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Abstract.    For controlling the vibration of specific building structure with large span, a practical method for 
the design of MTMD was developed according to the characteristics of structures subjected to wind loads. 
Based on the model of analyzing wind-induced response of large-span structure with MTMD, the 
optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads 
was established, in which the applicable requirements for strength and fatigue life of TMD spring were 
considered. According to the method, the controlled modes and placements of TMDs in MTMD were 
determined through the quantitative analysis on modal contribution to the wind-induced dynamic response 
of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, 
damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. 
Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD 
showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated. 
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1. Introduction 
 

In recent years, some large-scale scientific instruments are installed in a laboratory with large 
span. Shanghai Synchrotron Radiation facility located in Pudong district of Shanghai, China, 
which is a scientific platform for basic researches, is such kind of modern laboratory. For the 
purpose of scientific research, the vibration of building structure of laboratory should be strictly 
controlled under external excitations including wind loads; otherwise the vibration of structures 
could transfer to the scientific equipment, which may reduce the accuracy of instruments. 
Therefore, the vibration of the important structures must be strictly under control.  

As we all know, TMD is effective in restraining the vibration of some “simple” structure. The 
“simple” structure, such as high-rise structure, herein refers to the structure whose vibration only 
certain mode mainly contributes to. However, large-span roofs usually have closely spaced 
natural frequencies, which leads to multi-mode contribution to their structural vibration. In this 
situation, a single tuned mass damper (STMD) hardly shows good behavior in reducing the 
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vibration of large-span roofs. As a solution, the use of more than one TMDs with different 
dynamic characteristics, was proposed by Xu and Igusa (1992) to improve the effectiveness and 
robustness. The multiple tuned mass dampers (MTMDs) for controlling the structural vibration 
consist of a large number of small TMDs whose natural frequencies are distributed around the 
natural frequency of a controlled mode of the structure. Moreover, since MTMD is composed of 
several small TMDs, it is more flexible and easily manufactured than STMD in engineering 
practice. A single TMD in MTMD has small mass and volume, which wouldn’t affect the usage 
of interior space of laboratory significantly. The advantages above make MTMD superior to 
STMD in term of the robustness and convenience when the vibration of large-span structures 
needs to be reduced.  

Many researchers have made contributions to the study on the characteristics of MTMD. Abe 
and Fujino (1994) studied the modal characteristics and efficiency of the MTMD analytically. 
Perturbation solutions for the modal properties of the MTMD-structure system were obtained and 
the modal characteristics discussed. They derived an explicit formula to estimate the effectiveness 
of the MTMD subjected to harmonic forces. The dynamic characteristics and effectiveness of 
MTMD under random loading were investigated by Kareem and Kline (1995). And a parameter 
study was conducted to delineate the influence of several parameters on the effectiveness and 
robustness of MMDs in comparison with a STMD. Li and Liu (2000, 2002a) studied the 
performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures 
under the ground acceleration. The numerical results indicated that for the MTMD there exist the 
near-zero optimum average damping ratio, invariant optimum frequency spacing, irregular change 
of the optimum tuning frequency ratio, deteriorating range of the effectiveness, failure ranges of 
the total mass ratio, and maximum allowable total number.  

The distribution pattern of MTMD also attracted many attentions from scholars. In 1995, Abe 
and Igusa (1995) further described the coupling between the motions of the p modes of the 
structure and the multiple TMDs. The results showed that properly placed attachments of TMDs to 
the structure are important to control the response. Park and Reed (2001) numerically evaluated 
the performance of multiple dampers with uniformly and linearly distributed masses, respectively, 
under harmonic excitation. They showed that the uniformly distributed mass system is more 
effective in reducing the peak dynamic magnification factor. Li (2002b) conducted a study to 
search for the preferable MTMD which performs better and is easily manufactured. These MTMD 
comprised various combinations of the stiffness, mass, damping coefficient and damping ratio in 
the MTMD. The double tuned mass dampers (DTMD), consisting of one larger TMD and one 
smaller TMD, was further proposed by Li and Zhu (2006a) to seek for high effectiveness and 
robustness for the reduction of the undesirable vibrations of structures under the ground 
acceleration. Carneiro et al. (2008) numerically investigated the dynamic performance of a 
controlled high-rise building. In the paper, the effects of different numbers of mass dampers and 
their interconnection were considered. 

Except for researches on the basic characteristics of MTMD, investigations on the engineering 
application of MTMD also have been reported. Zheng et al. (2002), Avila and Goncalves (2009), 
Lewandowski and Grzymislawska (2009), Moon (2010), Patil and Jangid (2011) studied the 
application of MTMD in high-rise buildings. Jangid and Datta (1997), Singh et al. (2002), Ahlawat 
and Ramaswamy (2003), Wang and Lin (2005), Li and Qu (2006b), and Desu et al. (2006) 
explored the dynamic characteristics of MTMD on torsionally coupled structures. Gu et al. (2001), 
Chang et al. (2003), Chen et al. (2003), Kwon and Park (2004) and Ubertini (2010) discussed the 
effectiveness of MTMD in wind-induced response vibration control of long-span bridge. Carpineto 
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et al. (2010), Li et al. (2010) and Daniel et al. (2012) applied the MTMD to reduce the 
pedestrian-induced vibration of footbridge. Hwang et al. (2011) and Nguyen et al. (2012) 
controlled the floor vibration using MTMD. 

