessing great practical interest, 
FSI is a frequent event in a wide variety of engineering realms. For instance, the natural wind over 
a high-rise building or a suspension bridge (Choi and Yu 2000, Morgenthal and McRobie 2002) 
and liquid sloshing in a container (Eswaran et al. 2013, Keivani and Shooshtari 2013, Nagashima 
and Tsukuda 2013, Keivani et al. 2014) are typical FSI phenomena in civil engineering. As a 
consequence, FSI is a significant consideration both for the design and computation of an 
engineering structure. Because of the sophisticated coupling effect existing between two 
completely different media, FSI poses one of the most challenging topics in computational fluid 
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dynamics (CFD). 
Typically, partitioned coupling approach is the preferred strategy to tackle the numerical 

solution of FSI. The partitioned approach strategically solves different disciplines in a sequential 
manner, facilitating the marriage of the existing programs with minimal changes and allowing for 
a flexible choice of various efficient solvers. These traits make the partitioned approach a very 
appealing solution technique in practice. The partitioned coupling approaches can be further 
classified as the explicit scheme (Wall and Ramm 1998, He et al. 2012) and the implicit scheme 
(He et al. 2014, He 2015a, b). From the computational viewpoint, the explicit scheme is efficient 
since it works in a subiteration-free fashion. However, the explicit scheme does not assure the 
exact satisfaction of the equilibrium on the fluid-structure interface so that the accumulative errors 
may produce a spurious solution or even a failure. Under certain circumstances, e.g. 
haemodynamics, the explicit scheme suffers from the severely numerical instability initiated by the 
inherent time lag effect. By comparison, the implicit scheme preserves the energy balance exactly 
and holds the numerical stability well by performing subiterations per time step although it is time 
consuming. Obviously, the implicit scheme is physically rigorous. A great number of endeavors 
have been devoted to design various implicit schemes, e.g., (Matthies and Steindorf 2003, Dettmer 
and Perić 2006a, Dettmer and Perić 2006b, Küttler and Wall 2008, Yamada and Yoshimura 2008, 
He et al. 2014, He 2015b, He 2015a). 

A third category of the partitioned approaches is the semi-implicit scheme which has been 
recently proposed by Fernández et al. (Fernández et al. 2007) to face the strong added-mass effect 
(Causin et al. 2005, Förster et al. 2007). In (Fernández et al. 2007) the concept of the semi-implicit 
or partial-implicit coupling depends on the Chorin-Témam splitting (Chorin 1968, Témam 1968) 
where the ALE-advection-diffusion step (explicit coupling substep) is explicitly treated with a 
predicted mesh movement while the projection step (implicit coupling substep) on the known fluid 
mesh is implicitly coupled with the structural motion. The theoretical analysis in (Fernández et al. 
2007) indicated that the main strength of this scheme originates from its enhanced computational 
efficiency without affecting the stability condition too much, compared to the implicit scheme. 
Breuer et al. (Breuer and Münsch 2008a, Breuer and Münsch 2008b, Breuer et al. 2012) 
independently devised a semi-implicit scheme called the partitioned semi-implicit 
predictor-corrector coupling scheme, which was implemented by connecting code packages both 
for fluid and structure. Following the basic framework of (Fernández et al. 2007), Murea (Murea 
2007) presented a semi-implicit strategy using the augmented Lagrangian method to preserve the 
interfacial consistency of the velocity and stress. For the same purpose, Sy and Murea (Sy and 
Murea 2008, Murea and Sy 2009) solved a least squares problem on the fluid-structure interface 
and presented the stability analysis of their algorithm (Sy and Murea 2008). The 
Broyden-Fletcher-Goldforb-Shano iterations were employed to calculate the resultant optimization 
problem on the frozen fluid mesh. Quaini and Quarteroni (Quaini and Quarteroni 2007) invented a 
semi-implicit scheme using the algebraic fractional step method. Badia et al. (Badia et al. 2008) 
introduced several semi-implicit schemes using the inexact block-LU factorization. Astorino et al. 
proposed a Nitsche-based semi-implicit coupling scheme (Astorino et al. 2009b) and a 
Robin-based semi-implicit coupling scheme (Astorino et al. 2009a) for the better stability 
properties. As a supplement of (Fernández et al. 2007), Astorino and Grandmont (Astorino and 
Grandmont 2010) provided a convergence analysis for the projection-based semi-implicit coupling 
scheme. They proved that the error estimate in finite time was derived and the error of time 

discretization in the scheme was proved to be t  at least from theoretical and numerical 
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viewpoints. Recently, He et al. (He et al. 2014) developed a semi-implicit for flow-induced 
vibrations of a bluff body based on the hybrid interface conditions. 

Fernández (Fernández 2011) firstly presented a review for the numerical simulations of blood 
flows in large arteries involving the implicit, semi-implicit and explicit coupling schemes. We are 
motivated to work on the formulation of efficient FSI solvers in terms of different coupling 
schemes, and this paper aims at presenting a promising application of the CBS scheme on the 
unsteady FSI problems. The foundation is the reality that the CBS scheme makes use of the 
classical Chorin-Témam splitting (Chorin 1968, Témam 1968). Therefore, the CBS scheme can 
serve not only within the fluid subproblem but also within the whole coupling algorithm, as will be 
shown later. On the other hand, the applications of the CBS scheme on FSI are still tedious. The 
present work entails an innovative use of the CBS scheme which is quite different from those 
frequently encountered in the previously published works. 

The remainder of this paper is organized as follows. The fluid problem is depicted in Sections 2 
while the structural problem is presented in Sections 3. The dynamic mesh technique is introduced 
in Section 4. Section 5 provides the interface coupling conditions. The partitioned coupling 
schemes are interpreted in Section 6. Numerical examples are investigated in Section 7 and some 
conclusions are drawn in the final section. 

 
 

2. Fluid model 
 
2.1 Governing equations 
 
We define 2F   as an open bounded fluid domain with the spatial coordinate x  and 

 T,0  as a temporal domain with the temporal coordinate t. The fluid boundary F  consists of 

three nonoverlapping segments, i.e.,   F
N

F
D

F , where F
D , F

N  and   respectively 

denote the Dirichlet, Neumann and interfacial boundaries. The governing equations for an 
incompressible fluid flow on the moving mesh are the Navier-Stokes (NS) equations written in the 
arbitrary Lagrangian-Eulerian (ALE) description, stating the conservation laws of mass and 
momentum as 

 0 u   in  T,0F   (1) 

 0τfuc
u







 

 FFF

t
   in  T,0F   (2) 

where   represents the gradient operator, F  the fluid density, u  the fluid velocity, 

wuc   the convective velocity, w  the mesh velocity, Ff  the fluid body force and Fτ  the 
fluid stress tensor. 

The constitutive equation for a Newtonian fluid reads as 

 FF 2 εIτ  p   in  T,0F   (3) 

   TF

2

1
uuε    in  T,0F   (4) 
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where p  denotes the fluid pressure, I  the identity matrix,   the dynamic viscosity, Fε  the 
rate-of-strain tensor and superscript T transpose. The appropriate initial and boundary conditions 
are prescribed in order to complete the fluid equations. 

Giving the free-stream velocity U and the reference dimension D, the following dimensionless 
variables are defined 

D

x
x  ，

D

tU
t  , 

U

u
u  , 

U

c
c  , 

2FU

p
p


 , 

2

F
F,

U

Df
f   

Introducing the above variables and dropping all asterisks, the dimensionless NS equations are 
obtained as follows 

 0 u   in  T,0F   (5) 

 0fτuc
u



 FF

t
  in  T,0F   (6) 

   TF 1
uuIτ 

Re
p   in  T,0F   (7) 

where 


 DU
Re

F

  is the Reynolds number. 

 
2.2 Characteristic-based split (CBS) scheme 
 
A general solution technique for CFD has been originally proposed by the trilogy of 

Zienkiewicz and his co-workers (Zienkiewicz and Codina 1995, Zienkiewicz et al. 1995, Codina 
et al. 1998) since 1995, and it was formally named the CBS scheme in 1999 (Zienkiewicz et al. 
1999). In the present paper the incompressible NS equations are solved by the semi-implicit CBS 
scheme, whose procedure is carried out by the following steps 

Step 1: Calculate the intermediate velocity field 

  





 


 nnnnnnn t

Re
t uccuucuu

2

1~ 2  (8) 

Step 2: Update the pressure field 

 u~
112 


 

t
pn  (9) 

Step 3: Correct the velocity field 

 





 


  nnnn p

t
pt 211

2
~ cuu  (10) 

where u~  indicates the intermediate velocity and t  is the time step. In the above algorithm the 

body force Ff  and the third-order term are omitted. 
The stability conditions require the time step to satisfy the following criterion (Zienkiewicz and 
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Codina 1995, Zienkiewicz et al. 1995) 

  CONDIF,min ttt   (11) 

where  2DIF 2

1
 Ret  is the local diffusive time step, 

CON
CON u


t  the local convective 

time step,   the characteristic element size, and CONu  the convective element velocity. 

 
2.3 Spatial discretization 
 
The spatial discretization is established by using the standard Galerkin finite element method 

(FEM). The fluid variables are approximated by 

 huuNu   and hpp pN  (12) 

where uN  and pN  are the shape functions of the fluid finite elements, and subscript h means a 

nodal quantity. The final matrix form of the three steps can be written as 

   





 

 n
h

n
h

n
h

n
hh

t
t uKuKQuuuM uτu 2

~  (13) 

 h
n
h t

uBHp ~11


  (14) 

   





 

  n
h

n
hh

n
h

t
t PppBuuM

2
~ 1T1

u  (15) 

where the coefficient matrices are defined as 

  F
T

u duu NNM ,     F
T du

n
u NcNQ ,      F

T
τ d

1
uuRe

NNK , 

      F
TT

u d
2

1
u

n
u

n NcNcK T ,      F
T dpp NNH , 

   F
T dup NNB ,      F

T
dpu

n NNcP  

A linear three-node triangular (T3) element is considered because it is very convenient to use 
an equal-order and low-order interpolation for the fluid velocity and pressure in the CBS scheme. 
To reduce the time consumption, the lumped mass matrix is adopted herein. 

 
 

3. Structural model 
 

A rigid or flexible structure immersed in a fluid sustains the fluctuating fluid force and can be 
modeled as a mass-spring-dashpot system. The structural domain 2S   is bounded by the 
boundary S  which includes three complementary subsets S

D , S
N  and   where S

D  and 
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S
N  are the Dirichlet and Neumann boundaries respectively. The equation governing the structural 

motion is described from the Lagrangian viewpoint by 

 FKd
d

C
d

M 
tt d

d

d

d
2

2

 (16) 

where d  is the structural displacement, M , C  and K  represent the mass, damping and 
stiffness matrices of the structure respectively, and F  is the applied force delivered by the 

surrounding fluid. The structural velocity and acceleration are formulated as 
td

dd
v   and 

2

2

d

d

d

d

tt

dv
a  . For simplicity, the initial and boundary conditions are ignored in the structural 

model. The time marching scheme of Eq. (16) utilizes the famous Newmark-β method which is 
unconditionally stable if 25.0  and 5.0 (Newmark 1959). 
 