However, compared with high-rise structures and long-span bridges, it is more difficult for 
large-span structures to get placement and optimal parameters of MTMD due to its characteristics 
of three-dimensional effect, closely spaced natural frequencies. Few researches concerning the 
application of MTMD in structures with closely spaced natural frequencies have been reported yet. 
In the present study, the optimization method of MTMD for large-span roof structures subjected to 
wind loads was established. In the method, the dynamic characteristics of wind-induced response 
of large-span roofs were used to determine the controlled modes and placements of TMDs in 
MTMD. Moreover, as an important pre-condition in engineering practice, the strength and fatigue 
life of TMD spring were involved as the constraint condition during the process of optimization. 
To examine the efficiency of MTMD, the new method was applied to a specific shell structure. 
And the control effect, effect of TMDs spring constraints and robustness of MTMD were 
evaluated. 

 
 

2. Analytical model of structures with MTMD 
 
2.1 Numerical simulation procedure 
 
The dynamic equation of structure-MTMD model was (Connor 2003) 
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where  sM ,  sC  and  sK  are the mass, damping and stiffness matrixes of the main structure, 

which are n×n (n is the total degree of freedom (DOF) of the main structure) dimensional matrixes. 
 sx ,  sx  and  sx  are the displacement, velocity and acceleration vectors of the main structure 

respectively, which are n-dimensional vectors.   tF  is the fluctuating wind load (a 

n-dimensional vector) on the structure.   tU  is the MTMD control force vector (a m-dimensional 

vector; m is equal to the total number of MTMDs).  H  is a n×m dimensional MTMD placement 
matrix, which is composed of 0 and 1. 

kjH  =1 means that TMD j is installed on the DOF k.  TM , 

 TC  and  TK  are the mass, damping and stiffness matrixes of the MTMD, which are m×m 

dimensional matrixes respectively.   ,    and    are the displacement, velocity and 

acceleration vectors of TMD relative to the main structure respectively, which are m-dimensional 
vectors. 
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The power spectra of generalized displacement of structure and relative displacement of 
MTMD can be gained using the knowledge of structural dynamics and random vibration    

         TqqRR SS    (4) 

where    is the matrix of the structural mode, and  ][ qqS  is the power spectrum of 

generalized displacement of the structure. 
When the power spectrum wind loads is a unilateral spectrum, the root mean square (RMS) of 

structural displacement is 

  



0

 dSRRR                           (5) 

The peak response of structural displacement is defined as 

 RgRP   (6) 

where R  is the mean response of structural displacement, 
R  is the RMS of structural 

displacement and g  is a peak factor, valued 2.5 in this paper. 
The reduction factor of dynamic response is defined as 

 
0

1  w
R                           (7) 

where 
0  and 

w
  are the values of RMS of structural displacement before and after the 

integration of MTMD, respectively. Larger reduction factor represents better control effect. 
The mean reduction factor is defined as 
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                            (8) 

where N is the total number of concerned structural responses and 
iR  is the reduction factor 

corresponding to response i. 
 
2.2 Constraint conditions of TMDs 
 
Since TMDs are subjected to fluctuating wind load during their service life, the strength and 

fatigue life of TMD spring have to satisfy the usage requirements. And the problem of TMD 
springs’ fatigue life is vital. During the optimization of MTMD, the constraint conditions for 
strength and fatigue life of TMD spring were taken into account by referring to the method of Gu 
and Xiang (1992). 

Given the mass and natural frequency of TMD, its stiffness can be determined 

 2
TTT mk   (9) 

where Tm  is the mass of TMD, determined by the mass ratio of TMD; T  is the circular 
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frequency of TMD, determined by the central tuning frequency of TMD. The static displacement 
of spring would be produced under the dead weight of TMD 

 
20

TT

T g

k

gm
Y


  (10) 

where g is the gravitational acceleration (9.8m/s2). 
When TMD vibrates, its dynamic response is TgY   , where g  is a peak factor valued as 

2.5 and 
T  is the RMS of dynamic displacement of TMD. Then, the peak displacement of TMD’s 

spring is 

 TT ggYYY   2
0  (11) 

Then, the requirement for strength of TMD spring (Design of cylindrical helical springs, 2009) 
is below 

     022  ][ HCggKG TT  (12) 

where ][  is the allowable shearing stress of spring material, G is shear modulus of spring 
material, ndH   is the free length of spring, n is the effective coil number of spring, d is the 
diameter of spring wire, curvature correction factor     44146150  CCCK . , the 
spring index is dDC  , and D is the mean diameter of coil. 

And the requirement for fatigue strength considering the vibration of TMD’s spring (General 
Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of 
China, Standardization Administration of the People's Republic of China, 2009a) is 

        0750750 22
0  HCKGgSgS TFTF  ..         (13) 

where 0  is shearing fatigue limit of spring material under pulsation shearing stress and FS  is 

the design safety factor of fatigue strength of spring. 
 
2.3 Optimization of MTMD 
 
2.3.1 Optimization object function 
The optimization object function has to be set during the optimization of MTMD. Although, 

MTMD is to control the structural displacement response in this paper, the controlled objects can 
be conveniently changed into other types of response, such as acceleration, stress of rod and 
support reaction. Thus, the method proposed herein is universally applicable for the effect of 
different types of optimization object function wasn’t discussed here. This paper took the sum of 
RMS of displacement at all TMD placements as the optimization object function 

 



n

i
ioptf

1

  (14) 

where n is the total number of TMDs and 
i  is the RMS of vertical structural displacement 

response at TMD i. 
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2.3.2 Genetic algorithm 
Many optimization algorithms have been proposed by researchers. For it is not the focus of the 

study, genetic algorithm (GA) was chosen herein as optimization optimization (Beasley et al. 
1993). In this paper, the global optimization of GA, which is provided by MATLAB, was used to 
optimize the parameters of MTMD. 

 
 

3. Research object and description of wind tunnel test 
 
3.1 Research object 
 
A 6×24 monolayer reticulated spherical shell was taken as the research object. The spherical 

shell is made up of radial ribs and ring bars. The radial ribs intersect in the top center of shell. Its 
span L is 40.0 m and the rise-span ratio f is 1/6. This type of structure is widely used for many 
kinds of large-span roofs, such as laboratory, industrial factory building, stadium. 

 
3.2 Wind tunnel test 
 
In order to compute the dynamic responses of the roof, the fluctuating wind pressures acting on 

the roof were obtained from a wind tunnel test. The test was carried out in TJ-2 Boundary Layer 
Wind Tunnel in Tongji University, whose working section is 3.0 m wide and 2.5 m high. The 
objective wind field of the terrain category B in accordance with the Chinese Code (Load code for 
the design of building structures, 2012) was simulated with a standard spire-roughness 
arrangement on the wind tunnel floor. The exponent of the mean wind speed profile was 0.15. The 
geometry scale was 1:150. Reference wind speed at the height of 1.0 m (equivalent to 150.0 m 
high in the atmospheric boundary layer) in the wind tunnel for the measurement obtained from the 
pitot tube was 12.0 m/s, and the wind velocity UH at the height of the model’s roof top (H=0.20 m) 
was 9.43 m/s, indicating that the velocity scale was 1:3.71. And the turbulence intensity of roof top 
was 15%. The wind pressures at 127 measuring points, which were distributed evenly on the roof 
surface, were simultaneously measured on the rigid model of the roof. The pressure taps were 
connected with the measurement system through PVC tubing. To avoid the distortion of the 
dynamic pressure, the signals had been modified using the transfer function of the tubing systems. 
The pressure signals were sampled at 312.5 Hz. The detailed description of characteristics of wind 
pressure on the roof surface can be found in the reference (Lin 2013). 

 
 

4. Wind-induced response and determination of controlled modes and placements of 
TMDs 
 
4.1 Modal analysis  
 
The dynamic behaviors of the roof structure are computed before the computation of the wind 

induced responses. Fig. 1 presents the first twelve mode shapes and the corresponding natural 
frequencies of the structure. The first natural frequency is 0.805 Hz, and about 12 mode shapes 
range from 0.80 to 0.90 Hz. The natural frequencies are found to be fairly close to one another. 
This is a very important consideration when analyzing the dynamic response of large-span roofs. 
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Since the reticulated shell has a symmetric structure, the mode shapes also have symmetric 
characteristics. The first and second mode shapes vibrated horizontally along X and Y axis, while 
the third mode shape rotated around the Z axis. 

 
4.2 Characteristics of wind-induced response 
 
The wind-induced responses of the structure without MTMD were calculated by using the 

abovementioned frequency domain method. The basic wind pressure was 0.55kPa and the 
structural damping ratio  was 0.01. The number of mode participating in vibration was 100.  

For the convenience of description, the structure was divided into five rings (R0-R4) from 
inside to outside (shown in Fig. 2). The points with maximum wind-induced vibration of these five 
rings under 0° wind direction were pointed out, presented as P0-P4 in Fig. 2. 
 

 

 
(a) 1st mode (0.805 Hz) (b) 2nd mode (0.805 Hz)  (c) 3rd mode (0.843 Hz) 

 
(d) 4th mode (0.845 Hz) (e) 5th mode (0.845 Hz) (f) 6th mode (0.847 Hz) 

 
(g) 7th mode (0.847 Hz) (h) 8th mode (0.861 Hz) (i) 9th mode (0.861 Hz) 

 
(j) 10th mode (0.863 Hz) (k) 11st mode (0.863 Hz) (l) 12nd mode (0.880 Hz) 

Fig. 1 Typical mode shapes and natural frequencies 
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Fig. 2 Nodes of maximum wind-induced responses of different rings 
 
 
The calculation results demonstrated larger vertical displacement response along with Z axis 

compared to horizontal responses. Thus, the peak and RMS of displacement response of 
counterclockwise distributed nodes along the arrow in Fig. 2 were presented in Fig. 3. Node NO. 
in the abscissa shows the position of node. NO. 1 presents the starting point in the stretch arrow 
(shown in Fig. 2), and the number increases anticlockwise. It can be known from Fig. 3(a) that the 
vertical displacement response of the structure could reach as high as to 12.8 cm, indicating larger 
structural response. According to Fig. 3(b), the maximum wind-induced vibration of five rings 
occurred on P0, P1, P2, P3 and P4, respectively. P0 was close to the reticulated shell center on the 
windward side, whereas P1-P4 located at the central axis of roof on the leeside. R1 achieved the 
largest dynamic response, followed by R4, R2, R3 and R0 successively. For targeting at the 
reduction of wind-induced vibration, this paper only focused on rings with large wind-induced 
vibrations. Since ring R0 showed significantly smaller wind-induced vibrations than rest rings, this 
paper only analyzed the characteristics of wind-induced vibrations of R1, R2, R3 and R4. 

 
 

  

(a) Peak responses of nodes on each ring (b) Displacement RMS of nodes on each ring 

Fig. 3 Wind-induced responses 
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Fig. 4 Modal contribution to resonant response 
 