3.1 Rigid body case 
 

In the planar case the motion of a rigid body is controlled by three uncoupled displacement 
components defined at the center of gravity. The structural displacement is defined as 

 21
T ddd  where 1d  is the horizontal component, 2d  the vertical component and   

the rotational component. Because M , C  and K  are diagonal, Eq. (16) is reduced to 

 Fd
dd




















































 k

k

k

t
c

c

c

t
m

m

m

2

1

2

1

2

2

2

1

d

d

d

d
  (17) 

where im , ic  and ik  (i = 1, 2 and  ) represent the mass, damping and stiffness of the 
structure respectively. Note that m  is the structural mass moment of inertia and the 
compatibility condition (Nomura and Hughes 1992) must be fulfilled. 

The dimensionless variables and the reduced parameters are defined as follows 

D

x
x  ，

D

tU
t  , 

D

d
d 1

1  , 
D

d
d 2

2 
 , 

2F
D

D 5.0 DU

F
C


 , 

2F
L

L 5.0 DU

F
C


 , 

22F
M

M 5.0 UD

F
C


 , 

11

1
1

2 km

c
 , 

22

2
2

2 km

c
 , 






km

c

2
 , 

U

Df
f N1,

R1,  , 
U

Df
f N2,

R2,  , 
U

Df
f N,

R,


  , 
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1

1
N1, 2

1

m

k
f


 , 

2

2
N2, 2

1

m

k
f


 , 




  I

k
f

2

1
N,  , 

2F
1

1
D

m
m


 , , 

4F D

m
m




   

where DF , LF  and MF  denote the fluid drag, lift and pitching moment respectively, DC , LC  

and MC  are the associated fluid coefficients, i  (i = 1, 2 and  ) is the damping ratio, R,if  (i 

= 1, 2 and  ) is the reduced natural frequency, N,if  (i = 1, 2 and  ) is the natural frequency, 

and 
im  (i = 1, 2 and  ) is the mass ratio. 

After discarding asterisks, Eq. (17) is nondimensionalized as follows 

 
 

 







































































 










m

C
m

C
m

C

f

f

f

t
f

f

f

t

2

2

2

2

2

2

d

d
4

d

d

M

2

L

1

D

2
R,

2
R2,

2
R1,

R,

2R2,

1R1,

2

2

d
dd

 (18) 

 
3.2 Elastic body case 

 
The governing equation for the structural motion of an elastic solid interprets the principle of 

conservation of linear momentum cast in the total Lagrangian formulation by 

 0τf
d









 SS

2

2
S

d

d

t
   in  T,0S   (19) 

where S  is the structural density, Sf  the structural body force and Sτ  the Cauchy stress 

tensor. The second Piola-Kirchhoff stress tensor S  which is related to Sτ  via a geometric 
transformation is given by 

 TS1  GτGS J  (20) 

where dIG   is the deformation gradient tensor and  GdetJ . 
The Saint Venant-Kirchhoff material model is specified to account for the geometrically 

nonlinear behavior as follow 

 ECS :  and  IGGE  T

2

1
 (21) 

where C  stand for the constitutive tensor and E  Green-Lagrangian strain tensor. In addition, 
Young’s modulus E  and Possion’s ratio   must be prescribed for the flexible structure. 
  To enable the nondimensionalization of Eq. (19), the following dimensionless variables are 

2F
2

2 D

m
m



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defined 

 
D

x
x  ，

D

tU
t  , 

D

d
d  , 

2F
*

U

E
E


 , 

2

S
S,

U

Df
f   

Similarly, we can build the dimensionless version of the governing Eq. (19) as 

 0fτ
d

 
SS

2

2 1

d

d

mt
  in  T,0S   (22) 

where 
F

S




m  is the mass ratio. 

 
3.3 Spatial discretization 
 
For the spatial discretization by FEM, the structural variables are approximated as 

 hvdNd  , hvvNv   and hvaNa   (23) 

where vN  is the shape function of the structural finite element. A quadratic nine-node 

quadrilateral (Q9) plane stress element is employed for the structural analysis. 
The weak form of Eq. (22) can be obtained based on the principle of virtual work. By 

substituting Eq. (23) into the weak form and ignoring the damping effect, the matrix form of the 
structural equation is gained at element level below 

 FKd
d

M 2

2

d

d

t
 (24) 

with the following approximations 

   S
T dvv NNM ,  

S
d

1 T
vvm

CBBK ,  
 S

N

ST
S

ST dd hNfNF vv , 

hvdBεS  , vv LNB   

where Sε  denotes the structural strain, vB  the strain matrix and L  the differential operator. 

In order to perform the dynamic analysis of the geometrically nonlinear structure, the 
incremental equilibrium form of Eq. (24) is set up by 

 
2

12
1

T d

d

t

n
nnn


 

d
MRFdK  (25) 

where TK  is the tangent stiffness matrix, d  the displacement increment and R  the internal 
force. According to Bathe et al. (Bathe et al. 1975), Eq. (25) cannot be evaluated directly because 
of the geometric nonlinearity. It is therefore necessary to iterate Eq. (25) using Newton-Raphson 
procedure within the time marching scheme. 
 