 
Since MTMD can control the resonant component of wind-induced dynamic response, the 

mode contributions to resonant component, which is shown in Fig. 4, were analyzed by using the 
method proposed by Zhou and Gu (2010). Fig. 4 presents that, different nodes produced great 
vibrations at multiple natural frequencies, showing characteristics of typical multi-modes coupled 
effects. For different nodes, modes made significant different contributions to resonant component. 
The nodal displacement at P1 brought great contributions (8%) of 2nd and 4th modes to resonant 
component. Larger resonances were also observed at P1 under other modes. Node P2 mainly 
produced resonances at the 1st and 2nd natural frequencies. The modal contribution of the second 
mode even reached to 10%. Node at P3 showed similar vibration with that at P2, that is, 
resonances were mainly produced at the first and second natural frequencies. At P4, resonances 
were mainly contributed by the 7th, 8th and 11st modes, each of which showed a modal contribution 
of more than 7%. For the symmetry of the roof structure, the characteristics mentioned above at 
P1-P4 can represent the vibration characteristics of their corresponding rings. The results of modal 
analysis showed the same value of 1st and 2nd natural frequencies, 4th and 5th natural frequencies, 
as well as 8th and 9th natural frequencies. Additionally, the points with larger displacement at 1st 
and 2nd modes as well as 4th and 5th modes were basically within ring R1 where node P1 lies in. 
As a result, the maximum resonant energy of R1 was believed to be at the natural frequencies 
0.805 Hz, 0.845 Hz. Similarly, the maximum resonant energy of R2 and R3 were believed at 0.805 
Hz. The R4 was relative complicated as 7th, 8th and 11st natural frequencies all made great modal 
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contributions to the resonant response. Thus, 0.861 Hz for the 8th natural frequencies, which 
located in the middle position, was chosen as the controlled frequency for ring R4. 

 
4.3 Controlled modes and placements of TMDs 
 
According to the analysis on the characteristics of wind-induced response, the resonant 

component of vibration is very complicated associated with the effects of multi-modes coupled 
vibrations and different responses have different resonant frequencies contributing most of energy. 
Hence, the following would set controlled frequencies and placements of TMDs of the MTMD 
according to the response characteristics of rings. No TMDs was set in ring R0 due to its small 
vibration. Each of the rest four rings were equipped with different groups of MTMDs, numbered 
as G1, G2, G3 and G4. G1 is used to control R1, G2 for R2, G3 for R3 and G4 for R4.  

The controlled frequencies of MTMDs were the natural frequencies of modes with maximum 
contributions to resonant component. As mentioned before, the natural frequency with maximum 
mode contribution of R2 was 0.805 Hz, so the controlled frequency and modes of G2 were 0.805 
Hz, 1st and 2nd modes respectively. The maximum resonant energy of G1 was found at the natural 
frequencies 0.805 Hz, 0.845 Hz. Since the controlled frequency of G2 and G3 was set as 0.805 Hz, 
the controlled frequencies and modes of G1 was determined as 0.845 Hz, 4th and 5th modes 
respectively. Thus, the controlled frequencies, modes and corresponding rings of four MTMD 
groups were listed in Table 1.  

Placement and number of TMD are also important parameters for MTMD. With 
three-dimensional effect, it is more difficult for large-span structure to analyze the effect of TMD 
placement and number on the control effect compared with high-rise structure. Therefore, the 
placement and number of TMD were determined according to the key nodes with large 
displacement in the controlled modes according to Table 1. 

The key nodes with large displacement of different vibration modes can be easily pointed out 
by analyzing the mode shapes carefully in Fig. 1. Fig. 5 presented the positions of the key nodes, 
which were used to determine the placement of the MTMDs. As mentioned before, G1 controls R1 
and the control frequency is 0.845 Hz, the position of TMDs in G1 were determined according to 
Fig. 5(a). Similarly, the placements of other MTMDs can be determined. 

The placement of TMDs were summarize to been shown in Fig. 6, where G1-G3 were 
composed of 16 TMDs respectively, and G4 was composed of 12 TMDs. 

 
 
 

Table 1 Controlled ring and tuning frequency of four MTMD groups 

NO. MTMD controlled ring controlled modes tuning frequency (Hz) 

G1 R1 4、5 0.845 

G2 R2 1、2 0.805 

G3 R3 1、2 0.805 

G4 R4 8 0.861 
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(a) Key nodes of 4th and 5th modes on R1 (b) Key nodes of 1st and 2nd mode on R2 

  

(c) Key nods of 1st and 2nd mode on R3 (d) key nodes of 8th and 9th mode on R4 

Fig. 5 Key nodes of controlled modes on each ring 
 
 

Fig. 6 Position of TMDs 
 

G1

G2
G3

G4
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Table 2 Parameters of MTMD in parametric study 

total mass ratio (μ) 
damping ratio (

T
 ) 

central tuning frequency 

ratio (λ) 

frequency  range (β) 

/Hz 

2.0 % 7% 1.0 0.08 

 
 
5. Parametric analysis of MTMD 
 

Due to the complexity of MTMD, parametric analysis on control effect of MTMD was 
performed firstly, which provided initial range of parameters for subsequent optimization. The 
following parametric analysis mainly focused on the mass ratio, damping ratio, central tuning 
frequency ratio and frequency range of MTMD. To explore the vibration control effects of MTMD 
parameters, the analysis of one parameter was conducted under the precondition of fixed values of 
other parameters. The fixed values of parameters were determined according to the following 
principle. 

Abe and Fujino (1994) carried out parametric analysis under 1%~2% for MTMD mass ratio. 
Hecne, when analyzing other parameters, the total MTMD mass ratio was determined 2%, and the 
total MTMD mass was distributed evenly to four MTMD groups, that is, 0.5% for each group. 
Meanwhile, every TMD has equal mass. 

After the total MTMD mass ratio was determined, the damping ratio was calculated 7% using 

Warburton’s (1982) theoretical formula  
  

1 3 41

2 1 1 2

 
 


 
 ,where is mass ratio. Therefore, damping 

ratio was determined as 7% when analyzing other parameters. 
The central tuning frequency ratio was calculated from Den Hartog’s(1956) optimal frequency 

ratio formula for undamped structure ( 1

1






). In this paper, the central tuning frequency ratio 

was determined 1.0 when analyzing other parameters because of the multi-mode effects on 
dynamic vibration. 

Abe and Fujino (1994) proposed the theoretical formula of minimum frequency range of 
MTMD. Based on this formula, the minimum frequency range in this paper of MTMD was 
determined as 0.08 Hz when analyzing other parameters. 