3.4 Newton-Raphson iterations 
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Applying Newton-Raphson iterations and Newmark-β method on the equilibrium iterations per 
time step, the numerical algorithm for the incremental solution of Eq. (25) are summarized as 
follows 

Step 1: Initialize all structural variables 
Step 2: Calculate Newmark parameters 

 20

1

t
c





, 
t

c






1 , 
t

c




1

2 , 1
2

1
3 


c , 14 




c , 

tc 







 1

25 


,   tc  16 , tc  7  

Step 3: Form the structural mass matrix M  
Step 4: Start Newton-Raphson iterations and initialize 0iter  and 0d  iter  

Step 4.1: Set 1 iteriter  

Step 4.2: Calculate the tangent stiffness matrix n
TK  

Step 4.3: Evaluate the equivalent stiffness matrix MKK 0T cnn   

Step 4.4: Assess the acceleration and displacement of the structure 
nn

iter
n
iter ccc avda 3210

1
1  


  and 1

1
1 


  iter

nn
iter ddd  

Step 4.5: Evaluate the equivalent imbalance load 
1

1
1

1
11

1







  n

iter
n
iter

nn
iter MaRFF  

Step 4.6: Solve the equation of displacement increment at the iterth iteration 
1

1δ 
 n

iteriter
n FdK  

Step 4.7: Obtain the new displacement increment 

iteriteriter ddd δ1    

Step 4.8: Compute the residuals 

1δδ  iteriteriter ddg  

Step 4.9: Check convergence and number of iterations 

If NRtoliter g  and MAXNR,iteriter  , then iterdd   and go to Step 5 

Otherwise, return to Step 4.1 
Step 5: Estimate new acceleration, velocity and displacement of the structure 

nnn ccc avda 320
1  , 1

76
1   nnnn cc aavv  and ddd  nn 1  

Step 6: Proceed to the next time step 
The relevant coefficients matrices and vectors have already been provided in (Bathe et al. 1975) 

for the above process. 
 

 
4. Mesh updating technique 
 

4.1 Moving submesh approach (MSA) 
 
The dynamic fluid mesh is updated by means of MSA (Lefrançois 2008) in this study. The 
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basic idea of MSA relies on putting a layer of sparse submesh over a fine fluid mesh which is then 
dynamically re-arranged through the specific interpolation formulae. Because of two different 
layers of meshes used, the elements and nodal points on the MSA submesh are labeled zones and 
nodes distinctively, whereas those on the fluid finite element mesh are still identified as elements 
and points. When complex rigid structures with curvilinear or segments geometries are 
encountered, a capsule is used to encapsulate them to respect all corners of their profiles. In order 
to accurately represent a flexible structure’s movement and deformation, it is necessary to employ 
the same level of MSA submesh as that of the structural surface. A resolution of quasi-elasticity 
equations is required if a submesh contains interior nodes. To that end, the ortho-semi-torsional 
spring analogy method (OST-SAM) (Markou et al. 2007) is used. The resulting quasi-static 
equilibrium equations arising from OST-SAM are solved by successive over-relaxation technique 
(Zeng and Ethier 2005) since the number of interior nodes is very small in general. 

The main steps of MSA are outlined as follows 
Step 1: Extract the information of the fluid mesh and the MSA submesh 
Step 2: Collect the fluid points falling into each zone 
Step 3: Calculate the interpolation formulae for each fluid point belonging to a zone 
Step 4: Begin time loop 
Step 4.1: Gain the motion of wall nodes from the structural movement 
Step 4.2: If the submesh owns no interior nodes, then go to Step 4.3 

Or else, invoke OST-SAM for the motion of interior nodes 
Step 4.3: Update the submesh 
Step 4.4: Interpolate the fluid mesh according to the new submesh 
Step 4.5: Check zones and elements’ areas 

If any area is zero or negative, then stop 
Otherwise, proceed to the next time step 

Step 5: End time loop 
Our numerical experience reveals that the cost of MSA is far less than that of SAM, and MSA 

can well preserve the quality of the ALE mesh topology without resorting to any smoothing of the 
nodes’ coordinates. We also notice that MSA is a variation of the approach proposed by Liu et al. 
(Liu et al. 2006). Both approaches adopt the shape functions of a T3 element as their interpolation 
formulae, but MSA is much simpler for those users who are not familiar with Delaunay graph 
tools. MSA has been successfully applied to the vortex-induced vibrations (VIV) of a bluff body in 
our previous works (He et al. 2012, He et al. 2014, He 2015a,b). 

 
4.2 Geometric conservation law (GCL) 
 
GCL is inevitably encountered in the moving boundary problems. As pointed out in (Lesoinne 

and Farhat 1996), GCL will be automatically satisfied for the 2D stabilized FEM if the mesh 
velocity is calculated by 

 
t

nn
n







 xx
w

1
21  (26) 

Although the midpoint rule (26) is only first-order accurate, it is in wide use and is more 
suitable than a higher-order scheme in certain case (Förster et al. 2007). Despite that, the midpoint 
rule may break up the velocity continuity on the interface (Farhat and Lesoinne 2000). 
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It is not trivial to structure the differencing scheme of the mesh velocity for a 
fractional-step-type fluid solver to fulfill GCL. To this end, a mass source term (MST) (Jan and 
Sheu 2004) is adopted in this study. Eq. (9) is therefore recast as 

 1
MST

12 ~1  


 nn S
t

p u  (27) 

with 
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where 1n
eA  is the area of element e at time n + 1, superscript i (i = 1, 2 and 3) in mesh velocity 

means point i of element e and subscript j (j = 1 and 2) component j of coordinates. It should be 
emphasized that MST is rigorously derived from the T3 element context and it vanishes when a 
fluid flows on the Eulerian mesh. 