The values of MTMD parameters for parametric analysis were summarized in Table 2. 
 
5.1 Effect of total mass ratio 
 
Fig. 7 showed the relationship between the total mass ratio and vibration reduction factor as 

well as the relationship between the total mass ratio and mean vibration reduction factor of G1-G4. 
In the figure, the curves with hollow marks for P1-P4 denote the reduction factor for single nodes 
defined by Eq. (7), whereas the curves with solid marks for G1-G4 denote the mean reduction 
factor for different rings defined by Eq. (8). It demonstrated that larger MTMD mass ratio would 
bring larger vibration reduction factor. However, after the total mass ratio reached the certain value 
(1.6%), such growth of vibration reduction factor slowed down with the continuous increasing of 
mass ratio. Furthermore, the best vibration control effect was observed on P4. Different MTMD 
groups showed different control effect and G1 achieved the best. 
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Fig. 7 Effect of total mass ratio on reduction factor 
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Fig. 8 Effect of MTMD damping ratio on reduction factor 

 

5.2 Effect of damping ratio 
 
The relationship between the MTMD damping ratio T  and vibration reduction factor was 

represented in Fig. 8. The reduction factor and mean reduction factor of different MTMD groups 
changed similarly with the damping ratio of TMDs. When the damping ratio of TMD was smaller 
than 0.05, the reduction factor increased quickly with the increasing of damping ratio. However, 
the vibration reduction factor increased slightly with the further increasing of damping ratio. This 
indicated that all MTMDs have an optimal damping ratio. According to Fig. 9, the optimal 
damping ratio of MTMD was ranging from 7% to 12%. 

 
5.3 Effect of central tuning frequency ratio 
 
Fig. 9 represented the relationship between the central tuning frequency ratio and reduction 

factor. Both the reduction factors at a single node and mean reduction factors have different 
optimal central tuning frequency ratios. Meanwhile, different reduction factors have different 
sensitivities to the central tuning frequency ratio. Compared with other nodes, P4 is most sensitive 
to the central tuning frequency ratio. According to Fig. 9, the reduction factor at a single node is 
more sensitive to the change of central tuning frequency ratio than the mean reduction factor. The 
optimal central tuning frequency ratio of G1 and G4 was about 0.98, whereas that of G2 and G3 
was about 1.05. 
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5.4 Effect of frequency range 
 
Fig. 10 represented the relationship between the frequency range and vibration reduction factor, 

showing a slight decrease of the reduction factor with the increasing of frequency range. The 
reduction factor of P4 decreased relatively obviously with the increasing of frequency range. In a 
word, no great effect of frequency range was observed on the control effects of MTMDs. 
Therefore, the requirement of frequency range of MTMDs can be relaxed appropriately to increase 
its robustness. 

 
5.5 Effect of mass distributed of different MTMD groups 
 
The effect of five different mass distributions for four MTMD groups (shown in Table 3) was 

discussed under the fixed total MTMD mass ratio (2%). Fig. 11 is the histogram of reduction 
factors of P1-P4 and mean vibration reduction factors of G1-G4 under five different mass 
distributions. When the mass ratio of MTMD increased, the reduction factors of single nodes and 
mean reduction factors of rings also increased, which agrees with above analysis result that larger 
mass ratio would bring larger reduction factor.  
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Table 3 Mass proportions of four MTMD groups 

NO. Case G1 G2 G3 G4 

Case 1 25% 25% 25% 25% 

Case 2 55% 15% 15% 15% 

Case 3 15% 55% 15% 15% 

Case 4 15% 15% 55% 15% 

Case5 15% 15% 15% 55% 
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Fig. 11 Effect of different mass proportions of MTMD groups on reduction factor 
 
 
6. Parameter optimization of MTMDs 
 

Based on the results of parametric study above, the optimal parameters of four MTMD groups 
were calculated through the global optimization toolbox of GA of Matlab. 

 
6.1 Optimization constraints 
 
The MTMD control system includes four MTMD groups. Each MTMD group has four 

parameters: mass ratio, damping ratio, central tuning frequency ratio and frequency range, so there 
are 16 parameters have to be optimized. To improve the efficiency of optimization, the upper and 
lower limit of optimal parameters were determined according to the results of parametric analysis 
above. Meanwhile, the same parameters of different MTMD groups were required to have the 
same upper and lower limit. 

As stated before, the growth of reduction factor slowed down with the continuous increasing of 
total MTMD mass ratio when reached a certain value. Based on the results of parametric study, the 

upper limit of total MTMD mass ratio was determined 1.6%, that is, 
4

1

1.6%i
i




 , where i  is 

the mass ratio of G. During the parameter optimization, the Mass proportion of four MTMD 
groups was allocated by the optimization program. If the total MTMD mass ratio is too large, the 
weight of TMDs will cause negative effect on the structure. Therefore, the static displacement 
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response of the structure under the dead weight of MTMD was analyzed in this paper. The 
maximum vertical static displacement caused by the weight of MTMD under different total mass 
ratios was listed in Table 4. It can be known from Table 4 that larger total MTMD mass ratio 
would produce larger response. When the total MTMD mass ratio reached 1.6%, the maximum 
displacement caused by the weight of MTMD was only 1.28 cm, which was insignificant to the 
structure.  

According to the results of parametric analysis, the optimal damping ratio of MTMD was 
7%~12%. During the optimization, this range was expanded to 5%~20% in considering of the 
effect of mass ratio. 

From the results in Section 4, the optimal central tuning frequency ratio of MTMD was ranging 
0.98~1.05. This paper expanded it to 0.9~1.1 in considering of its potential drift for optimization. 