 
 

5. Equilibrium conditions 
 

For partitioned solution approaches, the interplay between a fluid and a structure is achieved by 
enforcing equilibrium conditions on the interface  , amounting to 

 vu    on  T,0  (29) 

 SF σσ    on  T,0  (30) 

where FFF nτσ   and SSS nτσ   are the fluid and structural tractions respectively, Fn  

represents the unit outward normal of the wet interface and FS nn   means the unit outward 
normal of the dry interface. Also, the following geometric continuity should be satisfied for the 
mesh motion 

 dx    on  T,0  (31) 

 vw    on  T,0  (32) 

 
 

6. Partitioned coupling strategies 
 

In the present paper the partitioned coupling strategies consist of the explicit, implicit and 
semi-implicit schemes based on the previous chapters. A detailed description of each scheme is 
provided in this section, allowing for a flexible choice to solve FSI problems. Nevertheless, all 
schemes are used to solve the numerical examples for comparison. Under the consideration of an 
elastic solid, the matching finite element discretizations have been generated at both sides of the 
fluid-structural interface in order to avoid the loss of the computational accuracy. 
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6.1 Explicit scheme 
 
The explicit scheme is straightforward to be implemented. The staggered solution of each 

physical field is advanced in time without the imperative satisfaction of the interfacial 
conservation. A second-order structural predictor (Piperno 1997) is employed herein. The overall 
coupling procedure of the explicit scheme is well written as follows 

Step 1: Initialize all variables 
Step 2: Extrapolate the position of the interface   (Piperno 1997) 

tnnnn 





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
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
11
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1

2

3~ vvdx  

Step 3: Rearrange the fluid mesh by using MSA 
Step 4: Calculate the mesh velocity 

t
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n


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Step 5: Derive the relevant geometric quantities 
Step 6: Obtain MST for satisfying GCL 
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Step 7: Compute the intermediate velocity 
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Step 8: Update the fluid pressure 

1
MST

12 ~1  


 nn S
t

p u  

Step 9: Correct the fluid velocity 







 


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t
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2
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Step 10: Deduce the fluid load  111,F ,  nnn puσ  
Step 11: Solve the structural equation 

 1,S111   nnnn σFKdCvMa  
Step 12: Proceed to the next time step 
 
6.2 Implicit scheme 
 
It is imperative to require that the equilibrium conditions on the interface should be exactly 

satisfied at every subiteration per time step for the implicit coupling of the interacting fields when 
advancing the FSI solution is in time. The present implicit scheme employs fixed-point algorithm 
with Aitken’s Δ2 accelerator (Küttler and Wall 2008). This technique is of simple operability with 
good convergence. The main steps of the implicit scheme are described below 

Step 1: Initialize all variables and 0iter  
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Step 2: Extrapolate the position of the interface   (Piperno 1997) 
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3~ vvdx  

Step 3: Start fixed-point iterations 
Step 3.1: Set 1 iteriter  
Step 3.2: Rearrange the fluid mesh by using MSA 
Step 3.3: Calculate the mesh velocity 
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Step 3.4: Derive the relevant geometric quantities 
Step 3.5: Obtain MST for satisfying GCL 
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Step 3.6: Compute the intermediate velocity 
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Step 3.7: Update the fluid pressure 
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Step 3.8: Correct the fluid velocity 
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Step 3.9: Deduce the fluid load  111,F ,  n
iter

n
iter

n
iter puσ  

Step 3.10: Solve the structural equation 

 1,S111   n
iter

n
iter

n
iter

n
iter σFKdCvMa  

Step 3.11: Estimate the interfacial residuals 
1
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,
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n
iteriter xxg  

Step 3.12: Check convergence and number of iterations 

If FPtoliter g  and MAXFP,iteriter  , then proceed to the next time step 

Otherwise, go to Step 3.13 
Step 3.13: Assess Aitken factor iter  (Küttler and Wall 2008) 

Step 3.14: Relax the interface’s position 
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Step 3.15: Go back to Step 3.1 
 
6.3 Semi-implicit scheme 
 
In this subsection the semi-implicit scheme is inspired by the projection-based semi-implicit 
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coupling method (Fernández et al. 2007), and thus is called a CBS-based partitioned semi-implicit 
coupling scheme. The semi-implicit scheme adopts an explicit coupling stage and an implicit 
coupling stage since the CBS scheme follows the well-known Chorin-Témam splitting (Chorin 
1968, Témam 1968). In the explicit coupling stage the first step of the CBS scheme is carried out 
on a predicted fluid mesh, while, supposing the fluid mesh is fixed provisionally, the other two 
steps are implicitly coupled with the structural dynamics in the implicit coupling stage. Compared 
to a fully implicit coupling method, this algorithm reduces the computational effort drastically 
without compromising stability too much. At the same time all merits of the CBS scheme and the 
projection-based semi-implicit coupling scheme are inherited. Unlike (Fernández et al. 2007), the 
fluid force loading on the structure is always evaluated using the end-of-step fluid velocity rather 
than the intermediate one. Within the implicit coupling phase the fluid and structural fields are 
iterated via fixed-point algorithm with Aitken’s Δ2 method (Küttler and Wall 2008). The procedure 
of the semi-implicit scheme is elaborated in the following 

Step 1: Initialize all variables and 0iter  
Step 2: Perform the explicit coupling step 
Step 2.1: Extrapolate the position of the interface   (Piperno 1997) 
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Step 2.2: Rearrange the fluid mesh by using MSA 
Step 2.3: Calculate the mesh velocity 
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Step 2.5: Obtain MST for satisfying GCL 
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Step 2.6: Compute the intermediate velocity 
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Step 3: Perform the implicit coupling step and start fixed-point iterations 
Step 3.1: Set 1 iteriter  
Step 3.2: Update the fluid pressure 

1
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Step 3.3: Correct the fluid velocity 
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Step 3.4: Deduce the fluid load  111,F ,  n
iter

n
iter

n
iter puσ  

Step 3.5: Solve the structural equation 

 1,S111   n
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n
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n
iter

n
iter σFKdCvMa  

Step 3.6: Estimate the interfacial residuals 
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1
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Step 3.7: Check convergence and number of iterations 

If FPtoliter g  and MAXFP,iteriter  , then proceed to the next time step 

Otherwise, go to Step 3.8 
Step 3.8: Assess Aitken factor iter  (Küttler and Wall 2008) 

Step 3.9: Relax the interface’s position 
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Step 3.10: Calculate the new mesh velocity on the interface for the fluid boundary condition 

t

nn
itern

iter 








xx
w

1
,1

,

~
 

Step 3.11: Renew MST for those elements adjacent to the interface 
Step 3.12: Go back to Step 3.1 
 
6.4 Aitken’s Δ2 method 
 
Aitken’s Δ2 method enjoys popularity to accelerate the FSI simulations. The dynamic factor 

1n
iter  at iterth iteration of time n + 1 is estimated by the following recursion formula (Küttler and 

Wall 2008) 
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where 1.0MAX   and 5.00
1  . 

 
 

7. Numerical examples 
 

Before presenting our results, we stress that the effects of the mesh resolution and the time step 
have been fully considered via intense computer experiments. As a consequence, the right choice 
has been made on the computational parameters for the following numerical examples. 

 
7.1 Flutter of a bridge deck 
 
The objective of this example is to simulate a rigid bridge deck with H-profile. The deck is 

mounted with a vertical spring and a rotational spring, hence being allowed to oscillate vertically 
and rotate freely. The computational domain along with the boundary conditions is graphically 
demonstrated in Fig. 1. The bridge deck is exposed to the uniform flows in the horizontal direction 
and its dimensionless geometry is displayed in Fig. 1. The no-slip boundary condition is applied on 
the deck surface. The free-stream velocities are prescribed at the inlet and the pressure-free 
condition is imposed at the outlet. The free boundary condition is assigned to the lateral 
boundaries. All initial variables are assumed to be zero. The system parameters are set as the same 
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as those of (Hübner et al. 2001, Dettmer and Perić 2006a): the fluid density 25.1F , the fluid 

viscosity 1.0 , the inflow velocity 10U , the structural mass 30002 m , the vertical 

spring stiffness 20002 k , the mass moment of inertia 25300m  and the rotational spring 

stiffness 40000k . The structural damping is omitted for encouraging the large displacement. 
The characteristic scale is chosen as the width of the bridge deck 12D , thus the Reynolds 

number is 1500


 UD
Re

F
 in this problem. The resulting mass ratios are 667.162 

m  and 

976.0
m . The natural frequencies are 1299.02 N,f  and 2001.0N,f , resulting in the 

reduced natural frequencies 1559.02 R,f  and 2401.0R,f . 

For the sake of computational efficiency, the entire computational domain is divided into three 
parts: Eulerian subdomain A1, ALE subdomain A2 and Lagrangian subdomain A3. The size of A2 
is 4D × 4D while A3 is made of two rectangles each of which is 0.95D × 0.0875D. The points in 
A1 keep fixed at all time while those in A3 move with the rigid body. In A2 the points are 
dynamically updated by MSA. In order to pay a lower price, some time-invariant matrices in A1 
thus are calculated only once at the beginning of the simulation. In Fig. 2(a) the finite element 
mesh consists of 6486 T3 elements and 3329 points and the corresponding MSA submesh is 
demonstrated in Fig. 2(b). Since there is no optimal option, a good MSA topology is intuitively 
requested to fulfill the following two criterions as possible as it can: (1) it has less number of zones; 
(2) its mesh has the (biaxial) symmetry. The reason why a coarser submesh is better has been 
stated in (Lefrançois 2008). 

As for other computational constants, we prescribe the time step 2100.1 t , Newmark 
parameters 25.0  and 5.0 , the convergence tolerance 6100.1 FPtol , and the 
maximum number of iterations 50MAXFP,iter . Another concern is the efficiency of the iterative 
solution under the given conditions. The present computations for fluid-rigid body interaction at 
most require 4 iterations per time step, and the maximum number will rise to 8 approximately in 
fluid-flexible body interaction simulations. Typically 1~2 iterations are sufficient at each time step 
for both kinds of FSI problems, confirming the report from (Habchi et al. 2013) that the maximum 
number of 3 iterations was required at each time step when a stricter convergence tolerance was 
employed. Thus the computational cost currently remains at a low level. 

The computed results are listed in Table 1, including the amplitude of the vertical displacement MAX2,d , the vertical oscillation frequency O2,f , the amplitude of the rotational displacement 

MAX,d  and the rotational oscillation frequency O,f . From Table 1, a reasonable agreement is 

observed between the present paper and (Dettmer and Perić 2006a), establishing the good 
validation of the proposed coupling schemes. The present maxima of the vertical displacement 
agree well with that of (Dettmer and Perić 2006a). The peaks of the obtained rotational 
displacement and the obtained oscillation frequency are a bit larger than that of Dettmer and 
Perić’s (Dettmer and Perić 2006a). In particular, the semi-implicit scheme generates the smallest 

MAX,d  and Of  that deviate from (Dettmer and Perić 2006a) by 9.77% and 20.81%. Identical to 

(Dettmer and Perić 2006a), the vertical oscillation frequency coincides with its rotational 
counterpart. In summary, the difference among our schemes is tiny. In our previous work (He et al. 
2014), the maximum angle of rotation of a freely rotating rectangular cylinder is also larger than 
the existing data. 
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Fig. 1 The geometry and the boundary conditions for an oscillating bridge deck 