Section 4 concluded that the frequency range of MTMD was insignificant to the control effect 
and suggested to relax the frequency range of MTMD appropriately in order to increase its 
robustness. To prevent MTMD from being changed into multiple STMDs, the frequency range 
would not be over wide (Abe and Fujino 1994). In addition, for the major energy of excitation 
ranged between 0.8~0.9 Hz, the frequency range of MTMD was finally determined between 0.08 
Hz~0.2 Hz. 

 
6.2 Results of optimization 
 
6.2.1 Optimized parameters 
Optimized results of MTMD’s parameters without involving spring constraints were listed in 

Table 6. Different MTMD groups have different mass ratios: G1>G2>G4>G3. According to the 
results in Section 4, given a fixed total mass ratio, the MTMD group with higher proportion of 
mass ratio achieved better control effect. Hence, during the optimization targeting at minimum 
sum of RMS of displacement at all TMD placements, mass ratio of MTMD is surely related with 
the vibration strength and TMD number of the corresponding control ring. According to the 
wind-induced vibration analysis, R1 achieved the largest dynamic response, followed by R4, R2 
and R3 successively, which basically agrees with the optimal mass distribution of corresponding 
rings. Furthermore, the optimized mass ratio of G2 is found slightly larger than that of G4. This 
was due to R2 includes 16 TMDs but R4 only 12 TMDs, though R4 has slightly larger dynamic 
response than R2. 
 
Table 4 Maximum static displacement of structure under different total mass ratios 

Total mass ratio 0.4% 0.8% 1.2% 1.6% 2.0% 2.4% 2.8% 

Maximum static 
displacement (cm) 

0.34 0.69 1.03 1.38 1.72 2.07 2.41 

 
Table 5 Upper and lower limit of MTMD parameters for optimization 

 
total mass 

ratio (μ) 
damping ratio(

T
 ) 

central tuning 

frequency ratio (λ) 

frequency  

range (β) /Hz 

upper limit 1.6% 20% 1.1 0.2 

lower limit 0% 5% 0.9 0.08 
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Table 6 Optimized results of MTMD groups 

NO. MTMD mass ratio (μ) 

damping 

ratio(
T
 ) 

central tuning frequency 

ratio (λ) 

frequency  

range (β) /Hz 

G1 0.52% 9.54% 0.993 0.08 

G2 0.40% 9.07% 1.068 0.08 

G3 0.31% 8.92% 1.088 0.08 

G4 0.37% 7.90% 0.999 0.08 

 
 

Table 7 Reduction factors of P1-P4 and mean reduction factors of G1-G4 

P1 P2 P3 P4 G1 G2 G3 G4 

40.06% 39.70% 34.38% 43.59% 41.37% 37.26% 31.86% 28.92% 

 
 
The optimized damping ratio of each MTMD group agrees with its results of parametric 

analysis. And the optimized damping ratios of all MTMD groups fell within 7%~12% (Section 4), 
indicating the reliability of the optimal damping ratio. 

The optimized central tuning frequency ratio of MTMD groups disagrees a little with the 
results of parametric analysis. According to Section 4, the optimal central tuning frequency ratio of 
G1 and G4 was about 0.98, and that of G2 and G3 was about 1.05. However, Table 6 showed that 
the optimal central tuning frequency ratios of G1 and G4 were 0.993 and 0.999 respectively, 
whereas those of G2 and G3 were 1.068 and 1.088 respectively. The optimal central tuning 
frequency ratios of G1, G2 and G4 were close to the parametric analysis results, but that of G3 was 
larger than the value of parametric study. Such disagreement was caused by the different mass 
ratio of MTMD group between the parameter optimization and parametric analysis. In parametric 
analysis, mass ratio of all MTMD groups was determined 0.5%, but the optimized mass ratios 
were different. Particularly, the mass ratio of G3 was only 0.31%, which is 0.19% less than the 
result of parametric analysis. Based on the theoretical formula of optimal central tuning frequency 
ratio (Den Hartog 1956), smaller mass ratio of TMD would bring larger optimal central tuning 
frequency ratio, thus resulting in the larger optimal central tuning frequency ratio of G3.  

To minimize the optimization object function, the optimal frequency range of all MTMD 
groups was taken the lower limit (0.08 Hz), because the reduction factor decreased with the 
expansion of frequency range (seen in Section 4).  

 
6.2.2 Control effect 
The power spectra of vertical displacement at P1-P4 without/with MTMD were presented in 

Fig. 12. The figure demonstrated the effectiveness of MTMD in lowering the resonant energy. 
Thus, the dynamic responses were also reduced significantly. 

The reduction factors of P1-P4 and mean vibration reduction factors of G1-G4 in the optimal 
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MTMD were listed in Table 7. The reduction factors at P1-P4 reached more than 34% and the 
mean vibration reduction factors more than 28%. This indicated the good control effect of the 
optimized MTMD. 

 
6.3 Effect of TMDs spring constraints 
 
6.3.1 TMDs spring constraints 
During the optimization, since spring stiffness changes with the mass ratio and frequency ratio 

of single TMD, the mean diameter of coil (D), diameter of spring wire (d), spring index (C=D/d) 
and free length of spring (H) are determined by mass ratio and frequency ratio. For the convenient 
implementation of spring constraint, the values of D and d were set fixed. The designed spring 
stiffness was maintained same with that for optimization by adjusting H. Based on this idea, the 
free length of spring H can be calculated from (General Administration of Quality Supervision, 
Inspection and Quarantine of the People's Republic of China, Standardization Administration of 
the People's Republic of China, 2009a), 

 
23

2

3

2

88 TTT mC

Gd

kC

Gd
H


  (15) 

Values of variables in the spring constraints can be determined according to associated codes 
(General Administration of Quality Supervision, Inspection and Quarantine of the People's 
Republic of China, Standardization Administration of the People's Republic of China, 2009a, b, c, 
Mott 2013). The spring material used DH-type cold-drawn non-alloy steel wire for springs and the 
allowable tensile strength 1400B  MPa. The number of loading cycles was N≥107, indicating 

the infinite fatigue life of spring with a shearing fatigue limit under pulsation shearing stress (
0 ) 

of 0.35
B

 . Values of spring parameters were given in Table 8. Under this circumstance, both 

allowable shearing stress of the spring material ( ][ ) and 
0  were 490 MPa. After spring 

parameters were determined, H can be calculated from Eq. (15). Then, the process of optimization 
can be controlled by substituting these spring parameters into Eqs. (12) and (13). 