 
 

 
(a) Finite element mesh for fluid field (b) MSA submesh for ALE domain 

Fig. 2 Mesh and submesh of the problem 
 
 

Table 1 Comparison of the results for the oscillating bridge deck 

Reference Coupling scheme MAX2,d  O2,f  MAX,d  O,f  

Dettmer and Perić 

(Dettmer and Perić 

2006a) 

Implicit 0.0625～0.0708 0.186 0.9948 0.186 

Present study Explicit 0.0667 0.2271 1.1455 0.2271 

Present study Implicit 0.0683 0.2271 1.1558 0.2271 

Present study Semi-implicit 0.0656 0.2247 1.0920 0.2247 
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The time histories of the structural displacements in the vertical and rotational directions are 
shown in Figs. 3-5. Again, only minor changes are perceived in the time evolution of the structural 
displacements. The graphs of the vertical displacement are fluctuating. This phenomenon is also 
implied by Dettmer and Perić (Dettmer and Perić 2006a). In (Dettmer and Perić 2006a) the 
large-scale vibrations of the bridge deck start at 58t , and then take a stable pattern at 167t . 
The same fact is observed in this paper. Since the rotational oscillation frequency is close to the 
natural rotational frequency and the vertical oscillation is feeble, the rotation is obviously the 
dominant motion in this case. The famous flutter phenomenon is clearly seen herein. A typical 
vorticity field is illustrated in Fig. 6. 

 
 

 

(a) Vertical displacement (b) Rotational displacement 

Fig. 3 Time histories of two displacement components using the explicit scheme 
 
 
 

(a) Vertical displacement (b) Rotational displacement 

Fig. 4 Time histories of two displacement components using the implicit scheme 
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(a) Vertical displacement (b) Rotational displacement 

Fig. 5 Time histories of two displacement components using the semi-implicit scheme 
 
 

 

(a) Vorticity (b) pressure 

Fig. 6 Instantaneous contours of the bridge deck 
 
 

7.2 VIV of a cantilever attached to a square cylinder 
 
This model problem was originally presented by Wall and Ramm (Wall and Ramm 1998). It is 

now referred to as a benchmarking problem extensively used to assess the quality of FSI solution 
algorithms. The geometry and the boundary conditions are plotted in Fig. 7. A fixed square 
cylinder is submerged in the fluid field, serving as an obstacle with salient edges from which the 
swirling vortices shed at a certain frequency. A geometrically nonlinear cantilever is attached to the 
square cylinder in the center of the downstream face, which is excited to oscillate by the 
time-dependent drag and lift due to the vortex formation in the wake of the obstacle. The no-slip 
boundary condition is applied on the surfaces of the cylinder and cantilever. The measuring point 
is placed in the middle of the right edge of the cantilever. The material parameters are as follows 

(Wall and Ramm 1998): the fluid density 31018.1 F , the fluid viscosity 41082.1  , the 

structural density 1100.1 S , Young’s modulus 6105.2 E  and Poisson’s ratio 35.0 . 

The length scale of the square cylinder is 1D  and the fluid inflow velocity is 3.51U , 
corresponding to 6.332Re  in this example. 
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Fig. 7 The geometry and the boundary conditions for a flexible cantilever attached to a square cylinder 
 
 

 
(a) Finite element mesh for fluid field (b) MSA submesh for ALE domain 

Fig. 8 Mesh and submesh for the problem 
 
 

The fluid field is decomposed into Eulerian subdomain A1 and ALE subdomain A2 to reduce 
the time consumption. A2 is a square box of size 6D × 6D. The information on grid meshing is 
assigned as follows. The fluid mesh comprises 8789 T3 elements and 4508 points while the MSA 
submesh 245 T3 elements and 171 points. The cantilever is discretized with 20 Q9 plane stress 
elements. The fluid mesh and the MSA submesh are exhibited in Fig. 8. The time step 

2100.1 t  is adopted. The convergence tolerance is 6100.1 FPtol  and the threshold for 

the number of iterations 50MAXFP,iter . 5.0  and 8.0  are chosen for Newmark-β 

method. 
Table 2 compares the time-averaged deflection 2d  and the time-averaged oscillation 

frequency Of  of the measuring point with those documented in the open literature (Wall and 
Ramm 1998, Hübner et al. 2001, Matthies and Steindorf 2003, Teixeira and Awruch 2005, Dettmer 
and Perić 2006b, Liew et al. 2007, Bazilevs et al. 2008, Wood et al. 2008, Yamada and Yoshimura 
2008, Braun and Awruch 2009, Olivier et al. 2009, Habchi et al. 2013). Both quantities are 
nondimensionalized by D and U. It is seen from Table 2 that some difference exists amongst the 
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published data and a reasonable agreement is observed between the present and existing results. 
Whilst our schemes give birth to the nearly identical data. The computed mean oscillation 
frequencies 0587.0Of  and 0586.0Of  are close to the first eigenfrequency of the flexible 

thin cantilever 0591.01 Sf , therefore predominating the structural oscillations. 
Fig. 9 plots the smooth and undamped time histories of the tip displacement of the flexible 

cantilever for all schemes, demonstrating that the strong oscillations of the structure induced by 
the incompressible fluid. In Fig. 9, all cases correctly generate the unsteady periodic long-term 
oscillatory movements of the geometrically nonlinear cantilever. In accordance with (Dettmer and 
Perić 2006b, Yamada and Yoshimura 2008), the violent vibrations of the cantilever commences 
roughly at the dimensionless time 100, namely the real time 2 seconds. But Liew et al. (Liew et al. 
2007) reported that their unsteady long-periodic response came much later. 

According to (Liew et al. 2007), the displacement history is partitioned into two stages: lock-in 
and beating. In the first stage, the structural displacement is amplified gradually because the 
oscillation frequency of the cantilever gets close to its first eigenfrequency, namely the resonance 
occurs. In the second stage, the structural response converges to the stable long-term oscillatory 
motion. During the whole course of the structural vibrations, the vortex shedding induces the 
occurrence of lock-in and drives the flexible cantilever to oscillate sharply, and then the violent 
oscillations of the flexible cantilever alter the vortex-shedding mode whose frequency derivates 
from the structural first eigenfrequency. 

 
 

Table 2 Comparison of the results for the flexible cantilever 

Reference Dimensionality Coupling scheme 2d  Of  

Wall and Ramm (1998) 2D Explicit 1.20 0.0604 

Hübner et al. (2001) 2D Monolithic 1.08 0.0615 

Matthies and Steindorf (2003) 2D Implicit 1.18 0.0610 

Teixeira and Awruch (2005) 3D Explicit 1.35 0.0584 

Dettmer and Perić (2006b) 2D Implicit 1.25 0.0634 

Liew et al. (2007) 2D Monolithic 1.34 0.0609 

Yamada and Yoshimura (2008) 2D Implicit 1.19 0.0624 

Wood et al. (2008) 3D Implicit 1.15 0.0573 

Bazilevs et al. (2008) 2D Monolithic 1.21 0.0591 

Braun and Awruch (2009) 3D Explicit 1.181～1.215 0.0600 

Olivier et al. (2009) 2D Implicit 0.95 0.0618 

Habchi et al. (2013) 2D Implicit 1.02 0.0634 

Present study 2D Explicit 1.32 0.0587 

Present study 2D Implicit 1.35 0.0587 

Present study 2D Semi-implicit 1.34 0.0586 
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(a) Explicit scheme (b) Implicit scheme (c) Semi-implicit scheme 

Fig. 9 Time histories of the tip displacement using different schemes 
 
 

  
(a) vorticity (b) pressure 

Fig. 10 Instantaneous contours of the flexible cantilever 
 
 
Fig. 10 displays three typical snapshots of the instantaneous vorticity and pressure fields based 

on the semi-implicit scheme. The unsteady feature of the flow patterns and the oscillations is 
distinguished evidently when the oscillations of the cantilever are established totally. In Fig. 10(a) 
the vortices are alternatively shed from two lateral sides of the square cylinder and then act on the 
cantilever surface, inducing the strong structural oscillations during an oscillation period. The 
vortices on one side towards which the flexile cantilever starts to move are weakened and they are 
eventually suppressed by the flows near the cantilever. High compression is perceived on this side. 

444



 
 
 
 
 
 

Partitioned coupling strategies for fluid-structure interaction with large displacement… 

However, the vortices on the opposite side are strengthened and advect downstream from the 
cantilever. These vortices are generated by the velocity gradient at the tip of the cantilever (Habchi 
et al. 2013). Seen from Fig. 10(b), the pressure distribution on the frontal side of the square 
cylinder is positive due to the immediate exposure of the obstacle to the flows. The high suction 
(blue zone) can be detected along the lateral sides of the square cylinder. The pressure distribution 
on the cantilever’s surface opposite to the direction of the structural motion is also negative but 
leads to the lower suction. 

In the present study all schemes produce almost the same results although only the results 
based on the semi-implicit scheme are presented. Interestingly, the comparisons between the 
explicit and implicit coupling methods for this problem are conflicting (Matthies and Steindorf 
2003, Wood et al. 2008, Dettmer and Perić 2013). 

 
 

8. Conclusions 
 
This paper has presented three partitioned coupling strategies to deal with the unsteady FSI 

problems in the ALE finite element framework. The incompressible viscous NS equations are 
solved by the semi-implicit CBS scheme. A bluff body and an elastic solid are considered as the 
structural models whose time marching scheme is Newmark-β method. In order to take into 
account the large deformation, the constitutive law of the elastic solid is governed by the Saint 
Venant-Kirchhoff material. Newton-Raphson procedure is thus utilized to solve the resulting 
structural nonlinear equations. A hybrid technique, namely MSA in conjunction with OST-SAM, is 
employed to update the fluid mesh. A mass source term is absorbed by the CBS scheme to easily 
satisfy geometric conservation law, hence averting the cumbersome construction for the mesh 
velocity. The proposed coupling algorithms comprise the explicit, implicit and semi-implicit 
schemes. The first two are fairly easy to be understood in theory and to be implemented in practice, 
whereas the last one is developed in the similar manner by Fernández et al. (Fernández et al. 2007). 
In particular, the semi-implicit scheme contains the explicit and implicit coupling stages thanks to 
the Chorin-Témam splitting (Chorin 1968, Témam 1968) existing in the CBS scheme. Instructions 
of all coupling schemes are clearly depicted. Fixed-point algorithm with Aitken’s Δ2 accelerator is 
executed for the iterative loops within the implicit and semi-implicit schemes. To validate the 
proposed schemes, two FSI problems with large structural displacements are considered. The first 
example is a bridge deck that is excited by the incompressible fluid to oscillate vertically and to 
rotate in the large angle attitude. Flow-induced vibrations of a flexible cantilever behind a square 
cylinder are analyzed in the second example. The geometric nonlinearity of the cantilever is fully 
considered to demonstrate the difficulty of the FSI computation. A good agreement between the 
present and existing data is observed. All schemes produce the nearly identical results and some 
well-known flow phenomena are successfully detected. 
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