 
6.3.2 Response of TMDs spring under different wind velocities without involving spring 

constraints 
When the basic wind pressures are 0.35 kPa, 0.45 kPa and 0.55 kPa respectively, a preliminary 

study on the results of TMD optimization was conducted. The conditions of these basic wind 
pressures are equivalent to those with wind velocities 24 m/s, 27 m/s and 30 m/s at 10 m high 
above the ground respectively. In this section, the optimization neglected the effect of spring 
constraints. Strictly speaking, the joint probability density function between wind direction and 
wind velocity should be involved when dealing with the problem of fatigue. 

Fig. 13 presented the RMS displacement of different TMDs at three levels of wind velocity. In 
the figure, TMD NO. 1-16 on the abscissa represents TMDs in G1; 16-32 represents TMDs of G2; 
33-48 represents TMDs of G3; 49~60 represents TMDs of G4. The maximum shearing stress and 
fatigue pulsation shearing stress of TMD springs at three levels of wind velocity were shown in 
Figs. 14 and 15. From these figures it can be seen that, larger wind velocity is accompanied with 
larger vibration displacement of TMDs and larger spring stress. Such increased spring stress would 
increase the maximum shearing stress and fatigue pulsation shearing stress of the TMDs springs.  
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Table 8 Values of spring parameters 

G(GPa) B
 (MPa) ][ (MPa) 0

 (MPa) D(mm) d(mm) C(D/d) F
n  

78.5 1400 0.35
B

  0.35
B

  88 11 8 1.7 
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Fig. 13 RMS displacement of TMDs at three levels of wind velocity 
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Fig. 14 Maximum shear stress of TMD springs wires at three levels of wind velocity 
 

According to Fig. 14, the maximum shearing stresses of springs at three levels of wind velocity 
were smaller than ][ (490MPa), satisfying the usage requirement. As a result, the constraints 
brought by spring strength can be neglected during the optimization. 
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Fig. 15 Fatigue pulsation shearing stress of TMD spring wires at three levels of wind velocity 
 

According to Fig. 15, the fatigue pulsation shearing stress of TMD springs at the wind velocity 
of 24m/s was smaller than 0  (490Mpa), which, however, increased with the increasing of wind 
velocity. When the wind velocity reached 27 m/s, the fatigue pulsation shearing stress of some 
TMD springs in G4 exceeded 0 . Furthermore, when the wind velocity reached 30 m/s, the 
fatigue pulsation shearing stress of two TMD springs in G1 and all TMD springs in G4 exceeded

0 . Therefore, some measures for preventing the TMD fatigue failure are demanded for satisfying 
usage of TMD. 
 

6.3.3 Effect of spring constraints on the optimization results 
Based on the analysis in Section 5.3.2, this part analyzed the effect of spring constraints under 

 =30 m/s (basic wind pressure: 0.55 kPa) at 10m high above the ground on the MTMD 
optimization. 

The optimized MTMD parameters when spring constraints were taken into account were listed 
in Table 9. The comparison between Tables 6 and 9 found that, when the TMD spring constraints 
were taken into account, different MTMD groups still maintained same frequency range and 
similar mass ratio. The damping ratio of G1 increased slightly, while the damping ratio of G2-G3 
decreased slightly. However, the damping ratio of G4 increased from 7.83% to 18.51%, higher 
than its optimal damping ratio. The central tuning frequency ratios of all MTMD groups have 
some changes. G2 only decreased its central tuning frequency ratio by 0.009 and G3 decreased by 
0.031. G1 is found to increase its central tuning frequency ratio significantly from 0.99 to 1.042 
and G4 from 1.0 to 1.083, higher than their optimal central tuning frequency ratios. 

From Table 9 it can be seen that, when the TMD spring constraints were taken into account, 
parameters of G4 changed the most significantly, followed by those of G1. Although parameters of 
G2 and G3 changed, they still remained within the optimal parameter range. It can be known from 
Fig. 15 that the fatigue pulsation shearing stress of TMD springs in G2 and G3 was smaller than 
the design requirement, which resulted in the slight change of their parameters. However, the 
fatigue pulsation shearing stress of two TMD springs in G1 exceeded the design limit, which 
resulted in some change of its damping ratio and central tuning frequency ratio. The fatigue 
pulsation shearing stress of all TMD springs in G4 exceeded the design limit and some TMD 
springs even exceeded significantly, which resulted in the great change of its damping ratio and 
central tuning frequency ratio. 
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Table 9 Optimized results of MTMD parameters considering constrains of TMD springs 

NO. MTMD mass ratio (μ) damping ratio(
T
 )

central tuning frequency 

ratio (λ) 

frequency  range 

(β) /Hz 

G1 0.49% 11.90% 1.042 0.08 

G2 0.40% 8.98% 1.058 0.08 

G3 0.34% 8.33% 1.055 0.08 

G4 0.37% 18.51% 1.083 0.08 

 
 

Table 10 Reduction factors of P1-P4 nodes and mean reduction factors of G1-G4 considering the constrains 
of TMD springs 

 P1 P2 P3 P4 G1 G2 G3 G4 

Rwoc 39.89% 39.64% 34.77% 43.44% 40.95% 34.88% 28.62% 32.80%

Rwc 37.67% 38.29% 33.97% 36.76% 39.37% 34.42% 28.49% 29.72%

 
 
The reduction factors of optimized MTMD with or without spring constraints were listed in 

Table 10. Rwoc represents the reduction factors without spring constraints and Rwc the reduction 
factors with spring constraints. When spring constraints were taken into consideration, the control 
effect of the MTMD decreased. The reduction factors of G1-G3 changed slightly, while the 
reduction factors of G4 changed significantly, decreasing by 15.4% for P4, 9.4% for G4. This is 
because when spring constraints were taken into consideration, the damping ratio and central 
tuning frequency ratio of G4 fell beyond its optimal range, which caused poorer behavior of G4. 

The RMS of displacement of optimized TMDs with or without spring constraints were shown 
in Figs. 16-18 presented the maximum shearing stress and fatigue pulsation shearing stress. 
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Fig. 16 RMS displacement of TMDs with / without considering the constrains of TMD spring 
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Fig. 17 Maximum shear stress of TMD spring wires with / without considering the constrains of TMD 
spring 
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Fig. 18 Fatigue pulsation shearing stress of TMD spring wires with / without considering the constrains of 
TMD spring 

 
 
According to Fig. 16, the RMS of displacement of TMDs in G2 and G3 with spring constraints 

was a little larger than that without spring constraints. This was due to the slight reduction of 
damping ratio. However, the RMS of displacement of TMDs in G1 and G4 with spring constraints 
was significantly smaller than that without spring constraints, especially that of G4. This was 
related with the increase of damping ratio. As shown in Figs. 17 and 18, the maximum shearing 
stress and fatigue pulsation shearing stress of the TMD springs in G1-G3 changed slightly no 
matter spring constraints were considered or not. However, the maximum shearing stress and 
fatigue pulsation shearing stress of the TMD spring in G4 decreased significantly when spring 
constraints were taken into account. Fig. 18 revealed that all springs have a satisfying the 
requirement of fatigue design.  
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Fig. 19 Relationship between reduction factor and drifting frequency ratio 
 
 
6.4 Robustness analysis 
 
As an important index of TMD control system, robustness is used to evaluate whether the 

control effect of TMD changes significantly when the structural natural frequency drifts. The 
drifting frequency ratio was defined as, 

 
s

d
d f

f
λ   (16) 

where, 
s

f  is the original natural frequency of structure and 
d

f  is the natural frequency after 

frequency drifting, which was ranging between 0.90
s

f ~1.10
s

f  for robustness analysis in this 

paper. 
Fig. 19 represented the relationship between the reduction factors of P1-P4 and mean reduction 

factors of G1-G4 with the change of drifting frequency ratio. In Fig. 19, larger drift of structural 
natural frequency is accompanied with smaller vibration reduction factor of MTMD. When the 
structural frequency drifted, the structural natural frequency changed but MTMD was still 
designed according to the original natural frequency, thus resulting in the change of central tuning 
frequency ratio of MTMD. As stated before, MTMD has an optimal central tuning frequency ratio. 
Thus, larger difference between the central tuning frequency ratio and the optimal central tuning 
frequency ratio would cause poorer control effect.  

When the drifting frequency ratio ranged between 0.9~1.1, the difference between the 
maximum and minimum reduction factors of P1-P4 was within 15%, and the difference between 
the maximum and minimum mean vibration reduction factors of G1-G4 was within 8%. This 
indicated that, the whole MTMD presented a good robustness, although the robustness of single 
node is relatively poor.  

 
 

7. Conclusions 
 
The optimization method of MTMD for large-span roof structures subjected to wind loads was 

established in the paper. The controlled modes and placements of TMDs in MTMD were 
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determined according to the modal contributions to the resonance component of wind-induced 
dynamic responses. To set reasonable boundary values of parameters for optimization, the 
parametric analysis, which focused on the effects of mass ratio, damping ratio, central tuning 
frequency ratio and frequency range of MTMD, was performed. Then through the genetic 
algorithms, the optimal parameters for MTMD were gained. Also, for purpose of engineering 
practice, the requirements of strength and fatigue life of TMDs spring were adopted as the 
constraint condition during the process of optimization. 

The optimization method was applied to a specific shell structure. According to the selection 
principle, the controlled frequencies of MTMD for the structure were the natural frequencies of 
modes with maximum contributions to resonant component. The placement and number of TMDs 
were determined according to the key nodes with large displacement in the controlled modes. 
When the optimization did not involve the spring constraints, the reduction factors at some key 
nodes of the structure reached more than 34% and the mean vibration reduction factors more than 
28%, which indicated the good control effect of the optimized MTMD. The study performed a 
preliminary investigation on the responses of TMDs spring under different wind velocities without 
involving spring constraints. The preliminary investigation showed that the fatigue pulsation 
shearing stresses of some TMD springs at higher level of wind velocity exceeded the shearing 
fatigue limit. Then the MTMD parameters were optimized when spring constraints were taken into 
account. While the requirements for strength and fatigue life of TMDs spring were considered, the 
MTMD had to satisfy the spring constraints at cost of control effect. The reduction factors at some 
key nodes changed significantly, decreasing by 15.4%. And some mean vibration reduction factors 
decrease by 9.4%. Finally, the robustness analysis was conducted in the study. When the drifting 
frequency ratio ranged between 0.9~1.1, the difference between the maximum and minimum 
reduction factors at some key nodes was within 15%, and the difference between the maximum 
and minimum mean vibration reduction factors was within 8%. This indicated that, the whole 
MTMD presented a good robustness.  
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